Stop the bleeding from
the heart

prism research group @ cse

Buffer overflow

- Overwriting memory contents beyond legal

limits

. Stack memory = hijack the running program by
replacing function return address

- Heap memory = copying information that should
not be revealed

- One of the earliest (and newest) software
security vulnerabillities

- Morris worm, 1988
- Heartbleed, 2014

Essentially caused by a common programming
mistake

The heartbleed bug

- The most “glamorous” security bug in recent
history

. A serious security flaw in OpenSSL, the most
widely used library for secure network
communication such as “https”

- Hatched in Dec. 2011, discovered on April 1,
2014

- Around 500,000 websites affected including
Google, Yahoo, Amazon, and our own CSE

- Over two dozen CISCO and Juniper routers also
affected, tens of thousands of units to be patched

Enter the beast

tlsl process heartbeat
@2514 memcpy(bp, pl, payload)

target memor
9 7 how many to copy

source memory
Copying heartbeat echo message to outgoing buffer

- "pl” and “payload” controlled by attacker ,"bp” is a network

buffer

| can put 4 bytes in “pl” and claim “payload” to be 64kb

FInding the needle

. openssl : close to 1/2 million lines, 92 directories,

over 3500 functions

- memcpy(target, source, length) : 647 places in over

100 files

- Inspection effort = heartbleed itself spans 7 files,
over 13,000 lines in 44 functions @ 300 lines per
function

- “Given enough eye balls, all bugs are shallow”

Software Al to replace eyeballs

- Objective: present a handful of reports through static program analysis
For heartbleed, Al compiler should reason as follows
Culprit, memcpy, 647 usages, need to consider other constraints

Additional constraints

length comes from system read and unchecked

- source data come from system read . 60\“08‘
S\
. source data size is much smaller than length \Jk\a(g \
cP g\‘(\
‘.(\eﬂ\ \e®
(Optional) target data goes to system write

- Theory limits: problem ultimately undecidable and exponential. false alarms inevitable.

To stop the bleeding

. Context-sensitive analysis : the capability to walk up and down
the calling stack (exponential)

.- Path-sensitive data flow analysis : to precisely understand the
flow/propagation of data on the stack (exponential)

- Pointer analysis: to understand how values flow through the heap
(undecidable)

- Abstract interpretation: to compute the value ranges program
variables can take (exponential)

- Propositional satisfiability: to understand boolean predicates in
programs (NP-complete)

pinpoint @ cse

- On-going research in tackling all these challenges

. Cutting edge symbolic pointer analysis to
understand heap

- Massive use of theorem prover to understand path
logic

- Summary-based data indexing on cloud to
address scalability

