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Big Data 
Data Stream 

with Concept Drift 

•  High Dimensional  
Data 

•  Heterogeneous Data 
Sources 

•  Unconventional Data 
Types 

•  Graph/Network 
•  Sequence 
•  Text 

Scalable 
Mining 

Algorithms 

•  Cleaness 
•  Trustworthiness 
•  Privacy   
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Outline 

•  Mining heterogeneous data sources 
•  Fusion knowledge across multiple social 

networks 
•  Using social networks to  

•  understand customer purchase behavior 
•  predict or promote real world activities  

•  Inferring the impact of social media on crowdfunding   



Information Fusion 

•  Fusing information across multiple 
sources is the Holy Grail of big data 
research 

•  Many commercial companies have 
multiple sources of collecting customer 
information 
•  Google has Google search, G-mail, Google Maps, 

Google+, YouTube, etc. 

•  Other examples 
•  Detection of  terrorist plots 
•  Whereabouts on Malaysia MH370 



Drug Discovery 
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SLAP: HIN for Drugs 
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•  SLAP is a subset of the Chem2Bio2RDF network  
•  including 250,000 compounds with known bioactivities 

and the targets known to associated with these drugs 
•  Chem2Bio2RDF network semantically integrates 42 

heterogeneous public datasets related to drug discovery 
•  Major datasets include PubChem, ChEMBL, DrugBank, 

PharmGKB, BindingDB, STITCH, CTD, KEGG, 
SWISSPROT, PDB, SIDER, PubMed.  



Path-based Collective Classification 



Mining Heterogeneous Information Networks 

�  Intuition 
¡  Two objects can be connected via different connectivity 

meta paths  
÷ E.g., two chemical compounds can be connected by 

 
¡  Each connectivity meta path represents a different 

semantic meaning and implies different similarity 
semantics or relationships 

�  Challenges 
¡  How to assess the importance of a meta path? 
¡  How to identify, select and  combine different meta 

paths together? 12/12/14 
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Multi-label  Drug Target Prediction 



Outline 

•  Mining heterogeneous data sources 
•  Fusing knowledge across multiple social 

networks 
•  Using social networks to  

•  Understand customer purchase behavior 
•  Predict or promote real world activities  

•  Inferring the impact of social media on crowdfunding   



Social Network 

•  Huge size  
o  Facebook: more than a billion nodes 

•  High volume of new content generated 
o  Rapidly and dynamically changing focus 

•  Rich information with many different 
types of data 

•  Noisy 
•  High aggregate value, but challenging 

to mine 



Background 
•  Many social networks with different objectives 

•  Facebook 
•  Twitter 
•  Foursquare 
•  LinkedIn 
•  YouTube 
•  Instagram 
•  WhatsApp 
•  Google+ 

•  Individuals often participate in multiple social 
networks 



Fusion of Multiple Social Networks 

•  Each social network only capture a 
partial or biased view of an individual 

•  Newly formed social networks can be 
benefitted from information collected 
in more established networks 

•  Publicly available social network data 
can be rich and useful 

•  Fusing multiple social networks has 
the additional challenge on identity 
matching 



Issues 

•  How to connect the multiple accounts of the same 
users in different social networks? 

•  How to transfer knowledge across different social 
networks? 



Foursquare 



Friend Recommendation 
 (Social Link Prediction)  



Challenges 

•  How to improve the accuracy of 
friend recommendation (link 
prediction)? 
•  Can we use information from 

other social networks, especially 
•  Well established  
•  Public available 



Social Links 

Contents: Tweets 

Locations 
Temporal Activities 

Social Network:        


                  Who  Where  What  When 



Traditional Social Link Prediction  
in One Single Social Network 

Social Links



Contents: Tweets
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Use Multiple Social Networks Simultaneously���




anchor users



non-anchor users



Partially Aligned Social 
Networks
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Anchor Links across Networks





Predicting social links in multiple 
aligned networks simultaneously
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Disadvantages of Supervised Link 
Prediction Setting
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PU Learning: How to find 
reliable negative links?



