
Appeared in Pacific Graphics 2002

An Efficient Brush Model for Physically-Based 3D Painting

Nelson S.-H. Chu Chiew-Lan Tai

Department of Computer Science
Hong Kong University of Science and Technology

Clearwater Bay, Kowloon, Hong Kong
{cpegnel, taicl}@ust.hk

 Abstract

Figure 1: Calligraphy made with our system

This paper presents a novel 3D brush model
consisting of a skeleton and a surface, which is
deformed through constrained energy minimization. The
main advantage of our model over existing ones is in its
ability to mimic brush flattening and bristle spreading
due to brush bending and lateral friction exerted by the
paper surface during the painting process. The ability to
recreate such deformations is essential to realistic 3D
digital painting simulations, especially in the case of
Chinese brush painting and calligraphy. To further
increase realism, we also model the plasticity of wetted
brushes and the resistance exerted by pores on the
paper surface onto the brush tip. Our implementation
runs on a consumer-level PC in real-time and produces
very realistic results.

1. Introduction

 Digital painting has been adopted by many artists

due to its advantages over traditional media in terms of
convenience, ease of experimentation, and the
possibility of combining the effects of multiple
traditional media in one digital painting. It is now
possible to achieve the effects of various western
painting media (e.g. oil or charcoal) realistically using
commercial packages like Corel Painter [13]. In contrast,
however good a 2D mark-making technique is, it cannot
extend the expressiveness of Chinese brushes to the
digital domain. In Chinese brushwork, a painter uses his
brush in a manner similar to the way a musician uses his
instrument to deliver harmonious rhythm – each brush
stroke should be rendered in a continuous rhythmic
movement so that the painted subject exhibits vigor and
spirit [10, 18]. The artist’s intent is always to capture
the spirit of the painted subject, rather than the accuracy
of its outward appearance, and this is often achieved by
the grace of a few deft strokes 1 . In the case of
calligraphy, the brush movement is analogous to
dancing. This kind of expressive executions is

achievable because of the soft-yet-resilient quality of
the brush tuft.

Our aim is to simulate the deformation of Chinese
brushes and the ink deposition during the painting
process in real-time. It is expected that our 3D brush
model, when combined with an ink-diffusion simulation
method and a six degrees-of-freedom (DOF) input
device, can be a tool for creating digital Chinese
brushwork. The benefits of such a tool include the
following:

• Create electronic art more naturally and with
spontaneity – users paint and draw with a virtual
brush rather than edit control points, allowing
individual user style to be naturally embedded in
the art pieces.

• Render oriental font with aesthetic quality of real
calligraphy – high-resolution characters with
more visually pleasing features can be generated.

• Parameters can be modified to produce different
effects – artists can easily experience the effects
of different types of brushes and paper.

• Non-photorealistic rendering – Chinese brush
painting style can be applied to 3D object
rendering.

Our model is empirical in that we attempt to model
only physical properties that are necessary for
producing realistic visual results. Our emphasis is on

1Chinese paintings are categorized into two main types: meticulous
and spontaneous [10]. Throughout this paper, we refer to the
spontaneous style.

reproducing features of Chinese brushes that are
important in the artistic sense.

2. Previous Work

Earlier efforts in brushwork simulation focused on

stroke rendering. Strassmann [19] swept a one-
dimensional texture to obtain varying shades within one
stroke. Strokes generated by this method look artificial
because the natural spreading of the brush bristles is not
modeled. In [14], Pham modeled the trajectory of a
stroke as a planar cubic B-spline, and obtained the
width of the stroke by offsetting the knots in the spline.
It is difficult to produce natural looking strokes by knot
specification, and the effects of bristles spreading and
varying shades also look artificial. The skeletal stroke
technique [7] deformed 2D strokes to produce amazing
results and it worked well for making illustrations.
However, for Chinese brushwork, or watercolor-like
painting in general, this technique requires storing a
large sample of stroke textures to avoid appearing
repetitive. Strokes with self-intersection or high
curvature are also not realistic because the stroke
textures are not generated physically.

To produce more realistic brush strokes, later
research efforts incorporated physics into the brush
models. Wong et al. [22] modeled a calligraphy brush as
an inverted cone, with the footprint controlled by user-
adjustable parameters. Using the theory of elasticity,
Lee [11] modeled a brush as a collection of rods with
homogeneous elasticity along the entire length. Saito et
al. [17] used a Bezier spine curve and a set of discs
centered along the curve to model a brush.
Unfortunately, all these models are too simplistic to
produce the effects of some commonly used painting
techniques. For example, the cone model ignores the
brush tip when a brush is pressed down, and thus fails to
produce slanted-brush strokes (in which the tip travels
along one side of a stroke rather than staying in the
middle) in painting and calligraphy [10]. The splitting
of bristles is also not adequately simulated in these
systems and thus cannot produce realistic brush
footprints.

