
Programs as Agents in First-Order Logic

Fangzhen Lin

The Voice: If you build it, he (they) will come.

— Field of Dreams (1989)



Current Research Interests

Broadly speaking, logic-based AI. Specifically:
Answer Set Programming: a constraint-based problem
solving paradigm using nonmonotonic logic programs, with
real world applications in product design, bioinformatics,
and robotics.
High level robot design based on a formal theory of
actions.
Game theory and social choice theory:

A formulation of HK Legislative Council GC election.
Computer-aided theorem discovery in game theory.
Iterative game theory (iterative Prisoner’s Dilemma).

Computer programs as agents in first-order logic.



Computer Programs as Agents in First-Order Logic

Programs are some of the most complex man-made
systems.
To understand these systems, we propose to treat them as
agents with knowledge in first-order logic.
As a first step, we will construct a translator from
programming languages like C and Java to first-order logic.



Examples

The following program changes the value of X given the values
of X and Y:

X = X+Y;
X = X+Y

If we use X and Y to denote the input values of X and Y ,
respectively, and X ′ and Y ′ the output values, then we have (X1
and Y1 are intermediate variables):

X1 = X + Y ,

Y1 = Y ,

X ′ = X1 + Y1,

Y ′ = Y1.

How about real programs, especially those with loops?



Examples

Consider the following while loop

while X < M do { X = f(X) }

What does it output? No effect on M, but for X , it depends on f :

M ′ = M,

X ≥ M → X ′ = X ,

X < M → X ′ = X (N),

X (0) = X ,

∀n.X (n + 1) = f (X (n)),
X (N) ≥ M,

∀n.n < N → X (n) < M.

N denotes the number of iterations that the loop runs until
termination. X (n) is the value of X after the nth iteration.



Properties during execution - use V L to denote the value of V
at label L:

1: while I < N do
2: if X < A(I) then
3: X = A(I);
4: I = I+1

The axioms for the body of the loop are (we ignore A(x) and N
as they do not change):

X 4 = X 2 ∧ I4 = I2 + 1,
X 2 = if X < A(I) then X 3 else X ,

I2 = if X < A(I) then I3 else I,
X 3 = A(I) ∧ I3 = I.



Thus the axioms for the program are:

X 1(0) = X ∧ I1(0) = I,
X 1(n + 1) = X 4(n),
I1(n + 1) = I4(n),
X 4(n) = X 2(n),
I4(n) = I2(n) + 1,
X 2(n) = if X 1(n) < A(I1(n)) then X 3(n) else X 1(n),
I2(n) = if X 1(n) < A(I1(n)) then I3(n) else I1(n),
X 3(n) = A(I1(n)),
I3(n) = I1(n),
X 1 = X 4(M) ∧ I1 = I4(M),

n < M → I1(n) < N,

¬I1(M) < N.



Remarks

Where do we stand now:
a core procedural programming language with loops and
functions.
a prototype system for translating these programs to
first-order theories;
A simplifier for program verification.
Some simple heuristics for proving correctness of a
program in integer domain using mathematica - integer
division, least common multiple, largest common factor, ...
pointers and struct data structure for linked lists: manually
prove the correctness of an algorithm for in-place reversing
of a list, and that of Schorr-Waite graph marking algorithm.
Working on threads and concurrency.


