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Objective and outline

I assume that the students have some exposure to probability theory.

In this lecture, I will quickly review basic concepts in multivariate
probability and information theory. The emphasis will be on intuitions
rather than on mathematics.

Reading: Zhang & Guo, Chapter 1;

References: Russell & Norvig, Chapter 14; Cover, T. M. and Thomas,
J. A (1991). Elements of Information Theory. John Wiley & Sons.
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Mathematical definitions

Sample space

Sample space (population) Ω:

Set of possible outcomes of some experiment.

Example:

Experiment: randomly select a student among all UST postgraduate
students.
Sample space Ω: the set of all UST postgraduate students.

Here we assume it to be finite for simplicity.
Elements of the sample spaces are called samples.
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Mathematical definitions

Events

Subsets of sample spaces are events.

Examples:

Sample space Ω: the set of all UST postgraduate students.
Efemale = {female students}
the randomly selected student is a female.
Emale = {male students}
the randomly selected student is a male.
EMPhil = {MPhil students}
the randomly selected student is an MPhil student.
EPhD = {PhD students}
the randomly selected student is a PhD student.
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Mathematical definitions

Probability measure

A probability measure is a mapping from the set of events to [0, 1]

P : 2Ω → [0, 1]

that satisfies Kolmogorov’s axioms:

1 P(Ω) = 1.
2 P(A) ≥ 0 ∀A ⊆ Ω
3 Additivity: P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅.

Example:

Sample space Ω: the set of all UST postgraduate students.
Define probability measure: P(A) = |A|/|Ω|.

P(Efemale) = ‘fraction of female postgraduate students
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Mathematical definitions

Random Variables

Random variable X :

Function defined over sample space.
Example:

Gender of (randomly selected) student,
Programme of (randomly selected) student

Intuitively, a random variable is an unknown quantity.

Domain of a random variable ΩX :

the set of possible states of X .
Example:

ΩGender = {f, m}

,
ΩProgramme = {PhD, MPhil}

.
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Mathematical definitions

Random Variables and Events

For any state x of a random variable X , let

ΩX=x = {ω ∈ Ω|X (ω) = x}

This is an event!

Example:
ΩGender=f = { female postgraduate students in UST} = Efemale.

Note: we use upper case letters, e.g. X , for variables and lower case
letters, e.g. x , for states of variables.

Note the difference between ΩX and ΩX=x
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Mathematical definitions

Probability mass function (distribution)

Probability mass function of a random variable X :

P(X ) : ΩX → [0, 1]

P(X = x) = P(ΩX=x)

Examples:
P(Gender=f) = P(Efemale) = 1/6 (Assumption)
P(Gender=m) = P(Emale) = 5/6.
P(Programme=MPhil) = P(EMPhil) = 1/3 (Assumption
P(Programme=PhD) = P(EPhD) = 2/3.

In practice, we start with probability mass functions, rather than
probability measures over sample space Ω.

Because of Kolmogorov’s third axiom, a probability mass function
completely determines a probability measure on ΩX .

For continuous random variable, one has probability density
function p(X ) (here p in lower case).
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Mathematical definitions

Summary

Sample space: Ω

Events: 2Ω.

Probability measure:

P : 2Ω → [0, 1]
Three axioms.

Random variable: X : Ω → ΩX

Probability mass function:

P : ΩX− > [0, 1]
P(X = x) = P(ΩX=x).
Induce probability measure on 2ΩX . Hence we can talk about
P(X ∈ {a, b, c}).

Ω shared by all random variables, enabling us to talk about
relationships among them.
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Interpretations of Probability

Frequentist interpretation

Frequentist interpretation:

Probability is long term relative frequency

Example:

X is result of coin tossing. ΩX = {H, T}
P(X=H) = 1/2 means that

the relative frequency of getting heads will almost surely approach 1/2
as the number of tosses goes to infinite.

Justified by the Law of Large Numbers:

Xi : result of the i-th tossing; 1 – H, 0 — T
Law of Large Numbers:

lim
n→∞

∑n

i=1 Xi

n
=

1

2
with probability 1

The frequentist interpretation is meaningful only when experiment
can be repeated under the same condition.
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Interpretations of Probability

Subjectivist/Bayesian interpretation

Probabilities are logically consistent degrees of beliefs.