In the recent work of Baxter et al. [3], a western
brush was modeled as a simple spring-mass system.
Using an approximated implicit integration method,
they were able to produce a real-time system for doing
acrylic-like painting. Like other previous techniques, no
attention is paid to brush spreading or splitting. Thus,
their system cannot be applied to produce oriental
brushwork since the brush spreading plays an important
part in such painting process.

3. Introduction to Chinese Brushes

To design an effective brush model, we must first

understand thoroughly the properties that Chinese
brushes exhibit. Chinese brushes are made from animal
hairs. The anatomy of a typical brush [18] is shown in
Figure 2. A layer of shorter hairs called mantle is placed

inside the brush body, and the empty space created by
the shorten hairs serve as a reservoir for ink. Some
special-purpose brushes may have different hair layer
arrangements made with different types of hairs.
According to the type of hair used, Chinese brushes can
be generally classified into three main types, namely,
hard, soft and combination, each of which has different
stiffness and degree of absorbent. For example, a
combination brush has a hard kernel, but softer and
more absorbent hairs in the outer layer. The kernel can
also be waxed to give extra stiffness. Since the type of
brush can affect the output considerably, a good brush
model should be flexible enough to accommodate these
variants of brush characteristics.

 Reservoir

Kernel
Mantle Outer layer

Handle

Root Belly

Tip

Figure 2: Anatomy of a typical brush

A good brush is said to be elastic – it bends when
some external force is applied to it and restores to its
original shape when the force is removed. However,
practically all brushes, especially soft ones, are inelastic
to a certain degree when moisten. The tip of a brush is
less stiff than its root for two reasons: natural animal
hair is thinner at its tip, and less hairs reach the tip due
to their different lengths. Therefore, we should also
model variable stiffness along the length of a hair tuft.

A brush forms a single tuft and runs into a fine tip
when it is moisten because the attraction force of water
molecules is large enough to pull all the bristles
together. It becomes bushy only when it is dry or worn
away after long use. The same brush can be used to
draw both fine and bold lines by applying different
pressures and holding at different angles. As the brush
gradually dries up while ink is being deposited onto the
paper, the attraction force of water molecules reduces
and the tip of the tuft starts to split into two or more
tips. This characteristic, together with lessen ink loading,
provides the condition for producing the flying-white
effect [10], in which white areas appear in the stroke. In
addition, whenever the artist desires, the tip can be
deliberately split to produce multiple lines in a single
stroke. We observe that a small number (at most five) of
tufts suffice for most painting process; treating the
brush as more tufts is necessary only when applying
special painting techniques, such as the split-brush
technique [10] for painting hair-like objects.

4. Brush Model

The ultimate way to producing realistic dynamics of

a brush tuft is to physically simulate each and every
bristle, which is simply not practical. So, the challenge
we face is how to collectively simulate the bristles so
that the simulation can be done in real-time, and yet the
model is flexible enough to yield the effects expected by

Ni-1

Ni

Ni+1

Lateral line of N i

Ni+2

(initial orientation)

Figure 4: Notations for our geometric model

artists. The idea of collective modeling has also been
proposed for human hair modeling [8, 16, 20].

 With the properties described earlier in mind, we
design a brush model consisting of three components:
brush geometry, brush dynamics, and ink loading and
depositing. The details are presented in the following
sub-sections.

4.1 Brush Geometry

The representation of the brush geometry is closely

related to how we model the brush dynamics. Like some
previous models [3, 4], we employ a layered structure.
The geometry consists of two layers, namely the
skeleton and the surface.

4.1.1 Brush Skeleton. The skeleton consists of a spine
and some lateral nodes. Figure 3 shows our geometric
model for a brush tuft. We represent the spine as a
connected sequence of line segments of decreasing
lengths towards the tip. Since the brush root is usually
much stiffer than the tip, it bends much less; in fact,
usually only the tip and the belly are used to paint.
Therefore, for modeling efficiency, progressively
shorter segments are used towards the brush tip so as to
dedicate higher resolution to the tip. The highest node
attached directly to the brush handle is called the root
node. Each joint between two adjacent spine segments
has two DOF’s in the polar coordinate system (see
Figure 4). Suppose the spine has n + 1 nodes,
N0,N1,…,Nn, with N0 as the root node. We denote the
positions of the nodes by O = (O0 , O1 ,…,On). The
differential changes in the orientation of the segments
are denoted by θ = (θ1,θ2 ,…,θ n) and φ = (φ1 , φ2 ,…,φ n).
We refer to θ as the bend-angles, and φ the turn-angles,
since θi is the angle between the ith spine segment and
its previous segment, and φ i gives the angle of rotation
of the ith segment about its previous segment. We refer
to (θ , φ) as the state of the spine. A local Cartesian
frame is defined for each node, by rotating the frame of
the previous node by the turn- and bend-angles. The
spine is responsible for the general motion of the whole
tuft.

