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Objective and outline

| assume that the students have some exposure to probability theory.

m In this lecture, | will quickly review basic concepts in multivariate
probability and information theory. The emphasis will be on intuitions
rather than on mathematics.

Reading: Zhang & Guo, Chapter 1,

m References: Russell & Norvig, Chapter 14; Cover, T. M. and Thomas,
J. A (1991). Elements of Information Theory. John Wiley & Sons.
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Mathematical definitions

Sample space

m Sample space (population) Q:
m Set of possible outcomes of some experiment.

m Example:

m Experiment: randomly select a student among all UST postgraduate
students.
m Sample space Q: the set of all UST postgraduate students.

m Here we assume it to be finite for simplicity.
m Elements of the sample spaces are called samples.
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Events

Mathematical definitions

m Subsets of sample spaces are events.

m Examples:

Sample space Q: the set of all UST postgraduate students.
Efemale = {female students}

the randomly selected student is a female.

Ernale = {male students}

the randomly selected student is a male.

EMPhI| = {MPhI| students}

the randomly selected student is an MPhil student.
EPhD = {PhD students}

the randomly selected student is a PhD student.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008

5/ 68



Mathematical definitions

Probability measure

m A probability measure is a mapping from the set of events to [0, 1]
P 2% —0,1]

that satisfies Kolmogorov's axioms:
1 P(Q)=1.
2 P(A)>0VACQ
3 Additivity: P(AUB) = P(A) + P(B) if An B = 0.

m Example:

m Sample space Q: the set of all UST postgraduate students.
m Define probability measure: P(A) = |A|/|9Q].

® P(Efomale) = ‘fraction of female postgraduate students
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Mathematical definitions

Random Variables

m Random variable X:

m Function defined over sample space.
m Example:

m Gender of (randomly selected) student,
m Programme of (randomly selected) student

m Intuitively, a random variable is an unknown quantity.

m Domain of a random variable Qx:
m the set of possible states of X.
m Example:

QGender = {f;m}

QProgramme = {PhD, MPhil}
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Mathematical definitions

Random Variables and Events

m For any state x of a random variable X, let
Qx—x = {w € QX (w) = x}

This is an event!

m Example:
QGender—f = { female postgraduate students in UST} = Eggle-

m Note: we use upper case letters, e.g. X, for variables and lower case
letters, e.g. x, for states of variables.

m Note the difference between Qx and Qx—,
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Mathematical definitions

Probability mass function (distribution)

m Probability mass function of a random variable X:

P(X):Qx — [0,1]

P(X = x) = P(Qx=x)
m Examples:
m P(Gender=f) = P(Efemale) = 1/6 (Assumption)
m P(Gender=m) = P(E,1e) = 5/6.
m P(Programme=MPhil) = P(Epqppil) = 1/3 (Assumption
m P(Programme=PhD) = P(Epy,p) = 2/3.
m In practice, we start with probability mass functions, rather than
probability measures over sample space 2.
m Because of Kolmogorov's third axiom, a probability mass function
completely determines a probability measure on Qx.
m For continuous random variable, one has probability density
function p(X) (here p in lower case).
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Mathematical definitions

Summary

Sample space: Q2
Events: 29.
Probability measure:
m P:2% - 0,1]
m Three axioms.
Random variable: X : Q — Qx
Probability mass function:
m P:Qx—>[0,1]
m P(X =x)=P(Qx=x).
m Induce probability measure on 2x. Hence we can talk about
P(X € {a, b, c}).
m  shared by all random variables, enabling us to talk about
relationships among them.
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Interpretations of Probability

Frequentist interpretation

m Frequentist interpretation:

m Probability is long term relative frequency

m Example:

m X is result of coin tossing. Qx = {H, T}
m P(X=H) = 1/2 means that

W the relative frequency of getting heads will almost surely approach 1/2

as the number of tosses goes to infinite.

m Justified by the Law of Large Numbers:

m X;: result of the i-th tossing; 1 - H, 0 —T

m Law of Large Numbers:

lim L’:l ==

n—oo n

with probability 1

m The frequentist interpretation is meaningful only when experiment
can be repeated under the same condition.
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Interpretations of Probability

Subjectivist/Bayesian interpretation

m Probabilities are logically consistent degrees of beliefs.

m Applicable when experiment not repeatable.