Applicable when experiment not repeatable.

Depends on a person’s state of knowledge.

Example: “probability that Suez canal is longer than the Panama
canal”.

Doesn’t make sense under frequentist interpretation.
Subjectivist: degree of belief based on state of knowledge

Primary school student: 0.5
Me: 0.8
Geographer: 1 or 0
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Interpretations of Probability

Subjectivist/Bayesian interpretation

Large literature discusses subjcetivist interpretation (see Shafer and
Pearl 1990).

Use betting arguments to prove that degrees of subjective beliefs must
satisfy Kolmogorov’s axioms.One argument is called Dutch book.

Example: Horse racing

Horses: H1, H2, H3
Betting tickets:
T1: worth 100 if H1 wins T12: worth 100 if H1 or H2 wins
T2: worth 100 if H2 wins T13: worth 100 if H1 or H3 wins
T3: worth 100 if H3 wins T23: worth 100 if H2 or H3 wins
T0:worth 100 if no horse wins T123: worth 100 if any horse wins

Degrees of beliefs and fair prices of tickets

fair price for buying or selling T1 = P(H1 wins) × 100 + P(H1 loses)
× 0.
fair price for buying or selling T2 = P(H2 wins) × 100
fair price for buying or selling T12 = P(H1 or H2 wins) × 100 . . . , etc
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Interpretations of Probability

Subjectivist interpretation

If a person’s degrees of beliefs violates Kolmogorov’s axioms, a
Dutch book can be made so that the person will stand to lose
regardless of outcome.
Example:

P(H1 wins) = 0.3, P(H2 wins)=0.4, P(H1 or H2 wins) = 0.5

P(H1 or H2) < P(H1) + P(H2)

Dutch book against the person:
buy T12 from the person at 50 (this is fair for him),
sell T1 and T2 to the person at 30 and 40 (this is also fair for him).

Value before and after the transaction:

before (T12) after (T1 & T2)
H1 wins 100 100 + 50 - 30 - 40=80
H2 wins 100 100 + 50 - 30 - 40=80
H3 wins 0 50 - 30 - 40 =-20

The person loses 20 in the transaction.

Exercise: What if the other axioms are violated?
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Interpretations of Probability

Subjectivist interpretation

The subjectivist interpretation was not widely accepted in AI until
1970s (Shafer and Pearl 1990,introduction).

This is a major reason why probability theory did not play a big role
in AI before 1980.

Because probability was defined as relative statistical frequency and
hence was seen as a technique that was appropriate only when
statistical data were available.
Not many interesting applications with statistical data at that time.
Now, more common.
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Interpretations of Probability

Subjectivist interpretation

Now both interpretations are accepted. In practice, subjective beliefs
and statistical data complement each other.

We rely on subjective beliefs (prior probabilities) when data are scarce.
As more and more data become available, we rely less and less on
subjective beliefs.

As we will learn later, probability has a numerical aspect as well as a
structural aspect.

We will rely more on the subjectivity interpretation when it comes to
building structures than estimating numbers. Our belief on “causality”
often plays an important role when building structures.

The subjectivist interpretation makes concepts such as conditional
independence easy to understand.
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Multivariate Probability Joint probability

Joint probability mass function

Probability mass function of a random variable X :

P(X ) : ΩX → [0, 1]

P(X = x) = P(ΩX=x).

Suppose there are n random variables X1, X2, . . . , Xn.
A joint probability mass function, P(X1,X2, . . . ,Xn), over those
random variables is:

a function defined on the Cartesian product of their state spaces:

n∏

i=1

ΩXi
→ [0, 1]

P(X1 = x1, X2 = x2, . . . , Xn = xn) = P(ΩX1=x1 ∩ΩX2=x2 ∩ . . .∩ΩXn=xn
).
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Multivariate Probability Joint probability

Joint probability mass function

Example:

Population: Apartments in Hong Kong rental market.
Random variables: (of a random selected apartment)

Monthly Rent: {low (≤ 1k), medium ((1k, 2k]), upper medium((2k,
4k]), high (≥4k)},
Type: {public, private, others}

Joint probability distribution P(Rent, Type):

public private others
low .17 .01 .02

medium .44 .03 .01
upper medium .09 .07 .01

high 0 0.14 0.1
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Multivariate Probability Joint probability

Joint probability distribution

The joint distribution P(X1,X2, . . . ,Xn) contains information about
all aspects of the relations among the n random variables.

