
Finding Deep Bugs in Software

Shing-Chi Cheung
Computer Science & Engineering

HKUST

CSE Lightning Talk – October 2015

11 October 2015 CSE Lightning Talk - S.C. Cheung 2

Xiaoming has a brother doing
PhD at HKUST …

A “great prayer”??

11 October 2015 CSE Lightning Talk - S.C. Cheung 3

11 October 2015 CSE Lightning Talk - S.C. Cheung 4

So, he prays …

11 October 2015 CSE Lightning Talk - S.C. Cheung 5

When he becomes Laoming
working on programming
assignment at HKUST, he
does not need to pray like
his brother …

Lead a good life at HKUST …

11 October 2015 COMP Lightning talk - S.C. Cheung 6

Can someone finds out
where my code is wrong?

Can someone fix the bugs
for me?

My research areas

 Fault analysis and detection

 Fault diagnosis

 Fault repairing

11 October 2015 CSE Lightning Talk - S.C. Cheung 7

Android Performance Bug Detection

11 October 2015 CSE Lightning Talk - S.C. Cheung 8

Conduct an empirical study of popular apps at

Google Play suffering from performance bugs

Running threads Timeline

Suspect method Suspect method

Android Performance Bug Detection

11 October 2015 CSE Lightning Talk - S.C. Cheung 9

Conduct an empirical study of popular apps at

Google Play suffering from performance bugs

Research questions

Bug types and impacts

Bug manifestation

Debugging and fixing effort

Common bug patterns

Build bug detection tool - PerfChecker

• PerfChecker detected 126 previously-unknown issues in 18

of the 29 analyzed applications

27/30

Application name

Bug pattern instances

View holder pattern
violation

Long running
operations in main

threads

Ushahidi 9 2

Firefox 1 0

FBReaderJ 6 6

OI File Manager 1 0

… … ...

Results

• 68 issues (54.0%) were confirmed as real performance

bugs by original developers

Application name

Bug pattern instances

View holder pattern
violation

Long running
operations in main

threads

Ushahidi 9 2

Firefox 1 0

FBReaderJ 6 6

OI File Manager 1 0

… … ...

27/30

Feedback from developers

• Developers are interested in performance analyzers

28/30

Henry (Ushahidi developer)

“Thanks for reporting this … Just curious, where

is this static code checker? Anywhere I can play

with it as well?”

Feedback from developers

• Developers act quickly with concrete suggestions

28/30

“Thanks a lot for reporting the problems.

The ViewHolder pattern has just been added to

the BookmarkListAdapter in 8c9c429.”

George (OI File Manager developer)

https://github.com/openintents/filemanager/commit/8c9c4292caecb9dbfa0fc43ab7bef33eee81241f

One of our checkers merged into Android Studio (for IntelliJ)

Android Studio 0.5.2 Release Log

Posted on Mar 20, 2014 by Tor Norbye

• New Lint check:

Ensures that list view adapters use

the View Holder pattern (to make

scrolling smoother) …

Follow-up

29/30
ACM SIGSOFT Distinguished Paper Award 2014

Crash Analysis

15

Crash Information
with Crash Stack

Crash Reporting System

Software Crash

Bug ReportsDevelopers Crash Buckets

Feedbacks From Mozilla Developers

• Locating crashing faults is hard

• Ad hoc approach

“… and look at the crash stack listed. It shows the line number

of the code, and then I go to the code and inspect it. If I am

unsure what it does I go to the second line of the stack and
code and inspect that, and so on and so forth …”

“Some crashes are hard to fix because it is not necessarily

indicative of the place where it crashes in the crash stack …”

“ I use the top down method of following the crash backwards.”

“Sometimes it can be very difficult.”

16

Crash Analysis
• Propose an algorithm to locate the faulty function

• Based on a large volume of crash stacks

A

B

C

D

Crash Stack

E

J

M

N

Depth-1

F

K

L

Depth-2

G

H

Depth-3 A

B J

C K L

D E

M N F

G H

Call Graph

17

Crash Analysis
• Propose an algorithm to locate the faulty function

• Based on a large volume of crash stacks

A

B

C

D

Crash Stack

E

J

M

N

Depth-1

F

K

L

Depth-2

G

H

Depth-3

A

B J

C K L

D E

M N F

G H

18

CrashLocator Performance
System Recall@1 Recall@5 Recall@10 MRR

Firefox 4.0b4 55.6% 66.7% 77.8% 0.627

Firefox 4.0b5 47.1% 70.6% 70.6% 0.566

Firefox 4.0b6 48.0% 64.0% 64.0% 0.540

Firefox14.0.1 52.0% 52.0% 56.0% 0.528

Firefox16.0.1 53.8% 53.8% 53.8% 0.542

Thunderbird17.0 48.5% 66.7% 78.8% 0.568

Thunderbird24.0 50.0% 66.7% 66.7% 0.544

SeaMonkey2.21 55.0% 70.0% 70.0% 0.600

Summary 50.6% 63.7% 67.5% 0.559

19
ACM SIGSOFT Distinguished Paper Award 2014

Grand Challenge

20

Grand Challenge

21

Grand Challenge

22

11 October 2015 COMP Lightning talk - S.C. Cheung 23

Can someone finds out
where my code is wrong?

Can someone fix the bugs
for me?