m Depends on a person’s state of knowledge.
m Example: “probability that Suez canal is longer than the Panama
canal”.
m Doesn't make sense under frequentist interpretation.
m Subjectivist: degree of belief based on state of knowledge

m Primary school student: 0.5
m Me: 0.8
m Geographer: 1 or 0
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Interpretations of Probability

Subjectivist/Bayesian interpretation

m Large literature discusses subjcetivist interpretation (see Shafer and
Pearl 1990).

m Use betting arguments to prove that degrees of subjective beliefs must
satisfy Kolmogorov's axioms.One argument is called Dutch book.

m Example: Horse racing

m Horses: H1, H2, H3
m Betting tickets:

T1: worth 100 if H1 wins T12: worth 100 if H1 or H2 wins
T2: worth 100 if H2 wins T13: worth 100 if H1 or H3 wins
T3: worth 100 if H3 wins T23: worth 100 if H2 or H3 wins
TO:worth 100 if no horse wins | T123: worth 100 if any horse wins

m Degrees of beliefs and fair prices of tickets

m fair price for buying or selling T1 = P(H1 wins) x 100 + P(H1 loses)
x 0.

m fair price for buying or selling T2 = P(H2 wins) x 100

m fair price for buying or selling T12 = P(H1 or H2 wins) x 100 ..., etc
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Interpretations of Probability

Subjectivist interpretation

m If a person’s degrees of beliefs violates Kolmogorov's axioms, a
Dutch book can be made so that the person will stand to lose
regardless of outcome.

m Example:

m P(H1 wins) = 0.3, P(H2 wins)=0.4, P(H1 or H2 wins) = 0.5
P(HI or H2) < P(H1) + P(H2)

m Dutch book against the person:

m buy T12 from the person at 50 (this is fair for him),

m sell T1 and T2 to the person at 30 and 40 (this is also fair for him).
m Value before and after the transaction:

before (T12) | after (T1 & T2)
H1 wins | 100 100 + 50 - 30 - 40=80
H2 wins | 100 100 + 50 - 30 - 40=80
H3 wins | 0 50 - 30 - 40 =-20

The person loses 20 in the transaction.
m Exercise: What if the other axioms are violated?
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Interpretations of Probability

Subjectivist interpretation

m The subjectivist interpretation was not widely accepted in Al until
1970s (Shafer and Pearl 1990,introduction).

m This is a major reason why probability theory did not play a big role
in Al before 1980.

m Because probability was defined as relative statistical frequency and
hence was seen as a technique that was appropriate only when
statistical data were available.

m Not many interesting applications with statistical data at that time.
Now, more common.
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Interpretations of Probability

Subjectivist interpretation

m Now both interpretations are accepted. In practice, subjective beliefs
and statistical data complement each other.

m We rely on subjective beliefs (prior probabilities) when data are scarce.
m As more and more data become available, we rely less and less on
subjective beliefs.

m As we will learn later, probability has a numerical aspect as well as a
structural aspect.
m We will rely more on the subjectivity interpretation when it comes to
building structures than estimating numbers. Our belief on “causality”
often plays an important role when building structures.

m The subjectivist interpretation makes concepts such as conditional
independence easy to understand.
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Multivariate Probability Joint probability

Joint probability mass function

m Probability mass function of a random variable X:

P(X): Qx — [0,1]

P(X = x) = P(Qx—)-

m Suppose there are n random variables Xy, X5, ..., X,.
m A joint probability mass function, P(Xi, Xa,...,X,), over those
random variables is:
m a function defined on the Cartesian product of their state spaces:

HQXf —[0,1]
i=1

P(X1 =x1,X0 =Xxp,..., X, = Xn) = P(QX1:X1 QQ)Q:XZ n. '~mQX,,:x,,)~
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Multivariate Probability =~ Joint probability

Joint probability mass function

m Example:
m Population: Apartments in Hong Kong rental market.
m Random variables: (of a random selected apartment)
m Monthly Rent: {low (< 1k), medium ((1k, 2k]), upper medium((2k,
4k]), high (>4k)},
m Type: {public, private, others}
m Joint probability distribution P(Rent, Type):

public private others
low A7 .01 .02
medium 44 .03 .01
upper medium .09 .07 .01
high 0 0.14 0.1
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Multivariate Probability =~ Joint probability

Joint probability distribution

m The joint distribution P(X1, X2, ..., X,) contains information about
all aspects of the relations among the n random variables.

m In theory, one can answer any query about relations among the
variables based on the joint probability.
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Multivariate Probability Marginal probability

