COMP538: Introduction to Bayesian Networks

Lecuture 1: Basics of Multivariate Probability and Information Theory

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Fall 2008

Objective and outline

- I assume that the students have some exposure to probability theory.
- In this lecture, I will quickly review basic concepts in multivariate probability and information theory. The emphasis will be on intuitions rather than on mathematics.
- Reading: Zhang & Guo, Chapter 1;
- References: Russell & Norvig, Chapter 14; Cover, T. M. and Thomas, J. A (1991). Elements of Information Theory. John Wiley & Sons.

Outline

1 Mathematical definitions

- 2 Interpretations of Probability
- 3 Multivariate Probability
 - Joint probability
 - Marginal probability
 - Conditional probability
 - Independence
 - Bayes' Theorem
- 4 Basics of Information Theory
 - Jensen's Inequality
 - Entropy
 - Mutual Information and Independence

Sample space

- Sample space (population) Ω :
 - Set of possible outcomes of some experiment.
 - Example:
 - Experiment: randomly select a student among all UST postgraduate students
 - Sample space Ω : the set of all UST postgraduate students.
 - Here we assume it to be finite for simplicity.
 - Elements of the sample spaces are called **samples**.

Events

- Subsets of sample spaces are **events**.
- Examples:
 - Sample space Ω : the set of all UST postgraduate students.
 - E_{female} = {female students} the randomly selected student is a female.
 - $E_{\text{male}} = \{ \text{male students} \}$ the randomly selected student is a male.
 - EMPhil = {MPhil students} the randomly selected student is an MPhil student.
 - *E*_{PhD} = {PhD students} the randomly selected student is a PhD student.

Probability measure

lacktriangle A probability measure is a mapping from the set of events to [0, 1]

$$P:2^{\Omega} \rightarrow [0,1]$$

that satisfies Kolmogorov's axioms:

- **1** $P(\Omega) = 1$.
- 2 $P(A) \ge 0 \ \forall A \subseteq \Omega$
- 3 Additivity: $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$.
- Example:
 - \blacksquare Sample space Ω : the set of all UST postgraduate students.
 - Define probability measure: $P(A) = |A|/|\Omega|$.
 - $P(E_{\text{female}})$ = 'fraction of female postgraduate students

Random Variables

■ Random variable *X*:

- Function defined over sample space.
- Example:
 - Gender of (randomly selected) student,
 - Programme of (randomly selected) student
- Intuitively, a random variable is an unknown quantity.

■ Domain of a random variable Ω_X :

- \blacksquare the set of possible states of X.
- Example:

$$\Omega_{Gender} = \{f, m\}$$

$$\Omega_{\text{Programme}} = \{\text{PhD}, \text{MPhil}\}$$

.

Random Variables and Events

 \blacksquare For any state x of a random variable X, let

$$\Omega_{X=x} = \{\omega \in \Omega | X(\omega) = x\}$$

This is an event!

- Example:
 - $\Omega_{\mathsf{Gender} = \mathsf{f}} = \{ \mathsf{female postgraduate students in UST} \} = \mathit{E}_{\mathsf{female}}.$
- Note: we use upper case letters, e.g. X, for variables and lower case letters, e.g. x, for states of variables.
- Note the difference between Ω_X and $\Omega_{X=x}$

Probability mass function (distribution)

■ **Probability mass function** of a random variable *X*:

$$P(X):\Omega_X\to [0,1]$$

$$P(X = x) = P(\Omega_{X = x})$$

- Examples:
 - $P(Gender=f) = P(E_{female}) = 1/6$ (Assumption)
 - $P(Gender=m) = P(E_{male}) = 5/6.$
 - $P(Programme=MPhil) = P(E_{MPhil}) = 1/3$ (Assumption
 - $P(Programme=PhD) = P(E_{PhD}) = 2/3.$
- In practice, we start with probability mass functions, rather than probability measures over sample space Ω .
- Because of Kolmogorov's third axiom, a probability mass function completely determines a probability measure on Ω_X .
- For **continuous** random variable, one has **probability density** function p(X) (here p in lower case).

