COMP538: Introduction to Bayesian Networks Introduction to Course

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Fall 2008

Probabilistic Modeling/Reasoning

- Describe problem domain with random variables.
- Represent knowledge about the domain as relationships among the random variables.
 - Can be learned from data.
- Inference: After observing values of some variables, make inference about other variables of interest.

Examples:

- Medical diagnosis: symptoms and diseases can be modeled as random variables.
- Business decision making: e.g. predicting customers' future behavior based past purchasing history, important for direct marketing.
- Bio-informatics: genotypes and gene expression levels can be modeled as random variables
- Computer Science: Vision, speech understanding, sensor networks, localization, software engineering, etc

Joint Probability Distribution

$$P(X_1, X_2, \ldots, X_n)$$

- Conceptually, the simplest way to represent relationship among random variables.
- Facilitates all types of inferences between variables.

Big drawback

- Complexity exponential in n.
- A major reason for probability theory not playing an significant role in Al before 1980's.
- Alternatives explored instead:
 - Non-monotonic logic,
 - Uncertainty factors,
 - Belief function,
 - Fuzzy logic,
 - ...etc

Modularity

- The breakthrough came in early 1980s (Pearl 1986, 1988, Howard & Matheson 1984)
- In a joint probability distribution, every variable is, in theory, directly related to all other variables.
- Pearl and others realized:
 - It is often reasonable to make the assumption that each variable is directly related to only a few other variables.
 - This leads to **modularity**: Allowing decomposing a complex model into small manageable pieces.
 - Giving rise to **Bayesian networks**

Bayesian Networks

- Networks of random variables
 - Nodes represent random variables.
 - Arrows (links) represent dependence.
- Result of a marriage between probability theory and graph theory.
- Conditional independence implicitly represented:
 - Absence of links implies indpendence.
 - A random variable is directly related to only a few neighboring variables.
 - It is independent of all other variables given the neighboring variables.
- Also implicitly represents factorization of joint distribution.
- Facilitate the application of probability theory to many problems in Al, Applied Mathematics, Statistics, and Engineering that are complex and involve uncertainty.

Bayesian networks and other probabilistic models

Common framework for existing models

- Naive Bayes model, latent class model, mixture models, hidden Markov models, Markov chains, etc
- Facilitate easy share of progresses.

Provides a framework for new models:

■ Dynamic Bayesian networks, Latent tree models, conditional Markov random field. etc

Use of Bayesian networks

- Proposed as a framework to build expert systems.
- Increasingly used a tool for data analysis

- Intuitive and easy to understand
 - Widely used as a communication tool before researchers.

Course Objectives

- Provide a solid training in the basic theory and methods of BNs.
 - Achieved through lectures by the instructor. 75% of class time.
- Convey an overview of the field.
 - Achieved through presentations by students. 25% of class time.