Marginal probability

m What is the probability of a randomly selected apartment being a
public one? (Law of total probability)

P(Type=pulic) = P(Type=public, Rent=low)+P(Type=public,
Rent=medium)+ P(Type=public, Rent=upper medium)-+
P(Type=public, Rent=high) = .7

P(Type=private) = P(Type=private, Rent=low)+ P(Type=private,
Rent=medium)+ P(Type=private, Rent=upper medium)+
P(Type=private, Rent=high)= .25

public private others | P(Rent)
low A7 .01 .02 2
medium 44 .03 .01 48
upper medium .09 .07 .01 A7
high 0 0.14 0.1 15
P(Type) 7 25 .05

m Called marginal probability because written on the margins.
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Multivariate Probability Marginal probability

Marginal probability

m Write the equations on the previous slide in a compact form:

P(Type) = Z P(Type, Rent)
Rent
m The operation is called marginalization: Variable “Rent” is
marginalized from the joint probability P(Type, Rent).

m Notations for more general cases:

| |
ZPXYUV
u,v

)

] YC{Xl,X2,...,Xn}, Z:{Xl,XQ,...,Xn}—Y,

= P(X1,X2,..., Xp)
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Multivariate Probability Marginal probability

Marginal probability

m A joint probability gives us a full picture about how random variables
are related.

m Marginalization lets us to focus one aspect of the picture.
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Multivariate Probability Conditional probability

Conditional probability

m For events A and B:
_ P(ANB)
P(B)  P(B) )

P(AIB) =

m Meaning:
m P(A): my probability on A (without any knowledge about B)
m P(A|B): My probability on event A assuming that | know event B is
true.
m What is the probability of a randomly selected private apartment
having “low" rent?
P(Rent=Ilow| Type=private)
_ P(Rent=Low, Type=private) -
= P(Type=private) = .01/.25=.04

In contrast:
P(Rent=low) = 0.2.
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Multivariate Probability Con

Conditional probability

m P(Rent|Type)

ditional probability

public  private others
low A7/ 7 .01/.25 .02/.05
medium 44,7 .03/.25 .01/.05
upper medium | .09/.7 .07/.25 .01/.05
high 0/.7 0.14/25 0.1/.05
m Note that
ZRent P(Rent| Type) =1.
m Notation:P(X|Y, Z)
X Y Z|PX|Y,2)
T T T 0.3
T T F 0.7
F F F 0.8
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Multivariate Probability Independence

Marginal independence

m Two random variables X and Y are marginally independent, written
X L1LY,if
m for any state x of X and any state y of Y,

P(X=x|Y=y) = P(X=x), whenever P(Y = y) # 0.

m Meaning: Learning the value of Y does not give me any information
about X and vice versa.Y contains no information about X and vice
versa.

m Equivalent definition:

P(X=x,Y=y) = P(X=x)P(Y=y)

m Shorthand for the equations:
P(X]Y) = P(X), P(X,Y) = P(X)P(Y).
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Multivariate Probability Independence

Marginal independence

m Examples:

m X:result of tossing a fair coin for the first time,
Y': result of second tossing of the same coin.
m X: result of US election, Y: your grades in this course.

m Counter example: X — oral presentation grade , Y — project report
grade.
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Multivariate Probability Independence

Conditional independence

m Two random variables X and Y are conditionally independent given a
third variable Z,written X L Y|Z, if

P(X=x|Y=y, Z=z) = P(X=x|Z=z) whenever P(Y=y,Z=z) #0

m Meaning:

m /f | know the state of Z already, then learning the state of Y does not
give me additional information about X.
m Y might contain some information about X.

m However all the information about X contained in Y are also contained
in Z.

m Shorthand for the equation:
P(X]Y,Z) = P(X|2)
m Equivalent definition:

P(X,Y|Z) = P(X|Z)P(Y|2)
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Multivariate Probability Independence

Example of Conditional Independence

m There is a bag of 100 coins. 10 coins were made by a malfunctioning
machine and are biased toward head. Tossing such a coin results in
head 80% of the time. The other coins are fair.

m Randomly draw a coin from the bag and toss it a few time.

m X;: result of the i-th tossing, Y: whether the coin is produced by the
malfunctioning machine.

m The X;'s are not marginally independent of each other:

m If | get 9 heads in first 10 tosses, then the coin is probably a biased
coin. Hence the next tossing will be more likely to result in a head than
a tail.

m Learning the value of X; gives me some information about whether the
coin is biased, which in term gives me some information about X;.
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Multivariate Probability Independence

Example of Conditional Independence

m However, they are conditionally independent given Y:
m If the coin is not biased, the probability of getting a head in one toss is
1/2 regardless of the results of other tosses.
m If the coin is biased, the probability of getting a head in one toss is
80% regardless of the results of other tosses.
m If | already knows whether the coin is biased or not, learning the value
of X; does not give me additional information about X;.
m Here is how the variables are related pictorially. We will return to this

picture later.

