
The Ultimate Conditional Syntax
Lionel Parreaux

The Hong Kong University of Science and Technology
parreaux@cse.ust.hk

Abstract
ML-language dialects and related typically support expres-
sive pattern-matching syntaxes which allow programmers to
write concise, expressive, and type-safe code to manipulate
algebraic data types. Many features have been proposed to
enhance the expressiveness of these pattern-matching syn-
taxes, such as pattern bindings, pattern alternatives (aka dis-
junction), pattern conjunction, view patterns, pattern guards,
‘if-let’ patterns, multi-way if-expressions, etc.

In this extended abstract, we propose a new framework
for expressing pattern-matching code in a way that is both
more expressive and (we argue) more readable than previ-
ous alternatives. In particular, our syntax subsumes many
proposed extensions to ML pattern matching by allowing
parallel and nested matches interleaved with computations
and intermediate bindings. This is achieved through a form
of nested multi-way if-expressions, an expression-splitting
mechanism to factor common conditional prefixes, and a
technique we call conditional pattern flowing.

We present many examples of this new syntax in the set-
ting of MLscript, a new ML-family programming language
that is being developed at the Hong Kong University of Sci-
ence and Technology.

1 Introduction
Consider the following excerpt from anOCaml patternmatch-
ing expression (which could contain lots of cases):

match e with

...

| Lit value when Map.mem value mapped Ñ

Map.find value mapped

...

where mapped is a mapping from literal values to results,
Map.mem returns whether a given key is in the map and
Map.find accesses the corresponding key, throwing an ex-
ception if the key is not found.

This code suffers from “Boolean blindness”, which is when
a program branches based on a Boolean value and when the
corresponding branches implicitly depend on the value of
that Boolean. It is problematic because Map.find is a partial
function that is only safe to call when accessing a key that is
known to be in themap. Since the check that the key is indeed
in the map is not explicitly connected to the call to Map.find,
a seemingly-innocuous refactoring and other changes could
silently break the implicit assumption, resulting in runtime
failure, for example if we added || value == 0 to the when

clause.

It would be better to use the Map.find_opt function in-
stead, which returns an optional value that is None when
the key is not found. This would also be more efficient, as
it would only require a single access to the map. However,
due to the limitations of pattern matching in OCaml, there
is no local, non-disruptive way of changing our program to
using find_opt instead of find. If the program above had
other Lit cases listed below, for example as in:

...

| Lit value when Map.mem value mapped Ñ

Map.find value mapped

...

| Lit value | Add(0, value) | Add(value , 0) Ñ

print_int value ; process value

...

then we would need to completely change the structure of
our pattern matching expression, for example by writing:

let helper value =

print_int value ; process value in

match e with

...

| Lit value Ñ

match Map.find_opt value mapped with

| Some result Ñ result

| None Ñ helper value

...

| Add(0, value) | Add(value , 0) Ñ

helper value

...

In MLscript, a new ML dialect currently being developed1
at the Hong Kong University of Science and Technology, the
following is what one would write instead:

if e is

...

Lit(value) and Map.find_opt(value) is Some(result)

then Some(result)

...

Lit(value) | Add(0, value) | Add(value , 0)

then print_int(value); Some(value)

...

which shows that Map.find_opt can now be used without
disrupting the existing flow of pattern matching.

In the code above, we rely on several fundamental features
of MLscript’s conditional syntax, which we facetiously dub
the Ultimate Conditional Syntax (UCS):

1The features shown in this paper are in active development in an unstable
branch of the repository at https://github.com/hkust-taco/mlscript/.

https://github.com/hkust-taco/mlscript/

Lionel Parreaux

Pattern flowing. First, conditional Boolean expressions
can bind pattern variables through the special ‘is’ and ‘as’
operator forms, in a way that is reminiscent of flow-typing,
also called occurrence-typing [Castagna et al. 2021; Pearce
2013; Tobin-Hochstadt and Felleisen 2008].
‘Expr is Pattern’ tests whether Expr matches Pattern ,

and if so it binds the corresponding pattern variables in the
logical continuation of this expression. A logical continu-
ation can be a then, for example in ‘if x is Some(x) then

x + 1’, but it can also be an and, among other things, as in ‘if
x is Some(x) and x > 0 then ...’. Moreover, the sets of pat-
tern variables bound in the two sides of an or are checked to
be the same and are given corresponding least-upper-bound
types, as in ‘if x is Some(v) or y is Left(v) then v ...’.