In addition to the brush spine, we introduce some
lateral nodes to further model the tuft deformation. Each
spine node has two lateral nodes attached to it. To

constrain the movement of a lateral node associated to a
spine node Ni , we define the joint-bisecting plane of Ni
as the plane passing through Oi, bisecting the angle
between the two adjacent spine segments and
perpendicular to the plane spanned by the segments.
The lateral node is then constrained to move along a
line passing through Oi on the joint-bisecting plane. We
call this line the lateral line of Ni. Initially, the lateral
line is set to be normal to the two adjacent spine
segments; during simulation it has one rotational DOF
on the joint-bisecting plane.

The two lateral nodes attached to a spine node
represent two groups of bristles on both sides of the
spine. We observe that this configuration can effectively
capture the essence of tuft deformation for the following
reasons. Since the brush interacts with only a planar
painting surface, the brush footprint is largely
determined by tuft flattening, controlled by bending and
lateral drag (e.g., when doing slanted-brush strokes).
With the lateral lines having one DOF, the non-
penetration constraints in our dynamic model tend to
keep the lateral lines of those spine nodes that touch the
paper to be parallel to the paper. Consequently, when
the brush is pressed against the paper, the loci of the
lateral nodes would lie on the painting surface, and thus
effectively model horizontal deformation and the lateral
spreading of the bristles.

4.1.2 Brush Surface. The brush surface is obtained by
sweeping a varying elliptic cross section along the spine.
For moistened and unbent brushes, the cross sections
are assumed to be circles throughout the tuft. We pre-
define these circle radii for various types of brushes and
call them the minimum tuft radii. In general, the cross
section is composed of two half ellipses having a
common minor radius, but possibly different major
radii, as shown in Figure 5. This simple representation
is computationally efficient and does not differ much
from the observed reality. A cross section Ωi at a spine
node Ni lies on the joint-bisecting plane, and its major
axis coincides with the lateral line of Ni. To generate the
brush surface, we derive the cross sections between
spine nodes by interpolating Oi, the frame axes and radii
of Ωi using cubic spline.

Segment 1

Segment n

Node 0 (root node)

Node n

Lateral Nodes

Figure 3: Geometric model of a brush tuft

 The radii of Ωi at a spine node Ni are determined by
the positions and the effective radii of its two lateral
nodes. For intersection checking during dynamics
simulation, the spine and lateral nodes are assigned
effective radii to model the thickness of the bristle
groups they represent. For a spine node, since it is
sufficient to assume that the bristle group has circular
cross section (elliptic shape would be taken care of by
the lateral nodes), it is assigned an effective radius rsp;
for a lateral node, to better model the flattening, we
assume that the bristle group forms an ellipse and assign
to it the major and minor effective radii (see Figure 5).
All these effective radii are set as fractions of the minor
radius of Ωi from the previous time frame. Let a and b
be the distances between the lateral nodes and the spine
node as shown in Figure 5. The major radii for Ωi are
then taken as (a + rleft) and (b + rright), where rleft and
rright are the major effective radii of the lateral nodes. By
the conservation of cross section area, we compute the
minor radius, c, as follows:

rightleft rrba
rc

+++
=

22

where r is the minimal tuft radius at the spine node .
 With a single tuft, it is not possible to model bristle

splitting geometrically. To achieve brush footprints with
bristle-splitting effect, we use an alpha map to make
part of the brush surface transparent, as shown in Figure
6(b). The alpha map for the tuft surface can be
generated dynamically by patching white tuft-like

shapes of various lengths and widths onto a black image.
Currently, our implementation uses a static map.

a b

c

spine node

lateral
nodes

rleft rright

rsp c

Figure 5: Tuft cross section

(a) Surface mesh (b) Textured

(c) Alpha map

Figure 6: Bristle splitting for a single tuft

4.2 Brush Dynamics

One way to model the brush dynamics is to use bend

and stretch springs at the spine joints, assign point
masses to the nodes, and use Newtonian physics to
setup the motion equations for the nodes. However,
since bristles have very little inertia relative to the
forces applied onto them, by the Newton’s second law,
large accelerations could result. Exerted by its own
internal spring forces, a brush tuft also behaves as a
highly damped system. Given the stiff nature of the
dynamic system, it is difficult to produce a tractable
real-time system for the brushes by solving second-
order differential equations derived from Newton’s
second law. Baxter et al. [3] cope with the instability
difficulty by adding large damping and employing an
approximated implicit integrator [6], which is reported
to be more stable and faster, but much less accurate,
than the large step integrator presented in [2]. However,
the approximated integrator has the drawback of having
to model the brush internal forces using only stretch
springs rather than bend springs, which model non-
stretchable bristles more naturally.

