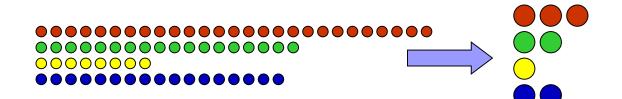
Small Summaries for Big Data



Ke Yi

HKUST

yike@ust.hk

MASSIVE Data

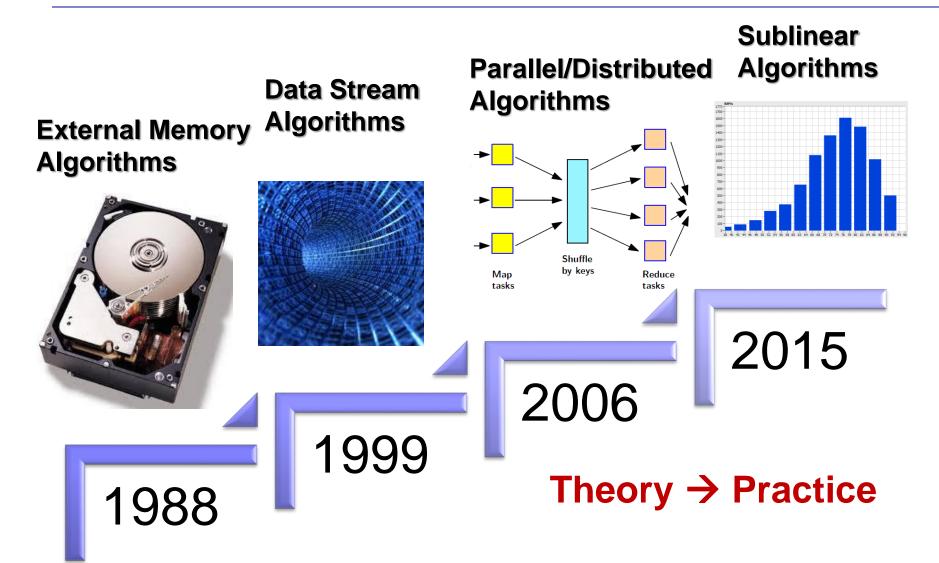
- Massive data is being collected everywhere: business, technology, scientific research, etc.
- Examples:
 - TIGER/Line data set: 16.7 million road segments
 - LIDAR data set: 500 million points for just Neuse River Basin (14GB)
 - AT&T phone call database: 20TB
 - Google indexes 20 billion web documents
- Keep growing!

July 19, 2006

Ph.D. Defense for Ke Y

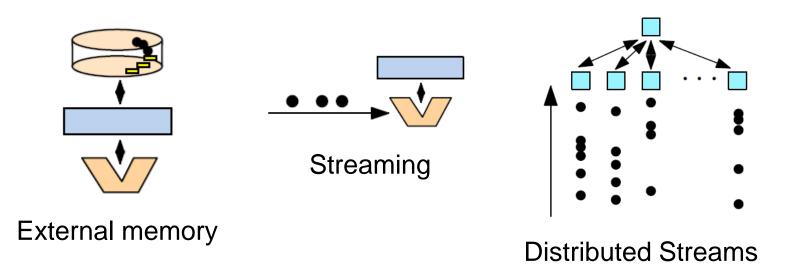
2

Big Massive Data Algorithms



Example: Random sampling

- Random sampling in standard model is trivial.
- Becomes challenging when...



Query sampling

Sample from the query results without evaluating the query!

Sampling from a range query (SIGMOD'15 best demo award)

Sampling for joins

select

n_name,

sum(l_extendedprice * (1 - l_discount)) as revenue

from

customer,

orders,

lineitem,

supplier,

nation,

region

```
where
```

```
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = '[REGION]'
and o_orderdate >= date '[DATE]'
and o_orderdate < date '[DATE]' + interval '1' year
group by</pre>
```

n_name

order by

revenue desc;

TPC-H Benchmark Query

6 tables

- 10GB data
- Takes >1 hour in Oracle
- Our algorithm finishes in <10 seconds¹
- Now working on integration into PosgreSQL

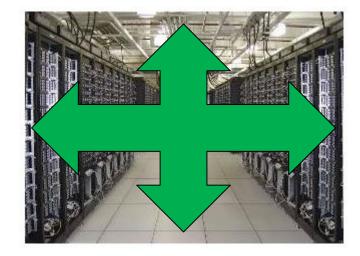
¹Returns an answer with \pm 1% error

How NOT to do it

- Suppose there are 2 tables:
 - Companies (CompanyID, Nation)
 - Orders (OrderID, SellerD1, BuyerID2, Revenue)
- Say, the query asks for the total revenue of all orders made between a company in China and another in the US
- Simple random sampling:
 - Take a 0.01% sample (1MB data) from Companies
 - Take a 0.01% sample (1MB data) from Orders
 - Only get 1MB * 0.01% * 0.01% = 0.01 byte of joined data!

Scaling up / out computation

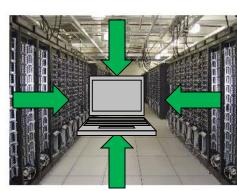
- Many great technical ideas:
 - Use many cheap commodity devices
 - Accept and tolerate failure
 - Move code to data
 - MapReduce: BSP for programmers
 - Break problem into many small pieces
 - Decide which constraints to drop: noSQL, ACID, CAP
- Scaling up comes with its disadvantages:
 - Expensive (hardware, equipment, energy), still not always fast



Scaling down data

- A second approach to dealing big data:
 scale down the data!
 - A compact representation of a large data set
 - Too much redundancy in big data anyway
 - What we finally want is small: human readable analysis / decisions
 - Necessarily gives up some accuracy: approximate answers
 - Often randomized (small constant probability of error)
 - Examples: samples, sketches, histograms, wavelet transforms
- Complementary to the first approach: not a case of either-or

Small Summaries for Big Data



Flavors of my research

- Focus on fundamental problems
 - Random sampling, hashing, sorting
 - New challenges arise in the "big data" era even for these fundamental problems
 - Don't work on made-up problems just for writing papers
 - Don't work on "n choose k" problems like "k nearest neighbor search in high dimensions using L1 metric on uncertain data with multiple query points and keywords using MapReduce"
- Only work on well-defined problems
 - Actually, the main challenge in many areas of CS (data mining, machine learning, etc) is to find the right definition.
- Don't work on NP-hard problems