
Stop the bleeding from

the heart
prism research group @ cse

Buffer overflow

• Overwriting memory contents beyond legal
limits
• Stack memory hijack the running program by

replacing function return address
• Heap memory copying information that should

not be revealed

• One of the earliest (and newest) software
security vulnerabilities
• Morris worm, 1988
• Heartbleed, 2014

• Essentially caused by a common programming
mistake

The heartbleed bug

• The most “glamorous” security bug in recent
history

• A serious security flaw in OpenSSL, the most
widely used library for secure network
communication such as “https”

• Hatched in Dec. 2011, discovered on April 1,
2014

• Around 500,000 websites affected including
Google, Yahoo, Amazon, and our own CSE

• Over two dozen CISCO and Juniper routers also
affected, tens of thousands of units to be patched

Enter the beast

• Copying heartbeat echo message to outgoing buffer

• “pl” and “payload” controlled by attacker ,“bp” is a network

buffer

• I can put 4 bytes in “pl” and claim “payload” to be 64kb

tls1_process_heartbeat

@2514 memcpy(bp, pl, payload)

target memory

source memory

how many to copy

Finding the needle

• openssl : close to 1/2 million lines, 92 directories,

over 3500 functions

• memcpy(target, source, length) : 647 places in over

100 files

• Inspection effort heartbleed itself spans 7 files,

over 13,000 lines in 44 functions @ 300 lines per

function

• “Given enough eye balls, all bugs are shallow”

Software AI to replace eyeballs

• Objective: present a handful of reports through static program analysis

• For heartbleed, AI compiler should reason as follows

• Culprit, memcpy, 647 usages, need to consider other constraints

• Additional constraints

• length comes from system read and unchecked

• source data come from system read

• source data size is much smaller than length

• (Optional) target data goes to system write

• Theory limits: problem ultimately undecidable and exponential. false alarms inevitable.

To stop the bleeding ……

• Context-sensitive analysis : the capability to walk up and down

the calling stack (exponential)

• Path-sensitive data flow analysis : to precisely understand the

flow/propagation of data on the stack (exponential)

• Pointer analysis: to understand how values flow through the heap

(undecidable)

• Abstract interpretation: to compute the value ranges program

variables can take (exponential)

• Propositional satisfiability: to understand boolean predicates in

programs (NP-complete)

pinpoint @ cse

• On-going research in tackling all these challenges

• Cutting edge symbolic pointer analysis to

understand heap

• Massive use of theorem prover to understand path

logic

• Summary-based data indexing on cloud to

address scalability