An alternative to modeling the brush dynamics is to
use energy minimization to determine the steady state of
the brush at a given time step. An energy function is set
up for the system and its steady state is determined by
finding a local energy minimum numerically. In
previous cloth simulation work, energy-based methods
have generally been used to simulate static scenes [12].
However, since brushes are in equilibrium almost all the
time during the painting process, energy minimization is
also a viable approach for simulating brush dynamics; it
was employed by Saito et al.[17]. Therefore, to avoid
solving stiff differential equations [21], we employ the
energy minimization approach for our brush simulation.

4.2.1 Energy Minimization Problem. We formulate
the brush dynamics system as a static constrained
minimization problem [1]. The energy function takes
into account the frictional and deformation energies.
We use Sequential Quadratic Programming (SQP) to
solve the constrained energy minimization problem
because of its fast convergence. We first describe our
energy minimization algorithm, and then give the
details of our energy function formulation in Section
4.2.2.

In general, the initial estimates are crucial for
solving minimization problems. Fortunately, for our
simulation, the state of the previous frame serves as a
very good initial estimate. Suppose the positions of the
spine nodes are Oi =(Oi0 , Oi1 ,…, Oin) and the spine state
is (θ i , φ i) for the current frame. Further suppose that
the new position tracked by the input device is p1 for the
next frame. We determine the new node positions Of =
(Of0,Of1,…,Ofn) and the new spine state (θ f , φ f) in the

po

p1 po

p1

Figure 7: Two possible scenarios for
determining the positions of the spine nodes

after moving the brush from p0 to p1

Deformation Energy. The tuft deformation energy
Edeform has two components, Espine and Elateral, which
account for the bending of the tuft spine and the lateral
deformation of the tuft respectively. In our brush model,
each spine joint has two DOF’s, namely the bend-angle
and the turn-angle. We impose a bend spring at a spine
joint for each DOF to model the bending force of the
tuft. The energy stored in a bend spring is expressed as

() m
bend θκθ =BendEnergy

where κbend is the spring coefficient, m ≥ 2 to account
for the non-linearity of real bristles. Setting m = 3 works
well in our implementation.

When the brush is wet, the attractive force between
the water and bristle molecules holds the bristles
together. When the brush is bended by an external force,
work is done against the friction caused by the
molecular attractive force. Some energy is transformed
to the internal (heat) energy of the water and bristle
molecules. To account for this phenomenon, we also
introduce an energy term on the change of bend- and
turn-angles in the same form as that for bend springs.
The final spine deformation energy, Espine, is defined as
a weighted sum of bend spring energies for the bend-
and turn-angles and energies on the angle changes.

following steps (circled numbers in Figure 7 correspond
to these steps):

1. Set Of0 = p1 and initialize (θ f , φ f) = (θ i , φ i).
2. Determine if any spine node penetrates the

paper, and set minimization constraints for such
nodes to be above the paper. Optionally, obtain
a better initial estimate by updating (θ f, φ f) so
that no nodes penetrate the paper.

3. Solve the constrained energy minimization
problem for the state (θ f, φ f) and update the
node positions O f accordingly.

The lateral nodes are to be dragged with friction
against the paper and their positional deviations from
their rest positions contribute to the deformation energy
of the tuft. For both the spine nodes and the lateral
nodes, the frictional work is calculated by assuming that
the nodes constrained to be above the paper (i.e. those
penetrating the paper initially) are dragged from their
contact positions to their final positions, with the
contact positions taken as the positions where the nodes
first touch the paper (determined by interpolation,
shown as dotted line in Figure 7). We refer to this
displacement as the dragging vector of the node. When
checking if a node penetrates the paper, we consider a
spine node as non-penetrating only if it is at least rsp
above the paper since the node represents a tuft with
thickness; a lateral node is non-penetrating only if the
ellipse representing the bristle group is above the paper.
Thus, part of the generated brush surface will actually
penetrate the paper plane and it determines the brush
footprint for ink depositing. For efficiency, only the
lateral nodes of alternating spine nodes are fed into the
dynamics simulation; the positions of the other lateral
nodes are determined by interpolation.