‘Expr as Pattern’ asserts that Expr matches Pattern , used
to destructure expressions unconditionally, and ‘Pattern as

Pattern’ is a form of conjunctive pattern, a generalization
of OCaml’s ‘as’ and Haskell’s ‘@’.

A nested multi-way ‘if’ with interleaved ‘let’. Second,
the structure of if-then-else expressions is akin to a nested
version of what Haskell calls “multi-way if-expressions”2 but
in which bindings can be interleaved. Haskell’s basic version
of multi-way if is essentially as follows, in MLscript syntax:

if

A then ...

B then ...

C then ...

...

We generalize this to follow the structure exemplified below:
if

let P0 = ...

A and

let P1 = ...

B and

let P2 = ...

C then ...

let P3 = ...

D then ...

else ...

let P4 = ...

E then ...

let P5 = ...

F then ...

else ...

where A, B, C, D, E, and F are arbitrary boolean expressions
which may bind patterns and each P𝑛 is a let-bound pattern,
which may also introduce bindings of its own (or might just
be used for its side effects, as in let () = print_string "got

so far in the match!").
Note that MLscript is indentation-sensitive and uses the

so-called “off-side rule”,3 which is why we do not need to use

2http://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/multiway_if.html
3There is nothing in our approach that fundamentally relies on indentation.
One could use separators such as braces and commas or semicolons to split

the in keyword after each let and also why we do not need
a ‘|’ operator to separate match cases (similar to Haskell).

Conditional splits. Third and finally, an MLscript condi-
tional expressionmay be split in rather arbitraryway, leading
up to one or more conditional branches. For example, all of
the following splits are legal:

if x ==

0 then "zero"

1 then "unit"

else "?"

if x

== 0 then "null"

> 0 then "positive"

< 0 then "negative"

if pred of 0, 1, 2,

3, 4 then "A"

5, 6 then "B"

else "C"

(In MLscript, ‘f(a, b, c)’ may be written ‘f of a, b, c’
where ‘of’ is right-associative and can serve the purpose
of Haskell’s ‘$’ dollar-sign operator).

From the above examples, it becomes clear that the splits
on the ‘is’ operator seen previously are merely a special case
of MLscript’s general operator-application splitting rules:

if foo(u, v, w) is

Some(x) and x is

Left(_) then "left -defined"

Right(_) then "right -defined"

None then "undefined"

While conditional splitting seems quite atypical at first, it
is not ambiguous and is thus not hard to parse. Our parser
uses a straightforward recursive descent implementation
(for better recovery and error messages). When parsing
sub-expressions, we return an Either Term ThenElseBlock ,
where the latter stands for a block of let, then, and an op-
tional else clause or an expression that ends with such
nested blocks. When we find a ThenElseBlock instead of
a Term, depending on where the sub-expression was parsed,
we either yield an error (if this position does not accept then-
else blocks) or we propagate the then-else block out to the
outer expression, until we finally reach an enclosing if.

Splitting function definitions. As a small syntactic sugar
feature, MLscript also support splitting patterns at function
definition sites, which recovers the ability to define functions
by successive equations like in SML or Haskell:

fun foo of

C1(a, b, ...) = e1

C2(c, d, ...) = e2

C3(e, f, ...) = e3

...

operators, as in if x { > 0 then "positive", == 0 then "null", else "?"

}. The indentation syntax is simply the approach we found the cleanest and
easiest to read when expressing conditional splits.

http://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/multiway_if.html

The Ultimate Conditional Syntax

_ = en

As a concrete example, consider the ‘zip_with’ function
below, which zips two lists together using a function f, re-
turning None when the lists have mismatched lengths:

fun zip_with(f, xs, ys) =

if xs is x :: xs

and ys is y :: ys

and zip_with(f, xs, ys) is Some(tail)

then Some of f(x, y) :: tail

else None

This function can alternatively be written as follows:
fun zip_with of f,

x :: xs , y :: ys

when zip_with(f, xs, ys) is Some(tail)

= Some of f(x, y) :: tail

_, _ = None

Exhaustiveness Checking. MLscript’s UCS is meant to
be a fully type-safe alternative to traditional conditional
structures. Therefore, it is crucial to check for the exhaustive-
ness of conditional expressions, preventing non-exhaustive-
patterns crashes at runtime.