€7D
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Multivariate Probability Independence

Equavalent conditions for conditional independence

Proposition (1.1)

Variables X and Y are conditionally independent given Z if and only if one
of the following conditions is met:

1
2
3
4
5
6

7

P(X|Y,Z) = P(X|Z) if P(Y, Z)>0.

P(X|Y,Z) = f(X,Z) for some functions f .

P(X,Y|Z) = P(X|Z)P(Y|Z) if P(Z)>0.
P(X,Y|Z)=f(X,Z)g(Y,Z) for some functions f and g.
P(X,Y,Z)= P(X|Z)P(Y|Z)P(Z) if P(Z)>0.
P(X,Y,Z)=P(X,Z)P(Y,Z2)/P(Z) if P(Z)>0.
P(X,Y,Z)=1f(X,2Z)g(Y,Z) for some functions f and g.

Exercise: Prove the theorem.
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Multivariate Probability Bayes' Theorem

Prior, posterior, and likelihood

m Three important concepts in Bayesian inference.
m With respect to a piece of evidence: E = e

m Prior probability P(H = h): belief about a hypothesis before
observing evidence.

m Example: Suppose 10% of people suffer from Hepatitis B. A doctor’s
prior probability about a new patient suffering from Hepatitis B is 0.1.

m Posterior probability P(H = h|E = e):belief about a hypothesis
after obtaining the evidence.

m If the doctor finds that the eyes of the patient are yellow, his belief
about patient suffering from Hepatitis B would be > 0.1.
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Multivariate Probability Bayes' Theorem

Prior, posterior, and likelihood

m Likelihood L(H = h|E = e) of hypothesis H = h given evidence
E=e

m Conditional probability of evidence given hypothesis:

L(H = h|E = &) = P(E = e|H = h)

m Example:
m Evidence: E = y (Eye-color=yellow);

m Hypothesis 1: HB =1 (patient has Hepatitis B);

m Hypothesis 2: HB = 0 (patient does not have Hepatitis B);
m Which hypothesis is more likely given the evidence?

m Because

P(E = y|HB = 1) > P(E = y|HB = 0),

HB =1 is more likely given E = y.

m In general, P(E = e|H = h) measures the likelihood of hypothesis
H = h.

m Hence called the likelihood of H = h.
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Multivariate Probability Bayes' Theorem

Bayes' Theorem

m Bayes’ Theorem: relates prior probability, likelihood, and posterior
probability:
P(H = h)P(E =e|lH=h)
P(E =e)
where P(E = e) is normalization constant to ensure
> heq, P(H=hE=¢€)=1

P(H = h|E = ) = x P(H = h)P(E = e|H = h)

That is: posterior(H = h)  prior(H = h) x likelihood(H = h)

m Example:
P(disease) P(symptoms|disease)
P(symptoms)

P(disease|symptoms) =

m P(symptom) and P(symptom|disease) from understanding of disease,
m P(disease|symptoms) needed in clinical diagnosis.
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Basics of Information Theory

Basics of Information Theory

Review of basics of Information Theory

m Necessary when discussing the use of BN in data analysis,

m Another perspective on conditional independence.
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Basics of Information Theory Jensen's Inequality

Concave functions

m A function f is concave on interval | if for any x,y € I,

1) _ g

M)

2

Average of function is NO greater than function of average.
It is strictly concave if the equality holds only when x=y.
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Basics of Information Theory Jensen's Inequality

Jensen’s Inequality

Theorem (1.1)
Suppose function f is concave on interval |.Then

m For any p; € [0,1],3°7 ; pi=1and x; € I.
> pif(xi) < F(Y_ pixi)
i=1 i=1

Weighted average of function is NO greater than function of weighted

average.
m /f f is strictly CONCAVE, the equality holds iff p; x p; # 0 implies

Xi=Xj.