The lateral nodes, apart from being dragged by
frictional force against the paper, are subject to two
sources of spring forces: stretch springs along the lateral
lines, and bend springs connecting consecutive lateral
nodes along the tuft. We define Elateral as a weighted
sum of the energies of these stretch and bend springs.
The stretch springs account for the attraction force of
water molecules that pulls the lateral nodes towards the
spine and thus the spring coefficient is a function of the
wetness. The energy function for a stretch spring is in
the form:

() (()) m
stretchstretch srdκdE θθ +−=,

where κstretch is the spring coefficient, d is the distance
of the lateral node from its spine node, r is the minimal
tuft radius of the spine node, and s is a linear function of
the bend-angle θ at the associated spine node.
Empirically, κstretch can be a simple linear function of the
current wetness.

The bend springs are added to the lateral nodes to
account for the bending of the bristle groups represented
by the nodes. The energy of such a bend spring is a
function of the angle between two line segments, each
connecting the associated lateral node to one of its two
adjacent lateral nodes (shown as βi’s in Figure 8). For
modeling stiffer brushes, this energy term would have a
larger weighting with respect to that of the stretch
springs in its contribution to Elateral .

4.2.2 Energy Functions. In our energy function
formulation, we include only those components that
have significant effects on the dynamic behavior. We
exclude the potential energy of the tufts due to gravity
since the brush mass is small. The twisting energy of the
bristles and the kinetic energy of the tuft are also
neglected due to their small contribution. We define the
energy function as E = Edeform + Efrict , where E is the
total energy, Edeform the tuft deformation energy and Efrict
the frictional work done by dragging the brush against
the paper surface.

Spine nodes

Lateral nodes
β0 β1

Figure 8: Bend springs for lateral nodes

Frictional Energy. We formulate the frictional energy
of a brush dragged against a painting surface as follows:)min(wherek αθρρθθ ,,)(BendEnergy 3 ′=−=

 The plasticity value α may be automatically adjusted
according to the current wetness of the brush. We
observe that this simple method improves the realism of
the brush significantly over previous brush models,
giving the plasticity that users of real brushes expect.
Brush plasticity affects the rhythmic movement artists
make and is reflected on the ink traces. Figure 9 shows
the ink traces of the same brush movement with
different values of α (in radian).

∑ ⋅=

nodes
 contacting
∆xFE frict µ

where µ is the frictional coefficient, F is the normal
force that a contacting node exerts on the paper, and ∆x
is the dragging vector of the node defined in Section
4.2.1. A node is said to be a contacting node if it
corresponds to an active constraint or if its normal force
F in the previous frame is non-zero. Suppose Nj is the
contacting node with the smallest index. The normal
force F for Nj can be taken as the sum of the vertical
components of the spring forces at all the nodes Ni’s for
i < j. For the rest of the contacting nodes, F is taken as
the vertical component of the spring force at its previous
node. However, since the tuft spine is represented as
discrete nodes, the normal force function would not be
smooth when a node switches between contacting and
non-contacting. In order to avoid drastic discontinuity in
the frictional energy function so that the optimization
would converge, we distribute part of F at Nj to its
upper neighbor Nj-1 according to the paper-touching
proportion of the tuft segment between Nj and Nj-1. For
a lateral node, we set its F as a fraction of the normal
force of the associated spine node.

 In real-life Chinese painting, re-shaping the brush
tip to a sharp point is often necessary before drawing a
new stroke. If desired, the plasticity can be set to zero
so that tip re-shaping is eliminated altogether. Clearly,
we can include a feature in our implementation such
that pressing a key reverts the brush to its original shape.

α = 0.00 α = 0.05 α = 0.08 α = 0.10

Figure 9: Ink traces of the same brush motion
with different brush plasticity values

Since the bristles forming the tuft are generally
aligned, the tuft surface appears corrugated. This makes
the tuft experiences a larger friction when it is dragged
sideway. To account for this anisotropic resistance, we
also modulate the frictional energy with the direction of
the dragging: 4.2.4 Pore Resistance. Most types of painting paper are

full of pores. When we slant the brush and bring its tip
into contact with the paper, the pores act like a fence
impeding sliding. If the brush is then pushed against the
paper in the direction towards where the tip is pointing,
these pores continue to exert large resistance. Setting up
a frictional energy function to account for this behavior
would give rise to a steep function, making the
optimization harder to converge. Thus, we model this
resistance by adding one extra constraint in the
minimization problem as a moving blocking plane. The
blocking plane is normal to the projected spine segment
of the brush tip onto the paper surface. The distance
between the plane and the brush tip is a function of the
height of the tip above the paper and the angle the tip
makes with the paper. When the tip is in contact with
the paper, the distance between the blocking plane and
the tip is very small, and thus the constraint prevents the
tip from sliding. An additional lead space between the
blocking plane and the brush tip is also introduced as a
user-defined parameter to adjust the blocking effect.