Summary

- Sample space: Ω
- Events: 2^{Ω} .
- Probability measure:
 - $P: 2^{\Omega} \to [0,1]$
 - Three axioms.
- Random variable: $X : \Omega \rightarrow \Omega_X$
- Probability mass function:
 - $P: \Omega_X > [0, 1]$
 - $P(X = x) = P(\Omega_{X=x}).$
 - Induce probability measure on 2^{Ω_X} . Hence we can talk about $P(X \in \{a, b, c\})$.
- \blacksquare Ω shared by all random variables, enabling us to talk about relationships among them.

Outline

- 1 Mathematical definitions
- 2 Interpretations of Probability
- 3 Multivariate Probability
 - Joint probability
 - Marginal probability
 - Conditional probability
 - Independence
 - Bayes' Theorem
- 4 Basics of Information Theory
 - Jensen's Inequality
 - Entropy
 - Mutual Information and Independence

Frequentist interpretation

- Frequentist interpretation:
- Probability is long term relative frequency
- Example:
 - *X* is result of coin tossing. $\Omega_X = \{H, T\}$
 - P(X=H) = 1/2 means that
 - the relative frequency of getting heads will almost surely approach 1/2 as the number of tosses goes to infinite.
 - Justified by the Law of Large Numbers:
 - X_i : result of the i-th tossing; 1 H, 0 T
 - Law of Large Numbers:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{n} = \frac{1}{2}$$
 with probability 1

■ The frequentist interpretation is meaningful only when experiment can be repeated under the same condition.

Subjectivist/Bayesian interpretation

- Probabilities are logically consistent degrees of beliefs.
- Applicable when experiment not repeatable.
- Depends on a person's state of knowledge.
- Example: "probability that Suez canal is longer than the Panama canal".
 - Doesn't make sense under frequentist interpretation.
 - Subjectivist: degree of belief based on state of knowledge
 - Primary school student: 0.5
 - Me: 0.8
 - Geographer: 1 or 0

Subjectivist/Bayesian interpretation

- Large literature discusses subjectivist interpretation (see Shafer and Pearl 1990).
- Use betting arguments to prove that degrees of subjective beliefs must satisfy Kolmogorov's axioms. One argument is called **Dutch book**.
- Example: Horse racing
 - Horses: H1, H2, H3
 - Betting tickets:

T1: worth 100 if H1 wins	T12: worth 100 if H1 or H2 wins
T2: worth 100 if H2 wins	T13: worth 100 if H1 or H3 wins
T3: worth 100 if H3 wins	T23: worth 100 if H2 or H3 wins
T0:worth 100 if no horse wins	T123: worth 100 if any horse wins

- Degrees of beliefs and fair prices of tickets
 - fair price for buying or selling T1 = P(H1 wins) \times 100 + P(H1 loses) \times 0.
 - fair price for buying or selling $T2 = P(H2 \text{ wins}) \times 100$
 - fair price for buying or selling T12 = $P(H1 \text{ or } H2 \text{ wins}) \times 100 \dots$, etc

Subjectivist interpretation

- If a person's degrees of beliefs violates Kolmogorov's axioms, a Dutch book can be made so that the person will stand to lose regardless of outcome.
- Example:
 - P(H1 wins) = 0.3, P(H2 wins)=0.4, P(H1 or H2 wins) = 0.5 P(H1 or H2) < P(H1) + P(H2)

- Dutch book against the person:
 - buy T12 from the person at 50 (this is fair for him),
 - sell T1 and T2 to the person at 30 and 40 (this is also fair for him).
- Value before and after the transaction:

	before (T12)	after (T1 & T2)
H1 wins	100	100 + 50 - 30 - 40=80
H2 wins	100	100 + 50 - 30 - 40=80
H3 wins	0	50 - 30 - 40 =-20

The person loses 20 in the transaction.