In theory, one can answer any query about relations among the
variables based on the joint probability.
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Multivariate Probability Marginal probability

Marginal probability

What is the probability of a randomly selected apartment being a
public one? (Law of total probability)

P(Type=pulic) = P(Type=public, Rent=low)+P(Type=public,
Rent=medium)+ P(Type=public, Rent=upper medium)+
P(Type=public, Rent=high) = .7

P(Type=private) = P(Type=private, Rent=low)+ P(Type=private,
Rent=medium)+ P(Type=private, Rent=upper medium)+
P(Type=private, Rent=high)= .25

public private others P(Rent)
low .17 .01 .02 .2

medium .44 .03 .01 .48
upper medium .09 .07 .01 .17

high 0 0.14 0.1 .15
P(Type) .7 .25 .05

Called marginal probability because written on the margins.
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Multivariate Probability Marginal probability

Marginal probability

Write the equations on the previous slide in a compact form:

P(Type) =
∑

Rent

P(Type, Rent)

The operation is called marginalization: Variable “Rent” is
marginalized from the joint probability P(Type, Rent).

Notations for more general cases:

P(X , Y ) =
∑

U,V

P(X , Y , U, V ).

Y ⊂ {X1, X2, . . . , Xn}, Z = {X1, X2, . . . , Xn} − Y,

P(Y) =
∑

Z

P(X1, X2, . . . , Xn)
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Multivariate Probability Marginal probability

Marginal probability

A joint probability gives us a full picture about how random variables
are related.

Marginalization lets us to focus one aspect of the picture.
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Multivariate Probability Conditional probability

Conditional probability

For events A and B :

P(A|B) =
P(A,B)

P(B)
(=

P(A ∩ B)

P(B)
)

Meaning:
P(A): my probability on A (without any knowledge about B)
P(A|B): My probability on event A assuming that I know event B is
true.

What is the probability of a randomly selected private apartment
having “low” rent?

P(Rent=low|Type=private)

=
P(Rent=Low, Type=private)

P(Type=private)
= .01/.25=.04

In contrast:

P(Rent=low) = 0.2.
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Multivariate Probability Conditional probability

Conditional probability

P(Rent|Type)

public private others

low .17/.7 .01/.25 .02/.05
medium .44/.7 .03/.25 .01/.05

upper medium .09/.7 .07/.25 .01/.05
high 0/.7 0.14/.25 0.1/.05

Note that∑
Rent P(Rent|Type) =1.

Notation:P(X |Y ,Z )

X Y Z P(X |Y ,Z )

T T T 0.3
T T F 0.7
: : : :
F F F 0.8
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Multivariate Probability Independence

Marginal independence

Two random variables X and Y are marginally independent, written
X ⊥ Y , if

for any state x of X and any state y of Y ,

P(X=x |Y =y) = P(X=x), whenever P(Y = y) 6= 0.

Meaning: Learning the value of Y does not give me any information
about X and vice versa.Y contains no information about X and vice
versa.

Equivalent definition:

P(X=x ,Y =y) = P(X=x)P(Y =y)

Shorthand for the equations:

P(X |Y ) = P(X ),P(X ,Y ) = P(X )P(Y ).
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Multivariate Probability Independence

Marginal independence

Examples:

X :result of tossing a fair coin for the first time,
Y : result of second tossing of the same coin.
X : result of US election, Y : your grades in this course.

Counter example:X – oral presentation grade , Y – project report
grade.
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Multivariate Probability Independence

Conditional independence

Two random variables X and Y are conditionally independent given a
third variable Z ,written X ⊥ Y |Z , if

P(X=x |Y=y , Z=z) = P(X=x |Z=z) whenever P(Y =y , Z=z) 6= 0

Meaning:

If I know the state of Z already, then learning the state of Y does not
give me additional information about X .
Y might contain some information about X .
However all the information about X contained in Y are also contained
in Z .