()∑ ⋅−+⋅⋅=

nodes
 contacting

)1(perpfparffrict FE ∆x∆x κκµ

where ∆xpar and ∆xperp are the components of ∆x
parallel and perpendicular to the tip spine projected onto
the paper, respectively, and κf ∈[0,1] is the weighting
value for ∆xpar and ∆xperp .

4.2.3 Plasticity. As mentioned in Section 4.2.2, when a
wet brush is deformed, work has to be done against the
molecular friction. When the brush is released, the
restoring spring force has to overcome the resistance of
molecular friction in order to revert the brush into its
original shape. Failing to revert to its original shape
makes the brush appears plastic. We used a simple but
effective zero-shifting method to model this plasticity.
Suppose the bending energy for a spine segment with
bending angle θ is k|θ|3 and α is a user-adjustable
parameter controlling the tuft plasticity (larger α
corresponds to more plasticity). The intuitive idea of our
method is to shift the minimum-energy angle from zero
to a value determined by the plasticity and the bending
angle from the last time frame; that is, if θ’ is the
bending angle from the previous time frame, the new
energy function becomes

 In Chinese calligraphy, an artist using a soft brush
sometime uses the pore resistance to straighten the tuft
and make its tip blade-like. Mimicking pore resistance
in our simulation allows the reproduction of this kind of
deformation, which is expected by artists. In addition,
the simulated pore resistance also helps to produce the
effect of the pushed-stroke technique employed in
painting [10], in which the brush is slanted and pushed

Ink flow on
paper

Ink flow within
brush

 Brush dynamics

Brush and strokes
rendering

Simulation

User Input against the paper in the direction it is pointing, giving a
‘rough’ look to the stroke (Figure 12).

4.3 Ink Loading and Depositing

We store the ink and moisture information at each

tuft node. A color gradient can be loaded into the tuft by
interpolating color values at different tuft nodes. For ink
depositing from the brush onto the painting surface, as
in [3], we allow the brush surface to intersect with the
paper plane and consider the orthogonal projection of
the penetrating portion onto the paper plane as the brush
footprint. The footprint is obtained by rendering the
brush surface clipped by the paper plane in orthogonal
view using OpenGL. In this way, we can utilize the
hardware-accelerated polygon clipping and rasterization
and leave the CPU computation power for the physics
simulation. After the footprint is obtained, ink is
deposited simply by transferring ink/water values from
the penetrating tuft surface area onto the footprint area
on the painting surface. We can either subtract the ink
values from the tuft or just maintain the ink level to
allow continuous painting without reloading. As the ink
level gradually lowers, the tuft alpha map is modified to
reflect the consumption of ink, mimicking the effect of
a dry brush. Currently, simple alpha blending using
OpenGL is used for applying diluted/transparent color
onto the painting surface.

Figure 10: Block diagram of our proposed
painting system

5. Implementation Results

We have implemented a painting system prototype

based on our brush model. Our system is written in
Object Pascal using Borland Delphi 6. It currently runs
in real-time at 25 frames per second on a 1GHz
Pentium-III PC with an NVIDIA GeForce2 Pro graphics
card. The number of SQP iterations required for a
typical time frame is below 10. In our experience, 98%
of the time frames require less than 20 iterations.

5.1 System Architecture

Figure 10 shows the design of our painting system.

There are three main modules: user input, simulation,
and brush and stroke rendering. The user input module
reads the position and orientation of the input device,
and the user-defined parameters such as ink loading,
stiffness, and brush size. The simulation module is the
main component of the system and it consists of three
sub-modules. The brush-dynamics sub-module
simulates the behavior of the bristles, i.e., the bending
and spreading of bristles due to external forces; the ink-
flow-within-brush sub-module simulates the
phenomenon of ink flowing from the more saturated
parts to the less saturated parts in real brushes; the ink-
flow-on-paper sub-module simulates the ink diffusion in
the paper fibres. We have yet to incorporate ink
diffusion simulation in our current prototype, and thus
the system simulates brush painting as if it is done on
sized paper (i.e., paper treated with alum). An ink-

depositing method links the brush-dynamics sub-
module and the ink-flow-on-paper sub-module. The
brush and stroke renderings module renders the
appearance of the strokes and draws the brush on the
screen to provide feedback to the user regarding its
current state (position, orientation, bending, etc).