Exercise: What if the other axioms are violated?

Subjectivist interpretation

- The subjectivist interpretation was not widely accepted in AI until 1970s (Shafer and Pearl 1990,introduction).
- This is a major reason why probability theory did not play a big role in Al before 1980.
 - Because probability was defined as relative statistical frequency and hence was seen as a technique that was appropriate only when statistical data were available.
 - Not many interesting applications with statistical data at that time. Now, more common.

Subjectivist interpretation

- Now both interpretations are accepted. In practice, subjective beliefs and statistical data complement each other.
 - We rely on subjective beliefs (prior probabilities) when data are scarce.
 - As more and more data become available, we rely less and less on subjective beliefs.
 - As we will learn later, probability has a numerical aspect as well as a structural aspect.
 - We will rely more on the subjectivity interpretation when it comes to building structures than estimating numbers. Our belief on "causality" often plays an important role when building structures.
- The subjectivist interpretation makes concepts such as conditional independence easy to understand.

Outline

- 1 Mathematical definitions
- 2 Interpretations of Probability
- 3 Multivariate Probability
 - Joint probability
 - Marginal probability
 - Conditional probability
 - Independence
 - Bayes' Theorem
- 4 Basics of Information Theory
 - Jensen's Inequality
 - Entropy
 - Mutual Information and Independence

Joint probability mass function

■ **Probability mass function** of a random variable *X*:

$$P(X):\Omega_X\to [0,1]$$

$$P(X = x) = P(\Omega_{X=x}).$$

- Suppose there are *n* random variables X_1, X_2, \ldots, X_n .
- A **joint probability mass function**, $P(X_1, X_2, ..., X_n)$, over those random variables is:
 - a function defined on the Cartesian product of their state spaces:

$$\prod_{i=1}^n \Omega_{X_i} \to [0,1]$$

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(\Omega_{X_1 = x_1} \cap \Omega_{X_2 = x_2} \cap \dots \cap \Omega_{X_n = x_n}).$$

Joint probability mass function

■ Example:

- Population: Apartments in Hong Kong rental market.
- Random variables: (of a random selected apartment)
 - Monthly Rent: $\{low (\leq 1k), medium ((1k, 2k]), upper medium((2k, 4k]), high (<math>\geq$ 4k) $\}$,
 - Type: {public, private, others}
- Joint probability distribution P(Rent, Type):

	public	private	others
low	.17	.01	.02
medium	.44	.03	.01
upper medium	.09	.07	.01
high	0	0.14	0.1

Joint probability distribution

- The joint distribution $P(X_1, X_2, ..., X_n)$ contains information about all aspects of the relations among the n random variables.
- In theory, one can answer any query about relations among the variables based on the joint probability.

Marginal probability

What is the probability of a randomly selected apartment being a public one? (Law of total probability)

$$\label{eq:policy} \begin{split} P(\mathsf{Type=pulic}) &= P(\mathsf{Type=public}, \, \mathsf{Rent=low}) + P(\mathsf{Type=public}, \, \\ &\quad \mathsf{Rent=medium}) + \, P(\mathsf{Type=public}, \, \mathsf{Rent=upper} \, \, \mathsf{medium}) + \\ &\quad P(\mathsf{Type=public}, \, \mathsf{Rent=high}) = .7 \\ P(\mathsf{Type=private}) &= P(\mathsf{Type=private}, \, \mathsf{Rent=low}) + \, P(\mathsf{Type=private}, \, \\ &\quad \mathsf{Rent=medium}) + \, P(\mathsf{Type=private}, \, \mathsf{Rent=upper} \, \, \mathsf{medium}) + \\ &\quad P(\mathsf{Type=private}, \, \mathsf{Rent=high}) = .25 \end{split}$$

	public	private	others	P(Rent)
low	.17	.01	.02	.2
medium	.44	.03	.01	.48
upper medium	.09	.07	.01	.17
high	0	0.14	0.1	.15
P(Type)	.7	.25	.05	

Called marginal probability because written on the margins.