Boolean conditionals of the forms Expr and Expr, Expr or

Expr, not Expr, Expr is Pattern , and Expr as Pattern are
interpreted specially. Other conditional expressions Expr are
treated as shorthands for Expr is true, and are identified up
to syntactic alpha equivalence — and possibly, in the future,

a form of normalization identifying expressions like x > 2,
2 < x, and not (2 >= x), for example.4 Then, the compiler
transforms the whole conditional expression by unnesting
patterns and handling each matched operand individually,
in its order of appearance, making sure that all cases are
covered in the process.
MLscript supports a form of subtyping known as alge-

braic subtyping [Dolan 2017; Parreaux 2020], which admits
principal principal type inference at the cost of some approx-
imations in the meaning of type constructors. In particular,
in MLscript the union of tuple types p𝜏1, 𝜏2q | p𝜏2, 𝜏3q and
the tuple type with union components p𝜏1 | 𝜏2, 𝜏2 | 𝜏3q are
equivalent. Therefore, the conditional expression below:

if x is

(0, 0) then true

(1, 1) then false

is not considered exhaustive and is rejected by the compiler,
which complains that patterns (0, 1) and (1, 0) are not han-
dled. In a different language, such as TypeScript (which does
not feature global type inference, a fundamental tradeoff),
such a conditional expression could be typed exhaustively
by assuming p0, 0q | p1, 1q for the type of x, which unlike in
MLscript is not equivalent to p0 | 1, 0 | 1q.

4We could naturally also imagine the use of an SMT solver to decide exhaus-
tiveness in the presence of decidable theories like linear integer arithmetic.

tp(1) match

case Ref(r) => glb(r, tp(2))

case tp1 =>

tp(2) match

case Ref(r) => glb(tp1 , r)

case _ =>

val tp1_p = process(tp1)

if tp1_p != tp1 then glb(tp1_p , tp2)

else

val tp2_p = process(tp2)

if tp2_p != tp2 then glb(tp1 , tp2_p)

else if ...

...

if

tp(1) as tp1 is Ref(r) then glb(r, tp(2))

tp(2) as tp2 is Ref(r) then glb(tp1 , r)

let tp1_p = process(tp1)

tp1_p != tp1 then glb(tp1_p , tp2)

let tp2_p = process(tp2)

tp2_p != tp2 then glb(tp1 , tp2_p)

...

...

if name.startsWith("_") then

name.tailOption match

case Some(namePostfix)

if namePostfix.forall(_.isDigit)

=> namePostfix.toIntOption match

case Some(index)

if index <= arity && index > 0

=> Right((index , name))

case _ => Left(name)

case _ => Left(name)

else Left(name)

if name.startsWith("_")

and name.tailOption is Some(namePostfix)

and namePostfix.forall (.. isDigit)

and namePostfix.toIntOption is Some(index)

and index <= arity and index > 0

then Right of (index , name)

else Left(name)

Figure 1. Examples of rightward drift in Scala 3 (left) and how the UCS eliminates the problem in MLscript (right).

Lionel Parreaux

2 Relation With Existing Approaches
Previous techniques. Views [Burton et al. 1996; Wadler

1987], such as GHC Haskell’s view patterns implementation,5
allow passing values being pattern-matched through func-
tions and matching on the result, which offers some welcome
flexibility. Their main limitation is that they cannot be shared
easily between patterns — while they have a heuristic for
avoiding repeated work, it is quite limited (it does not always
apply) and in any case still incurs textual repetition. Active
patterns [Erwig 1997] like in F# and Scala’s extractors serve
a similar purpose as view patterns and let programmers
factor custom matching logic in the clothes of a normal
pattern. I actually believe that the need for these abstrac-
tions is mainly due to the pattern matching syntax being too
restrictive. Once we allow the interleaving of normal compu-
tations within matching conditionals and performing cascad-
ing matches intermediate on derived values, as in MLscript
with the UCS, the need for view patterns and extractors di-
minishes.6 Haskell’s pattern guards are actually strictly
more powerful than the alternatives above, in that they can
execute arbitrary logic during pattern matching and match
on the resulting intermediate values. However, they are still
not quite as expressive as the UCS, because the matching
structure is still one-level: different pattern branches can-
not share these intermediate values and matches, unlike the
UCS, which may nest sub-matches, resulting in several then
clauses instead of just one.7 Moreover, we argue that the UCS
is easier to parse visually and often reads almost like English,
which makes it nicer to learn and to use (though this last
argument is merely a subjective assessment). Figure 2 shows
a comparison between the two approaches on a non-trivial
example. Mcbride and Mckinna [2004] later investigated the
use of views and guards in dependent type theory, showing
that they become even more interesting therein. OCaml’s
pattern alternatives let us use disjunctions of sub-patterns
which may contain pattern variables, a quite powerful ca-
pability, which is covered by MLscript’s use of the or and
is operators. Rust’s and Swift’s ‘if-let’ forms89 let pro-
grammers write ‘if’ statements that perform matching at
the same time and bind the extracted values within the true