Exercise: Prove this (using induction).
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Basics of Information Theory Jensen's Inequality

Logarithmic function

m The logarithmic function is concave in the interval (0, c0):

2
15 9
1k 4
05 - 1
0
-0.5 log(x) — ~
s 4
-15 1

-2
-2.5

3 L L L L
0 1 2 3 4 5

m Hence

n n
> pilog(x) < log (D pixi) 0 < xj
i=1 i=1

m In words, exchanging ) pi with log increases a quantity.
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Basics of Information Theory Entropy

Entropy

m The entropy of a random variable X:

ZP IogP i3

with convention that 0log(1/0) = 0.

m Base of logarithm is 2, unit is bit.

m Sometimes written as —E[log P(x)], negation of the expectation of
log P(X).

m Sometimes, also called the entropy of the distribution.
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Basics of Information Theory Entropy

Entropy

m H(X) measures uncertainty about X:

m X binary. The chart on the right shows H(X) as a function of

p=P(X=1).

m The higher H(X) is, the more uncertainty about the value of X

Nevin L. Zhang (HKUST)
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Basics of Information Theory Entropy

Entropy

Another example:

m X — result of coin tossing

m Y — result of dice throw
m Z — result of randomly pick a card from a deck of 54
m Which one has the highest uncertainty?
m Entropy:
1 1
H(X) = 5 log 2 + 5 log 2 = 1(log base2)
1 1
H(Y) = 6|og6+...+ 6 log6 = log 6
1 1
= —logh4+ ...+ — logh4 = logh4
H(Z) 0 oghd + ...+ 2 og5 ogbh

Indeed we have:

H(X) < H(Y) < H(Z).
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Basics of Information Theory Entropy
Entropy
Proposition (1.2)

m H(X)>0

m H(X) = 0 equality iff P(X=x) =1 for some x € Qx. i.e. iff no
uncertainty.

m H(X) < log(|X|) with equality iff P(X=x)=1/|X].
Uncertainty is the highest in the case of uniform distribution.

Proof: Because log is concave, by Jensen's inequality:
H(X) = Z P(X)log 5~

< /OEZP(X)W = log|X|
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Basics of Information Theory Entropy

Conditional entropy

m The conditional entropy of X given event Y=y:

m Entropy of the conditional distribution P(X|Y = y), i.e.

1
H(X|Y=y) = P(X|Y=y)log————~
(XIY=) = 2 PXIY =)ot iy
The uncertainty that remains about X when Y is known to be y.
m It is possible that H(X|Y=y) > H(X)
m Intuitively Y=y might contradicts our prior knowledge about X and

increase our uncertainty about X
m Exercise: Give example.
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Basics of Information Theory Entropy

Conditional entropy

m The conditional entropy of X given variable Y:

HIXIY) = > P(Y =y)H(X|Y=y)
yeQy

1
= zy: P(Y) XX: P(X|Y)log FXY)

1
= Xz; P(X, Y)/ogW

—  —EllogP(X|Y)]

The average uncertainty that remains about X when Y is known.
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Basics of Information Theory Entropy

Joint entropy

m The joint entropy of X and Y:

1
=S P(X, V)l

OgP(X Y)
X,Y

m Chain rule:
H(X,Y)=H(X)+ H(Y|X) = H(Y,X)=H(Y)+ H(X|Y)

m Proof:
1 1
;PX Y)/ogm = XX;P(X, Y)/ogm
1
- XZyP(X, Y)/ogP(X)+ZPX Y)"’gp(v|x

= ZP /ogP )+H(Y|X)
= H(X)+H(Y|X)
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Basics of Information Theory Entropy

Kullback-Leibler divergence

m Relative entropy or Kullback-Leibler divergence

m Measures how much a distribution Q(X) differs from a "true”
probability distribution P(X).
m K-L divergence of Q from P is defined as follows:

Z P(X ﬁxg = Ep[logP(X)] — Ep[logQ(X)]

Ologg =0 and plogg = o< if p#£0

m Not symmetric. So, not a distance measure mathematically.
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Basics of Information Theory Entropy

Kullback-Leibler divergence

Theorem (1.2)

(Gibbs’ inequality)
KL(P,Q)>0

with equality holds iff P is identical to @

Proof:

ZPX)/ ; = ZPX)/g QX

Jensen's inequality

KL distance from P to @ is larger than 0 unless P and @ are identical.
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Basics of Information Theory Entropy

A corollary

Corollary (1.1)

Let f(X) be a nonnegative function of variable X such that ), f(X) > 0.