Marginal probability

■ Write the equations on the previous slide in a compact form:

$$\mathsf{P}(\mathsf{Type}) = \sum_{\mathsf{Rent}} \mathsf{P}(\mathsf{Type},\,\mathsf{Rent})$$

- The operation is called **marginalization**: Variable "Rent" is marginalized from the joint probability P(Type, Rent).
- Notations for more general cases:

$$P(X,Y) = \sum_{U,V} P(X,Y,U,V).$$

$$lack Y \subset \{X_1, X_2, \dots, X_n\}, \ lack Z = \{X_1, X_2, \dots, X_n\} - lack Y,$$

$$P(\mathbf{Y}) = \sum_{\mathbf{7}} P(X_1, X_2, \dots, X_n)$$

Marginal probability

- A joint probability gives us a full picture about how random variables are related.
- Marginalization lets us to focus one aspect of the picture.

Conditional probability

 \blacksquare For events A and B:

$$P(A|B) = \frac{P(A,B)}{P(B)} \left(= \frac{P(A \cap B)}{P(B)}\right)$$

- Meaning:
 - \blacksquare P(A): my probability on A (without any knowledge about B)
 - P(A|B): My probability on event A assuming that I know event B is true
- What is the probability of a randomly selected private apartment having "low" rent?

$$P(Rent=low|Type=private)$$

= $\frac{P(Rent=Low, Type=private)}{P(Type=private)}$ = .01/.25=.04

In contrast:

$$P(Rent=low) = 0.2.$$

Conditional probability

■ P(Rent|Type)

	public	private	others
low	.17/.7	.01/.25	.02/.05
medium	.44/.7	.03/.25	.01/.05
upper medium	.09/.7	.07/.25	.01/.05
high	0/.7	0.14/.25	0.1/.05

■ Note that

$$\sum_{Rent} P(Rent|Type) = 1.$$

■ Notation:P(X|Y,Z)

Χ	Υ	Z	P(X Y,Z)
Т	Т	Т	0.3
Т	Т	F	0.7
:	:	:	:
F	F	F	0.8

Marginal independence

- Two random variables X and Y are marginally independent, written $X \perp Y$, if
 - \blacksquare for any state x of X and any state y of Y,

$$P(X=x|Y=y) = P(X=x)$$
, whenever $P(Y=y) \neq 0$.

- Meaning: Learning the value of Y does not give me any information about X and vice versa. Y contains no information about X and vice versa.
- Equivalent definition:

$$P(X=x, Y=y) = P(X=x)P(Y=y)$$

■ Shorthand for the equations:

$$P(X|Y) = P(X), P(X,Y) = P(X)P(Y).$$

Marginal independence

- Examples:
 - X:result of tossing a fair coin for the first time, Y: result of second tossing of the same coin.
 - X: result of US election, Y: your grades in this course.
- Counter example:X oral presentation grade , Y project report grade.

Conditional independence

■ Two random variables X and Y are **conditionally independent** given a third variable Z,written $X \perp Y | Z$, if

$$P(X=x|Y=y,Z=z) = P(X=x|Z=z)$$
 whenever $P(Y=y,Z=z) \neq 0$

- Meaning:
 - If I know the state of Z already, then learning the state of Y does not give me additional information about X.
 - \blacksquare Y might contain some information about X.
 - However all the information about *X* contained in *Y* are also contained in *Z*.
- Shorthand for the equation:

$$P(X|Y,Z) = P(X|Z)$$

■ Equivalent definition:

$$P(X, Y|Z) = P(X|Z)P(Y|Z)$$

Example of Conditional Independence

- There is a bag of 100 coins. 10 coins were made by a malfunctioning machine and are biased toward head. Tossing such a coin results in head 80% of the time. The other coins are fair.
- Randomly draw a coin from the bag and toss it a few time.
- X_i : result of the *i*-th tossing, Y: whether the coin is produced by the malfunctioning machine.
- The X_i 's are not marginally independent of each other:
 - If I get 9 heads in first 10 tosses, then the coin is probably a biased coin. Hence the next tossing will be more likely to result in a head than a tail.
 - Learning the value of X_i gives me some information about whether the coin is biased, which in term gives me some information about X_j .