branch. (Moreover, Swift allows more than one match in ‘if
let’, unlike Rust.) It is easy to see that this is a very specific
special case of the UCS. In Rust and Swift, this syntax also
work for imperative loops; we could allow something similar
same in MLscript, as in the following:

5https://gitlab.haskell.org/ghc/ghc/-/wikis/view-patterns
6Wemay still consider adding custom active patterns/extractors to MLscript
in the future, simply for the (small) extra convenience they may provide.
7“No, you can’t. We all want it, but nobody can come up with a sensible
syntax.” https://stackoverflow.com/a/34168666/1518588
8https://doc.rust-lang.org/rust-by-example/flow_control/if_let.html
9https://docs.swift.org/swift-book/LanguageGuide/ControlFlow.html

let mut cur = xs

while cur is x :: xs and x > 0 do

cur Ð xs

print_int(x)

A Scala 3 proposed extension to pattern matching10
would allow nesting patternmatches in pattern guards, fixing
the limitation of Haskell’s pattern guards. Still, this syntax
does not allow the binding of intermediate values in between
several cases, like is possible with MLscript’s UCS. Many
Lisp dialects like Racket have supported expressive con-
ditional and pattern-matching structures, such as the cond

and match macros, in the context of a dynamically-typed
language. It should be easy to show that the UCS subsumes
these constructs in a statically-typed context. OtherHaskell
pattern matching extensions were proposed by Servadei
[2018], among which nonlinear pattern variables, which we
could also consider as an extension inMLscript.Occurrence
typing was introduced by Tobin-Hochstadt and Felleisen
[2008] for Typed Scheme and later incorporated in Type-
Script and Flow, where it is known as flow typing. This ap-
proach allows the types of variables to be locally refined
based on path conditions encountered in the program. The
connection between this and our approach is in how they
interacts with conditionals and boolean operators to thread
through the information that is discovered during the test.
The difference is that in our approach, conditional tests may
perform proper pattern matching with is and as, binding
new names in the process, which are then available in the
corresponding parts of the conditional expression.

Fixing the right drift problem. This problem often af-
fects languages with pattern matching but no way of testing
several conditions in parallel. Consider the left-hand-sides
of Figure 1 and how the nesting of matches and condition-
als on unrelated operands creates a shift to the right. The
right-hand side of Figure 1 shows the much more concise
and non-drifting MLscript versions of the same code.

3 Conclusions and Future Work
Wehave only began to prototype the UCS feature ofMLscript
and will report back once we get more experience implement-
ing and using it. Our plan is to use MLscript with the UCS
in a compilers course in the near future and see how stu-
dents respond to it, which should provide us with precious
feedback. We expect that students unfamiliar with pattern
matching and functional programming may be less intimi-
dated by the UCS since it is a logical extension to the usual
if-then-else expression, reads almost like English, and has ob-
vious meaning in many cases, unlike some classical ML-style
pattern matching features.

10https://github.com/lampepfl/dotty-feature-requests/issues/301

https://gitlab.haskell.org/ghc/ghc/-/wikis/view-patterns
https://stackoverflow.com/a/34168666/1518588
https://doc.rust-lang.org/rust-by-example/flow_control/if_let.html
https://docs.swift.org/swift-book/LanguageGuide/ControlFlow.html
https://github.com/lampepfl/dotty-feature-requests/issues/301

The Ultimate Conditional Syntax

Haskell (with -XViewPatterns):
case e of

Var x

| Some tmp Ð get context x

, Some res Ð case tmp of

IntVal v Ñ Some $ Left v

BoolVal v Ñ Some $ Right v

_ Ñ None

Ñ res

Lit (IntVal v) Ñ Left v

Lit (BoolVal v) Ñ Right v

Scala 3 (proposed extension):
e match

case Var(x) if context.get(x) match

case Some(IntVal(v)) => Left(v)

case Some(BoolVal(v)) => Right(v)

case Lit(IntVal(v)) => Left(v)

case Lit(BoolVal(v)) => Right(v)

...