5.2 User Interface

Visual feedback of the brush shape is important

during the painting process. A bended brush would have
different footprints when held at different angles. In our
system, the main user window shows a perspective view
of the 3D painting scene; the camera position and field-
of-view are adjustable by the user. An alternative
orthogonal view of the painting canvas, with the
viewing direction perpendicular to the paper surface and
every pixel corresponding to a fixed-size area of the
paper model, is also provided. The brush is rendered
with lighting and shadows to aid visualization. Shadows
provide a natural aid for the user to sense how high the
brush is above the paper. Our current system simply
renders the shadows as two line segments. During
painting, the brush itself can be set to transparent so as
not to obstruct the user’s view of the painting surface.

 Figure 11 shows the physical setup of our current
system. To drive the virtual brush, a six-DOF input
device is needed. The PHANTOM haptic device [15]
not only provides six-DOF data but also the force haptic
feedback, and thus is ideal as an input device. A more
affordable option is to build a six-DOF device from
some 3-DOF devices and sensors. Our current setup
makes use of an ultrasonic device and miniature
gyroscopes to sense the brush position and orientation
respectively. These sensors are attached to a real brush
or a brush-like object, which is manipulated to drive the
virtual brush in real-time. To provide a natural interface,
our input device can be calibrated to map a real
supporting surface to the virtual one, so that the real
surface also gives some tangible feeling to the user
when the brush is pressed down.
 As an alternative, our system also supports pressure
and tilt sensitive graphics tablets. The sensed pressure is
used to control the height of the brush above paper
while the tilts the orientation of the brush. Although the
brush height is not controlled as intuitively as using a

true 3D positional device, the support for graphics tablet
input makes our system more accessible to existing
digital artists due to hardware availability. The graphics
tablet is also more convenient to use since a supporting
ground is already present without calibration.

5.3 Sample Results

Figures 1 and 12 to 17 show some sample painting

and calligraphic results obtained using our system. The
character ‘dragon’ shown in Figure 1 was written using
the slanted-brush technique. Figure 12 shows some
sample strokes used in Chinese painting or calligraphy.
Figure 13 shows a sample calligraphy done in
contemporary style, with some of the strokes exhibiting
the flying-white effect. Figure 14 shows some rocks
painted with traditional texturing technique. The orchid
painting shown in Figure 15 was done in 17 strokes,
with the character ‘orchid’ also done with our system.
Figure 16 shows a flower painting done by loading
color gradients onto the brush. Figure 17 shows a
calligraphic work with more characters. For video
demos and additional color images, please visit the web
page: http://www.cs.ust.hk/~cpegnel/VCB/.

6. Conclusion and Future Work

We have presented an efficient model for simulating

the deformation of Chinese brushes. Our model is able
to produce more realistic tuft deformation, such as
bristle spreading and plasticity, which is important for
3D digital brush painting. With some modification, it is
expected that our model can also mimic western
watercolor or oil painting brushes.

 We are currently adding ink diffusion [5, 9, 23] to
our prototype to make it a complete system for
producing Chinese brushwork. Taking into account the
paper texture would also make the dry-brush effect
more realistic. It would also be desirable to incorporate
haptic input device and stereo display into our system.
We are also interested in further investigating vectorial
dynamics, including the use of implicit integrator [2],
on the speed and accuracy of the simulation. Faster
brush dynamics simulation would allow higher brush
modeling resolution and more realistic ink/water
simulation.

Acknowledgement

The authors would like to thank Kwan-Wah Ng for

his generous help in building the input device hardware
used in our prototype system, and Rui-Duo Yang for his
assistance in hardware interfacing. Thanks also go to the
authors of various free software components used in
building our prototype, especially Eric Grange and
Mike Lischke for the OpenGL library GLScene, Mattias
Andersson for his TTablet component and Dejan Crnila
for his TComPort library.

References

[1] S. K. Agrawal and B. C. Fabien. Optimization of
Dynamic Systems. Klumer Academic Publishers, 1999.

[2] D. Baraff and A. Witkin. Large steps in cloth simulation.
SIGGRAPH’98 Proceedings, pp. 43-54, 1998.

[3] B. Baxter, V. Scheib, M. Lin and D. Manocha. DAB:
Interactive haptic painting with 3D virtual brushes,
SIGGRAPH 2001 Proceedings, August 2001.

[4] J. E. Chawisk, D. R. Haumann, and R. E. Parent. Layered
construction for deformable animated characters.
SIGGRAPH’89 Proceedings, pp. 243-252, July 1989.