Shorthand for the equation:

P(X |Y , Z ) = P(X |Z )

Equivalent definition:

P(X , Y |Z ) = P(X |Z )P(Y |Z )
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Multivariate Probability Independence

Example of Conditional Independence

There is a bag of 100 coins. 10 coins were made by a malfunctioning
machine and are biased toward head. Tossing such a coin results in
head 80% of the time. The other coins are fair.

Randomly draw a coin from the bag and toss it a few time.

Xi : result of the i -th tossing, Y : whether the coin is produced by the
malfunctioning machine.

The Xi ’s are not marginally independent of each other:

If I get 9 heads in first 10 tosses, then the coin is probably a biased
coin. Hence the next tossing will be more likely to result in a head than
a tail.
Learning the value of Xi gives me some information about whether the
coin is biased, which in term gives me some information about Xj .
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Multivariate Probability Independence

Example of Conditional Independence

However, they are conditionally independent given Y :

If the coin is not biased, the probability of getting a head in one toss is
1/2 regardless of the results of other tosses.
If the coin is biased, the probability of getting a head in one toss is
80% regardless of the results of other tosses.
If I already knows whether the coin is biased or not, learning the value
of Xi does not give me additional information about Xj .

Here is how the variables are related pictorially. We will return to this
picture later.

...

Coin 
Type

Toss n
Result

Toss 2
Result

Toss 1
Result
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Multivariate Probability Independence

Equavalent conditions for conditional independence

Proposition (1.1)

Variables X and Y are conditionally independent given Z if and only if one
of the following conditions is met:

1 P(X |Y ,Z ) = P(X |Z ) if P(Y ,Z )>0.

2 P(X |Y ,Z ) = f (X ,Z ) for some functions f .

3 P(X ,Y |Z ) = P(X |Z )P(Y |Z ) if P(Z )>0.

4 P(X ,Y |Z ) = f (X ,Z )g(Y ,Z ) for some functions f and g.

5 P(X ,Y ,Z ) = P(X |Z )P(Y |Z )P(Z ) if P(Z )>0.

6 P(X ,Y ,Z ) = P(X ,Z )P(Y ,Z )/P(Z ) if P(Z )>0.

7 P(X ,Y ,Z ) = f (X ,Z )g(Y ,Z ) for some functions f and g .

Exercise: Prove the theorem.
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Multivariate Probability Bayes’ Theorem

Prior, posterior, and likelihood

Three important concepts in Bayesian inference.

With respect to a piece of evidence: E = e

Prior probability P(H = h): belief about a hypothesis before
observing evidence.

Example: Suppose 10% of people suffer from Hepatitis B. A doctor’s
prior probability about a new patient suffering from Hepatitis B is 0.1.

Posterior probability P(H = h|E = e):belief about a hypothesis
after obtaining the evidence.

If the doctor finds that the eyes of the patient are yellow, his belief
about patient suffering from Hepatitis B would be > 0.1.
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Multivariate Probability Bayes’ Theorem

Prior, posterior, and likelihood

Likelihood L(H = h|E = e) of hypothesis H = h given evidence
E = e

Conditional probability of evidence given hypothesis:

L(H = h|E = e) = P(E = e|H = h)

Example:
Evidence: E = y (Eye-color=yellow);
Hypothesis 1: HB = 1 (patient has Hepatitis B);
Hypothesis 2: HB = 0 (patient does not have Hepatitis B);
Which hypothesis is more likely given the evidence?
Because

P(E = y |HB = 1) > P(E = y |HB = 0),

HB = 1 is more likely given E = y .
In general, P(E = e|H = h) measures the likelihood of hypothesis
H = h.
Hence called the likelihood of H = h.
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Multivariate Probability Bayes’ Theorem

Bayes’ Theorem

Bayes’ Theorem: relates prior probability, likelihood, and posterior
probability:

P(H = h|E = e) =
P(H = h)P(E = e|H = h)

P(E = e)
∝ P(H = h)P(E = e|H = h)

where P(E = e) is normalization constant to ensure∑
h∈ΩH

P(H = h|E = e) = 1.