MLscript:
if e is

Var(x) and context.get(x) is

Some(IntVal(v)) then Left(v)

Some(BoolVal(v)) then Right(v)

Lit(IntVal(v)) then Left(v)

Lit(BoolVal(v)) then Right(v)

...

MLscript (after desugaring):
if

e is Var(x) and

let tmp0 = context.get(x)

tmp0 is Some(IntVal(v)) then Left(v)

tmp0 is Some(BoolVal(v)) then Right(v)

e is Lit(IntVal(v)) then Left(v)

e is Lit(BoolVal(v)) then Right(v)

...

Figure 2. More complex example in Haskell, Scala 3 (with a proposed extension), and MLscript version with its desugaring.

References
Warren Burton, Erik Meijer, Patrick Sansom, Simon Thompson, and Philip

Wadler. 1996. Views: An extension to Haskell pattern matching.
ãÑ page 4

Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen. 2021.
Revisiting Occurrence Typing. arXiv:1907.05590 [cs.PL] ãÑ page 2

Stephen Dolan. 2017. Algebraic subtyping. Ph. D. Dissertation. ãÑ page 3
Martin Erwig. 1997. Active patterns. In Implementation of Functional Lan-

guages, Werner Kluge (Ed.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 21–40. ãÑ page 4

Conor Mcbride and James Mckinna. 2004. The view from the left. Journal
of Functional Programming 14, 1 (2004), 69–111. https://doi.org/10.1017/
S0956796803004829 ãÑ page 4

Lionel Parreaux. 2020. The Simple Essence of Algebraic Subtyping: Principal
Type Inference with Subtyping Made Easy (Functional Pearl). Proc.
ACM Program. Lang. 4, ICFP, Article 124 (Aug. 2020), 28 pages. https:
//doi.org/10.1145/3409006 ãÑ page 3

David J. Pearce. 2013. Sound and Complete Flow Typing with Unions,
Intersections and Negations. In Verification, Model Checking, and Abstract
Interpretation (Lecture Notes in Computer Science), Roberto Giacobazzi,
Josh Berdine, and Isabella Mastroeni (Eds.). Springer, Berlin, Heidelberg,
335–354. https://doi.org/10.1007/978-3-642-35873-9_21 ãÑ page 2

Giacomo Servadei. 2018. Toward a more expressive pattern matching in
Haskell. (2018). ãÑ page 4

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Im-
plementation of Typed Scheme. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(San Francisco, California, USA) (POPL ’08). Association for Comput-
ing Machinery, New York, NY, USA, 395–406. https://doi.org/10.1145/
1328438.1328486 ãÑ pages 2 and 4

P. Wadler. 1987. Views: A Way for Pattern Matching to Cohabit with Data
Abstraction. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (Munich, West Germany) (POPL
’87). Association for Computing Machinery, New York, NY, USA, 307–313.
https://doi.org/10.1145/41625.41653 ãÑ page 4

https://arxiv.org/abs/1907.05590
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1145/3409006
https://doi.org/10.1145/3409006
https://doi.org/10.1007/978-3-642-35873-9_21
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/41625.41653

Lionel Parreaux

A Final Transformed Code from Figure 2
Consider the MLscript expression in Figure 2 and its first
desugaring into a form without conditional operator splits.

The next step is to perform a conditional-to-pattern-matching
transformation, where all patterns are unnested and all operands
are matched exhaustively one after the other (possibly rais-
ing exhaustiveness errors in the process). We end up with
the program below, which is expressed in a form with no
‘if’-expression nesting that is thus isomorphic to traditional
core representations of pattern matching:

if e is

Var(x) then

let tmp0 = context.get(x)

if tmp0 is

Some(tmp1) then

if tmp1 is

IntVal(v) then Left(v)

BoolVal(v) then Right(v)

... // if there are more Val cases

else ... // from the other Var cases

Lit(tmp2) then

if tmp2 is

IntVal(v) then Left(v)

BoolVal(v) then Right(v)

...

...

Notice that in the final representation above, we have to
handle the other Var and Val cases which are not shown in
the original example (omitted by the ...). If these were not
to be found, the conditional expression would be deemed
non-exhaustive.

	Abstract
	1 Introduction
	2 Relation With Existing Approaches
	3 Conclusions and Future Work
	References
	A Final Transformed Code from Figure 2