Example of Conditional Independence

- \blacksquare However, they are conditionally independent given Y:
 - If the coin is not biased, the probability of getting a head in one toss is 1/2 regardless of the results of other tosses.
 - If the coin is biased, the probability of getting a head in one toss is 80% regardless of the results of other tosses.
 - If I already knows whether the coin is biased or not, learning the value of X_i does not give me additional information about X_j .
- Here is how the variables are related pictorially. We will return to this picture later.

Equavalent conditions for conditional independence

Proposition (1.1)

Variables X and Y are conditionally independent given Z if and only if one of the following conditions is met:

- 1 P(X|Y,Z) = P(X|Z) if P(Y,Z) > 0.
- 2 P(X|Y,Z) = f(X,Z) for some functions f.
- 3 P(X, Y|Z) = P(X|Z)P(Y|Z) if P(Z) > 0.
- 4 P(X,Y|Z) = f(X,Z)g(Y,Z) for some functions f and g.
- 5 P(X, Y, Z) = P(X|Z)P(Y|Z)P(Z) if P(Z) > 0.
- 6 P(X, Y, Z) = P(X, Z)P(Y, Z)/P(Z) if P(Z) > 0.
- 7 P(X, Y, Z) = f(X, Z)g(Y, Z) for some functions f and g.

Exercise: Prove the theorem.

Prior, posterior, and likelihood

- Three important concepts in Bayesian inference.
- With respect to a piece of evidence: E = e
- Prior probability P(H = h): belief about a hypothesis before observing evidence.
 - Example: Suppose 10% of people suffer from Hepatitis B. A doctor's prior probability about a new patient suffering from Hepatitis B is 0.1.
- Posterior probability P(H = h|E = e):belief about a hypothesis after obtaining the evidence.
 - If the doctor finds that the eyes of the patient are yellow, his belief about patient suffering from Hepatitis B would be > 0.1.

Prior, posterior, and likelihood

- **Likelihood** L(H = h | E = e) of hypothesis H = h given evidence E = e
 - Conditional probability of evidence given hypothesis:

$$L(H = h|E = e) = P(E = e|H = h)$$

- Example:
 - Evidence: E = y (Eye-color=yellow);
 - Hypothesis 1: HB = 1 (patient has Hepatitis B);
 - Hypothesis 2: HB = 0 (patient does not have Hepatitis B);
 - Which hypothesis is more likely given the evidence?
 - Because

$$P(E = y|HB = 1) > P(E = y|HB = 0),$$

HB = 1 is more likely given E = y.

- In general, P(E = e|H = h) measures the likelihood of hypothesis H = h.
- Hence called the likelihood of H = h.

Bayes' Theorem

■ Bayes' Theorem: relates prior probability, likelihood, and posterior probability:

$$P(H = h|E = e) = \frac{P(H = h)P(E = e|H = h)}{P(E = e)} \propto P(H = h)P(E = e|H = h)$$

where P(E=e) is normalization constant to ensure $\sum_{h\in\Omega_H}P(H=h|E=e)=1.$

That is:
$$posterior(H = h) \propto prior(H = h) \times likelihood(H = h)$$

■ Example:

$$P(\mathsf{disease}|\mathsf{symptoms}) = \frac{P(\mathsf{disease})P(\mathsf{symptoms}|\mathsf{disease})}{P(\mathsf{symptoms})}$$

- \blacksquare P(symptom) and P(symptom|disease) from understanding of disease,
- \blacksquare P(disease|symptoms) needed in clinical diagnosis.