Supervised link prediction 
==> Positive Unlabeled (PU) 
link prediction 





Reliable Negative Links Extraction ���
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Heterogeneous Information ���




Social Links
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social network schema
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Intra-network social meta paths

� Two users U1 and  U2 are considered to be similar 
¡  Connected through some homogeneous paths 

÷ U1  -> U3 <- U2 or U1  -> U3 <- U4 <-U2 
¡  Connect through some heterogeneous paths 

÷ U1 -> P1 -> Word <- P2  <- U2 
÷ U1 -> P1 -> Location <- P2  <- U2 
÷ U1 -> P1 -> Time <- P2  <- U2 



Inter-network social meta path instances ���
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Inter-network social meta path instances ���
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Also need to consider other hetrogeneous links: 
U1 -> P1 -> Word <- P2  <- U2 
U1 -> P1 -> Location <- P2  <- U2 
U1 -> P1 -> Time <- P2  <- U2  



Experiment Results



collective link prediction is better than 
independent link prediction



using features based on intra-network meta 
paths and inter-network meta paths 
simultaneously can achieve better results





Outline 

•  Mining heterogeneous data sources 
•  Fusing knowledge across multiple social 

networks 
•  Using social networks to  

•  Understand customer purchase behavior 
•  Predict or promote real world activities  

•  Inferring the impact of social media on crowdfunding   



Motivation 
 
•  Social networks can capture and contain rich 

information 
•  Most companies cannot afford to offer its 

own social networks to collect customer 
information 

•  Information available in public social 
networks may be crawled to  
•  Gain better understanding of customer 
•  Offer more targeted service 



Examples 
 

•  Some real world examples of 
utilizing public available social 
network information    
•  Insurance fraud detection 
•  Job recruiting, Applicant screening 
•  College Admission 

 



Understanding Your Customers 

�  Most e-commerce companies, like Amazon, only have 
transaction data of their customers. 

�  These e-commerce companies do not own or operate 
social networks. 

�  Although the transaction data can provide the buying 
history, the e-commerce companies lack information 
on 
¡  The customer feedback on the product purchased 
¡  The friend of their customers which may show similar interests 



  



  

Identifying Your Customers in Social Networks

Poten&al	
  Applica&ons:	
  

1.   Analyze	
  your	
  customers’	
  opinions	
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Identifying Your Customers in Social Networks

2.   Personalized	
  Product	
  Recommenda&on	
  

3.   Discover	
  the	
  communi&es	
  of	
  your	
  customers	
  

4.   Maximize	
  product	
  adop&on	
  

Poten&al	
  Applica&ons:	
  

1.   Analyze	
  your	
  customers’	
  opinions	
  



  



Outline 

•  Mining heterogeneous data sources 
•  Fusing knowledge across multiple social 

networks 
•  Using social networks to  

•  Understand customer purchase behavior 
•  Predict or promote real world activities  

•  Inferring the impact of social media on crowdfunding   







Impact of Social Media on Crowdfunding 



Impact of Social Media on Crowdfunding 



Features 

•  Project features: 
•  funding goals, median amount of pledge options, number of 

backers, average amount of pledge per backer, elasped days 
since launched 

•  Social activity features 
•  number of tweets, number of promoters, number of patrons, 

number of uniquely mentioned users, fraction of promoters from 
external sources 

•  Social structure features: 
•  average number of followers of promoters, number of edges, 

diameter, number of connected components, number of triads, 
global clustering coefficient 



Experiments (Early Prediction)



Summary 

•  Mining heterogeneous data 
sources 

•  Fusing knowledge across 
multiple social networks 

•  Using social networks to  
•  Understand customer 

purchase behavior 
•  Predict or promote real 

world activities  
•  Inferring the impact of social 

media on crowdfunding   
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