[5] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer,
and D. H. Salesin. Computer-generated watercolor,
SIGGRAPH’97 Proceedings, pp. 421-430, August 1997.

[6] M. Desbrun, P. Schroder, and A. Barr. Interactive
animation of structured deformable objects, Proc. of
Graphics Interface ’99, 1999.

[7] S. C. Hsu and I. H. H. Lee. Drawing and animation using
skeletal strokes, SIGGRAPH '94 Proceedings, Vol. 28,
Annual Conference Series, pp. 109-118, July 1994.

[8] C. K. Koh, Z. Huang. Real-time human hair modeling
and animation, SIGGRAPH 2000 Conference Abstracts
and Applications, p.248, 2000.

[9] T. L. Kunii, G. V. Nosovskij, and T. Hayashi. A diffision
model for computer animation of diffuse ink painting,
Computer Animation, 1995.

[10] D.W. Kwo. Chinese Brushwork: Its History, Aesthetics,
and Techniques. George Prior, London, 1981.

[11] J. Lee. Simulating oriental black-ink painting, IEEE
Computer Graphics and Applications, 19(3), pp. 74-81,
May/June 1999.

[12] H. N. Ng, and GR. L. Grimsdale. Computer graphics
techniques for modeling cloth. IEEE Computer Graphics
and Applications, 16:28-41, 1996.

[13] Painter. Software package by Corel Corporation.
http://www.corel.com.

[14] B. Pham. Expression brush strokes, CVGIP: Graphical
Models and Image Processing, vol. 53, No. 1, 1991.

[15] PHANTOM. Six-DOF input device by SensAble
Technologies, Inc. http://www.sensable.com/

[16] E. Plante, M.-P. Cani and P. Poulin. A layered wisps
model for simulating interactions inside long hair,
Computer Animation and Simulation 2001.

[17] S. Saito and M. Nakajima. 3D physics-based brush model
for painting, SIGGRAPH 99 Sketches, Conference
Abstracts and Applications, pp. 226-226, 1999.

[18] J. Silbergeld. Chinese Painting Style: Media, Methods,
and Principles of Form. University of Washington Press,
Seattle and London, 1982.

[19] S. Strassmann. Hairy Brushes, SIGGRAPH '86
Proceedings, 20(4), pp. 225-232, August 1986.

[20] Y. Watanabe and Y. Suenaga. A trigonal prism-based
method for hair image generation. IEEE Computer
Graphics and Applications, 12(1):47-53, January 1992.

[21] A. Witkin and D. Baraff. Physically Based Modeling:
Principles and Practice. SIGGRAPH Course Notes,
1997.

[22] H. T. F. Wong and H. H. S. Ip. Virtual brush: a model-
based synthesis of Chinese calligraphy, Computers and
Graphics, 24(1), pp. 99-113, February 2000.

[23] Q. Zhang, Y. Sato, J. Takahashi, K. Muraoka and N.
Chiba. simple cellular automation-based simulation of
ink behavior and its application to Suibokuga-like 3D
rendering of trees, Journal of Visualization and
Computer Animation, 1999.

http://liinwww.ira.uka.de/searchbib/index?query=CurtisCJ&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=AndersonSE&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=SeimsJE&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=FleischerKW&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=SalesinDH&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=HsuSC&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=LeeIHH&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=LeeJ&partial=on&case=on&results=citation&maxnum=200
http://www.corel.com/
http://liinwww.ira.uka.de/searchbib/index?query=SaitoS&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=NakajimaM&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=WongHTF&partial=on&case=on&results=citation&maxnum=200
http://liinwww.ira.uka.de/searchbib/index?query=IpHHS&partial=on&case=on&results=citation&maxnum=200

Figure 11: Physical setup of our system

Figure 12: Sample strokes

Figure 13: Calligraphy in contemporary style

Figure 14: Rocks painted with texturing strokes

Figure 15: Sample orchid painting

Figure 16: Flowers painted with color gradients

Figure 17: Calligraphy in Action Script

	Abstract
	1. Introduction
	2. Previous Work
	3. Introduction to Chinese Brushes
	4. Brush Model
	4.1 Brush Geometry
	4.2 Brush Dynamics
	�
	4.2.4 Pore Resistance. Most types of painting paper are full of pores. When we slant the brush and bring its tip into contact with the paper, the pores act like a fence impeding sliding. If the brush is then pushed against the paper in the direction towa

	4.3 Ink Loading and Depositing

	5. Implementation Results
	5.1 System Architecture
	5.2 User Interface
	5.3 Sample Results
	6. Conclusion and Future Work

	Acknowledgement
	References