Outline

- 1 Mathematical definitions
- 2 Interpretations of Probability
- 3 Multivariate Probability
 - Joint probability
 - Marginal probability
 - Conditional probability
 - Independence
 - Bayes' Theorem
- 4 Basics of Information Theory
 - Jensen's Inequality
 - Entropy
 - Mutual Information and Independence

Basics of Information Theory

Review of basics of Information Theory

- Necessary when discussing the use of BN in data analysis,
- Another perspective on conditional independence.

Concave functions

■ A function f is **concave** on interval I if for any $x, y \in I$,

$$\frac{f(x)+f(y)}{2} \le f(\frac{x+y}{2})$$

Average of function is NO greater than function of average. It is **strictly concave** if the equality holds only when x=y.

Jensen's Inequality

Theorem (1.1)

Suppose function f is concave on interval I. Then

■ For any $p_i \in [0,1], \sum_{i=1}^{n} p_i = 1$ and $x_i \in I$.

$$\sum_{i=1}^n p_i f(x_i) \leq f(\sum_{i=1}^n p_i x_i)$$

Weighted average of function is NO greater than function of weighted average.

■ If f is strictly CONCAVE, the equality holds iff $p_i \times p_j \neq 0$ implies $x_i = x_j$.

Exercise: Prove this (using induction).

Logarithmic function

■ The logarithmic function is concave in the interval $(0, \infty)$:

Hence

$$\sum_{i=1}^{n} p_i \log(x_i) \le \log(\sum_{i=1}^{n} p_i x_i) \qquad 0 \le x_i$$

■ In words, exchanging $\sum_i p_i$ with log increases a quantity.

Entropy

■ The **entropy** of a random variable X:

$$H(X) = \sum_{X} P(X) \log \frac{1}{P(X)}$$

with convention that $0 \log(1/0) = 0$.

- Base of logarithm is 2, unit is bit.
- Sometimes written as $-E[\log P(x)]$, negation of the expectation of $\log P(X)$.
- Sometimes, also called the entropy of the distribution.

Entropy

- \blacksquare H(X) measures uncertainty about X:
 - X binary. The chart on the right shows H(X) as a function of p=P(X=1).
 - The higher H(X) is, the more uncertainty about the value of X

Entropy

Another example:

- *X* result of coin tossing
- Y result of dice throw
- Z result of randomly pick a card from a deck of 54
- Which one has the highest uncertainty?
- Entropy:

$$H(X) = \frac{1}{2} \log 2 + \frac{1}{2} \log 2 = 1(\log base2)$$

$$H(Y) = \frac{1}{6} \log 6 + \dots + \frac{1}{6} \log 6 = \log 6$$

$$H(Z) = \frac{1}{54} \log 54 + \dots + \frac{1}{54} \log 54 = \log 54$$

Indeed we have:

$$H(X) < H(Y) < H(Z)$$
.

Proposition (1.2)

- \blacksquare $H(X) \geq 0$
- \blacksquare H(X) = 0 equality iff P(X=x) = 1 for some $x \in \Omega_X$. i.e. iff no uncertainty.
- $H(X) \leq log(|X|)$ with equality iff P(X=x)=1/|X|. Uncertainty is the highest in the case of uniform distribution.

Proof: Because *log* is concave, by Jensen's inequality:

$$H(X) = \sum_{X} P(X) log \frac{1}{P(X)}$$

$$\leq log \sum_{X} P(X) \frac{1}{P(X)} = log |X|$$

Conditional entropy

- The **conditional entropy** of X given event Y=y:
 - Entropy of the conditional distribution P(X|Y=y), i.e.

$$H(X|Y=y) = \sum_{X} P(X|Y=y) log \frac{1}{P(X|Y=y)}$$

The uncertainty that remains about X when Y is known to be y.

- It is possible that H(X|Y=y) > H(X)
 - Intuitively *Y*=*y* might contradicts our prior knowledge about *X* and increase our uncertainty about *X*
 - Exercise: Give example.