Let P*(X) be the probability distribution given by

f(X)
2x f(X)

Then for any other probability distribution P(X)

D f(X)logP*(X) =Y f(X)logP(X)
X

X

P*(X) =

with equality holds iff P* and P are identical. In other words,

= argsupz f(X)logP(X
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Basics of Information Theory Entropy

A corollary
Proof:

KL(P*,P) = ZP* X)log ((X)) 0
Hence

> PH(X)logP"(X) = > P*(X)logP(X)
X X
zxj AN EX: > 70x) 8P X)

D F(X)logP*(X) = Y f(X)logP(X)
X

X
Q.ED
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Basics of Information Theory Mutual Information and Independence

Mutual information

m [he mutual information of X and Y

I(X; Y) = H(X) — H(X|Y)

m Average reduction in uncertainty about X from learning the value of
Y, or

m Average amount of information Y conveys about X.
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Basics of Information Theory Mutual Information and Independence

Mutual information and KL Distance

m Note that:

I(X;vY) = ZP /ogP(X) ;P(X,Y)logp( 1| 9
1

- S pucvee P(IX) 2 P Y)leE BTy

><

P(X,Y
= Z P(X, Y)Iogp(i) equivalent definition

— KL(P(X, ), P(X)P

m Due to equivalent definition:

I(X; Y) = H(X) — H(X|Y) = I(Y; X) = H(Y) = H(Y|X)
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Basics of Information Theory Mutual Information and Independence

Property of Mutual information

Theorem (1.3)

I(X;Y)>0
with equality holds iff X 1L Y.

Interpretation: X and Y are independent iff X contains no information
about Y and vice versa.

Proof: Follows from previous slide and Theorem 1.2.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008

62 / 68



Basics of Information Theory Mutual Information and Independence

Conditional Entropy Revisited

Theorem (1.4)
H(X|Y) < H(X) with equality holds iff X LY

Observation reduces uncertainty in average except for the case of
independence.

Proof: Follows from Theorem 1.3.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008

63 / 68



Basics of Information Theory Mutual Information and Independence

Mutual information and Entropy

m From definition of mutual information
1(X;Y)=H(X)— H(X|Y)
and the chain rule,
H(X,Y)=H(Y)+ H(X|Y)
we get

H(X) + H(Y) = H(X,Y) + I(X;Y)

I(X; Y) = HX) + H(Y) — H(X,Y)

m Consequently
m H(X,Y) < H(X) + H(Y) with equality holds iff X L Y.
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Basics of Information Theory Mutual Information and Independence

Mutual information and entropy

Venn Diagram: Relationships among joint entropy, conditional entropy,

and mutual information

H(X,Y)
H(X) Y)
-
H(X'Y) H( Y| X)
(XY

H(X) + H(Y) = H(X, Y) + I(X;Y)
I(X;Y) = H(X) — H(X]Y)
I(Y; X) = H(Y) = H(Y|X)
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Basics of Information Theory Mutual Information and Independence

Conditional Mutual information

m The conditional mutual information of X and Y given Z:

I(X; Y|Z) = H(X|Z) — H(X|Y, Z)

m Average amount of information Y conveys about X given Z.
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Basics of Information Theory Mutual Information and Independence

Conditional mutual information and KL Distance

Note:

I(X:Y|Z) = XX;P(XJ)/ogﬁ—XXY;ZP(X’Y’Z)Iogm

1 1
= Y PX.Y.Z)log 5o — > P(X,Y,Z)log 5+
Xvz P(X12) 5 P(X|Y,Z)

X|Y,Z
= Y P(X,Y,2) ( Y, 2) equivalent definition
X,Y,Z (X|Z)

_ P(X,Y|Z)
XZ: P(Z)Z P(X, Y|Z)/ogm

= 3" P(2)KL(P(X, Y|Z), P(X|Z)P(Y|Z)) > 0

N
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Basics of Information Theory Mutual Information and Independence

Property of conditional mutual information

Theorem (1.5)

I(X;Y|Z)>0
H(X|Z) = H(X]Y, 2)
with equality hold iff X L Y|Z.

Interpretation:

m More observations reduce uncertainty on average except for the case
of conditional independence.

m X and Y are independently given Z iff X contain no information
about Y given Z and vice versa:

X LY|Z=I(X;Y|Z)=0.
Another characterization of conditional independence.
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