k‘a COMPUTER SCIENCE & ENGINEERING

HERANBR TR

Networked Systems for Big Data and Clouds

Kai Chen
CSE Department, HKUST



System Platform Implemented

Electrical Packet Electrical Packet Optical Circuit
Switch, 1G (x10) Switch, 10G (x3) Switch (x5)

IS AU A
All connected, can form three architectures:
1. Pure electrical (traditional)
2. Pure optical

3. Hybrid electrical/optical
Email me if you want to play on it: a really fantastic testbed

to translate your ideas into practice!!

m S RO
]I ‘ B

Commodity rack servers, Dell PowerEdge R320
(x100)

Al
w1y

=kl

»)
UM E R E H E E o

-
N
T

N
—
o
=
-—
3
=
==
oo
.
1




Research: A Bottom-up Approach

* Infrastructure/Architecture
— OSA, the first-ever all optical datacenter architecture (ToN’14, NSDI’12)
— BigSwitch, a massive-port (6336 ports) datacenter switch

 Network Layer
— XPath, intra-datacenter routing control (NSDI’15, ToN’15)
— Amoeba, inter-datacenter data transfers (EuroSys’15)

* Transport Layer
— PIAS, practical flow scheduling (NSDI’15, HotNets’14)
— CODA, centralized/decentralized coflow scheduling

 Computing Platform for Applications

— BigComputing, network-enabled large scale distributed computing
platforms for big data analytics and machine learning

Goal: simple, practical, readily-implementable solutions for real applications!



PIAS: Practical Information Agnostic Flow Scheduling

[USENIX NSDI’15]
http://sing.cse.ust.hk/projects/PIAS

Motivation: cloud apps desire low latency for short flows/messages

.

Design goal: minimize Flow Completion Time (FCT)

Not feasible for some real applications
Existing solutions: almost all assumc gricr knowledge of flow sizo
information to approximate ideal Shortest Job First (SJF) to minimize
average FCT with customized nehwerk clements.
Hard to implement in practice

PIAS makes no assumption on prior knowledge of flow size, while
still emulating SJF to minimize average FCT with existing commodity
switches.


http://sing.cse.ust.hk/projects/PIAS

PIAS: Enabling Technique

* Today’s commodity switching chips already support priority queues

—

—> Priority 1 High

-> Priority 2

—

, Low

Priority K




PIAS: Core Idea

PIAS leverages the priority queues to perform Multi-Level Feedback
Queue (MLFQ) scheduling to emulate SJF

i —> Priority 1 |

Priority 2

VI I 2

Priority K —>




PIAS in One Animation

iy




PIAS in One Animation

—> Priority 1

Flow 1 with 10 packets and flow 2 with 2 packets arrive
—-> Priority 2

> Priority 3 ’}'—)j
ﬂ —>| Priority 4 >




PIAS in One Animation

Flow 1 and 2 transmit simultaneously

=~

Priority 1

Priority 2

Priority 3

Priority 4

U




PIAS in One Animation

Flow 2 finishes while flow 1 is demoted to priority 2

by

Priorit-—_)

Priority 2

>

Priority 3

Priority 4

U

10



PIAS in One Animation

Flow 3 with 2 packets arrives

by

B

—> Priority 1

-> Priority 2

= Priority 3

->| Priority 4

U

11



PIAS in One Animation

Flow 3 and 1 transmit simultaneously

by

Priority 1

Priority 2

Priority 3

Priority 4

U

B

12



PIAS in One Animation

Flow 3 finishes while flow 1 is demoted to priority 3

Priority 1

Priority 2 Il—_)

Priority 3

Priority 4

>

@

13



PIAS in One Animation

Flow 4 with 2 packets arrives

—> Priority 1

-> Priority 2

= Priority 3

->| Priority 4

U

14



PIAS in One Animation

Flow 4 and 1 transmit simultaneously

Priority 1

Priority 2

Priority 3

Priority 4

U

15



PIAS in One Animation

Flow 4 finishes while flow 1 is demoted to priority 4

Priority 1 II—_)

Priority 2

Priority 3 -_’}'—)j

Priority 4

16



PIAS in One Animation

Eventually, flow 1 finishes in priority 4

With MLFQ, PIAS emulates SJF without prior
knowledge of flow size information

—> Priority 1 >

—>| Priority 4 >

17



Thanks, Q&A