Conditional entropy

■ The **conditional entropy** of X given variable Y:

$$H(X|Y) = \sum_{y \in \Omega_Y} P(Y = y)H(X|Y = y)$$

$$= \sum_{Y} P(Y) \sum_{X} P(X|Y) \log \frac{1}{P(X|Y)}$$

$$= \sum_{X,Y} P(X,Y) \log \frac{1}{P(X|Y)}$$

$$= -E[\log P(X|Y)]$$

The average uncertainty that remains about X when Y is known.

Joint entropy

 \blacksquare The joint entropy of X and Y:

$$H(X,Y) = \sum_{X,Y} P(X,Y) \log \frac{1}{P(X,Y)}$$

Chain rule:

$$H(X, Y) = H(X) + H(Y|X) = H(Y, X) = H(Y) + H(X|Y)$$

Proof:

$$\sum_{X,Y} P(X,Y) \log \frac{1}{P(X,Y)} = \sum_{X,Y} P(X,Y) \log \frac{1}{P(X)P(Y|X)}$$

$$= \sum_{X,Y} P(X,Y) \log \frac{1}{P(X)} + \sum_{X,Y} P(X,Y) \log \frac{1}{P(Y|X)}$$

$$= \sum_{X} P(X) \log \frac{1}{P(X)} + H(Y|X)$$

$$= H(X) + H(Y|X)$$

Kullback-Leibler divergence

- Relative entropy or Kullback-Leibler divergence
 - Measures how much a distribution Q(X) differs from a "true" probability distribution P(X).
 - K-L divergence of Q from P is defined as follows:

$$KL(P, Q) = \sum_{X} P(X)log \frac{P(X)}{Q(X)} = E_{P}[logP(X)] - E_{P}[logQ(X)]$$

$$0\log\frac{0}{0}=0$$
 and $p\log\frac{p}{0}=\infty$ if $p\neq 0$

■ Not symmetric. So, not a distance measure mathematically.

Kullback-Leibler divergence

Theorem (1.2)

(Gibbs' inequality)

$$KL(P,Q)\geq 0$$

with equality holds iff P is identical to Q

Proof:

$$\sum_{X} P(X) log \frac{P(X)}{Q(X)} = -\sum_{X} P(X) log \frac{Q(X)}{P(X)}$$

$$\geq -log \sum_{X} P(X) \frac{Q(X)}{P(X)}$$
 Jensen's inequality
$$= -log \sum_{X} Q(X) = 0.$$

KL distance from P to Q is larger than 0 unless P and Q are identical.

A corollary

Corollary (1.1)

Let f(X) be a nonnegative function of variable X such that $\sum_{X} f(X) > 0$. Let $P^*(X)$ be the probability distribution given by

$$P^*(X) = \frac{f(X)}{\sum_X f(X)}.$$

Then for any other probability distribution P(X)

$$\sum_{X} f(X) log P^{*}(X) \ge \sum_{X} f(X) log P(X)$$

with equality holds iff P^* and P are identical. In other words,

$$P^* = \arg\sup_{P} \sum_{X} f(X) log P(X)$$

Proof:

$$KL(P^*,P) = \sum_{X} P^*(X) log \frac{P^*(X)}{P(X)} \ge 0$$

Hence

$$\sum_{X} P^{*}(X) log P^{*}(X) \ge \sum_{X} P^{*}(X) log P(X)$$

$$\sum_{X} \frac{f(X)}{\sum_{X} f(X)} log P^{*}(X) \ge \sum_{X} \frac{f(X)}{\sum_{X} f(X)} log P(X)$$

$$\sum_{X} f(X) log P^{*}(X) \ge \sum_{X} f(X) log P(X)$$

Q.E.D

Mutual information

The **mutual information** of X and Y:

$$I(X;Y) = H(X) - H(X|Y)$$

- Average reduction in uncertainty about X from learning the value of Y, or
- \blacksquare Average amount of information Y conveys about X.

Mutual information and KL Distance

Note that:

$$I(X;Y) = \sum_{X} P(X)log \frac{1}{P(X)} - \sum_{X,Y} P(X,Y)log \frac{1}{P(X|Y)}$$

$$= \sum_{X,Y} P(X,Y)log \frac{1}{P(X)} - \sum_{X,Y} P(X,Y)log \frac{1}{P(X|Y)}$$

$$= \sum_{X,Y} P(X,Y)log \frac{P(X|Y)}{P(X)}$$

$$= \sum_{X,Y} P(X,Y)log \frac{P(X,Y)}{P(X)P(Y)} \quad \text{equivalent definition}$$

$$= KL(P(X,Y), P(X)P(Y))$$

Due to equivalent definition:

$$I(X; Y) = H(X) - H(X|Y) = I(Y; X) = H(Y) - H(Y|X)$$

Nevin L. Zhang (HKUST)

Property of Mutual information

Theorem (1.3)

$$I(X; Y) \geq 0$$

with equality holds iff $X \perp Y$.

Interpretation: X and Y are independent iff X contains no information about Y and vice versa.

Proof: Follows from previous slide and Theorem 1.2.

Conditional Entropy Revisited

Theorem (1.4)

 $H(X|Y) \leq H(X)$ with equality holds iff $X \perp Y$

Observation reduces uncertainty in average except for the case of independence.

Proof: Follows from Theorem 1.3.

Mutual information and Entropy

■ From definition of mutual information

$$I(X;Y) = H(X) - H(X|Y)$$

and the chain rule,

$$H(X,Y) = H(Y) + H(X|Y)$$

we get

$$H(X) + H(Y) = H(X, Y) + I(X; Y)$$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

- Consequently
 - $H(X,Y) \le H(X) + H(Y)$ with equality holds iff $X \perp Y$.

Mutual information and entropy

Venn Diagram: Relationships among joint entropy, conditional entropy, and mutual information

$$H(X) + H(Y) = H(X, Y) + I(X; Y)$$

 $I(X; Y) = H(X) - H(X|Y)$
 $I(Y; X) = H(Y) - H(Y|X)$

Conditional Mutual information

■ The **conditional mutual information** of X and Y given Z:

$$I(X; Y|Z) = H(X|Z) - H(X|Y,Z)$$

 \blacksquare Average amount of information Y conveys about X given Z.

Conditional mutual information and KL Distance

Note:

$$I(X;Y|Z) = \sum_{X,Z} P(X,Z)log \frac{1}{P(X|Z)} - \sum_{X,Y,Z} P(X,Y,Z)log \frac{1}{P(X|Y,Z)}$$

$$= \sum_{X,Y,Z} P(X,Y,Z)log \frac{1}{P(X|Z)} - \sum_{X,Y,Z} P(X,Y,Z)log \frac{1}{P(X|Y,Z)}$$

$$= \sum_{X,Y,Z} P(X,Y,Z)log \frac{P(X|Y,Z)}{P(X|Z)} \quad \text{equivalent definition}$$

$$= \sum_{X,Y,Z} P(Z) \sum_{X,Y} P(X,Y|Z)log \frac{P(X,Y|Z)}{P(X|Z)P(Y|Z)}$$

$$= \sum_{Z} P(Z)KL(P(X,Y|Z), P(X|Z)P(Y|Z)) \ge 0.$$

Property of conditional mutual information

Theorem (1.5)

$$I(X; Y|Z) \ge 0$$

 $H(X|Z) \ge H(X|Y, Z)$

with equality hold iff $X \perp Y | Z$.

Interpretation:

- More observations reduce uncertainty on average except for the case of conditional independence.
- \blacksquare X and Y are independently given Z iff X contain no information about Y given Z and vice versa:

$$X \perp Y|Z \equiv I(X;Y|Z) = 0.$$

Another characterization of conditional independence.