That is: posterior(H = h) ∝ prior(H = h) × likelihood(H = h)

Example:

P(disease|symptoms) =
P(disease)P(symptoms|disease)

P(symptoms)

P(symptom) and P(symptom|disease) from understanding of disease,
P(disease|symptoms) needed in clinical diagnosis.
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Basics of Information Theory
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Basics of Information Theory

Basics of Information Theory

Review of basics of Information Theory

Necessary when discussing the use of BN in data analysis,

Another perspective on conditional independence.
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Basics of Information Theory Jensen’s Inequality

Concave functions

x y

A function f is concave on interval I if for any x , y ∈ I ,

f (x) + f (y)

2
≤ f (

x + y

2
)

Average of function is NO greater than function of average.
It is strictly concave if the equality holds only when x=y .
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Basics of Information Theory Jensen’s Inequality

Jensen’s Inequality

Theorem (1.1)

Suppose function f is concave on interval I.Then

For any pi ∈ [0, 1],
∑n

i=1 pi = 1 and xi ∈ I .

n∑

i=1

pi f (xi ) ≤ f (

n∑

i=1

pixi )

Weighted average of function is NO greater than function of weighted
average.

If f is strictly CONCAVE, the equality holds iff pi × pj 6= 0 implies
xi=xj .

Exercise: Prove this (using induction).
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Basics of Information Theory Jensen’s Inequality

Logarithmic function

The logarithmic function is concave in the interval (0,∞):

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5

log(x)

Hence

n∑

i=1

pi log(xi ) ≤ log(

n∑

i=1

pixi) 0 ≤ xi

In words, exchanging
∑

i pi with log increases a quantity.
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Basics of Information Theory Entropy

Entropy

The entropy of a random variable X :

H(X ) =
∑

X

P(X ) log
1

P(X )

with convention that 0 log(1/0) = 0.

Base of logarithm is 2, unit is bit.
Sometimes written as −E [logP(x)], negation of the expectation of
logP(X ).
Sometimes, also called the entropy of the distribution.
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Basics of Information Theory Entropy

Entropy

H(X ) measures uncertainty about X :

X binary. The chart on the right shows H(X ) as a function of
p=P(X=1).
The higher H(X ) is, the more uncertainty about the value of X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

H
(X

)

p
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Basics of Information Theory Entropy

Entropy

Another example:

X — result of coin tossing
Y — result of dice throw
Z — result of randomly pick a card from a deck of 54
Which one has the highest uncertainty?
Entropy:

H(X ) =
1

2
log 2 +

1

2
log 2 = 1(log base2)

H(Y ) =
1

6
log 6 + . . . +

1

6
log 6 = log 6

H(Z ) =
1

54
log 54 + . . . +

1

54
log 54 = log 54

Indeed we have:

H(X ) < H(Y ) < H(Z ).
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Basics of Information Theory Entropy

Entropy

Proposition (1.2)

H(X ) ≥ 0

H(X ) = 0 equality iff P(X=x) = 1 for some x ∈ ΩX . i.e. iff no
uncertainty.

H(X ) ≤ log(|X |) with equality iff P(X=x)=1/|X |.
Uncertainty is the highest in the case of uniform distribution.

Proof: Because log is concave, by Jensen’s inequality:

H(X ) =
∑

X

P(X )log
1

P(X )

≤ log
∑

X

P(X )
1

P(X )
= log |X |
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Basics of Information Theory Entropy

Conditional entropy

The conditional entropy of X given event Y =y :

Entropy of the conditional distribution P(X |Y = y), i.e.

H(X |Y =y) =
∑

X

P(X |Y =y)log
1

P(X |Y =y)

The uncertainty that remains about X when Y is known to be y .

It is possible that H(X |Y =y) > H(X )

Intuitively Y =y might contradicts our prior knowledge about X and
increase our uncertainty about X
Exercise: Give example.
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Basics of Information Theory Entropy

Conditional entropy

The conditional entropy of X given variable Y :

H(X |Y ) =
∑

y∈ΩY

P(Y = y)H(X |Y =y)

=
∑

Y

P(Y )
∑

X

P(X |Y )log
1

P(X |Y )

=
∑

X ,Y

P(X ,Y )log
1

P(X |Y )

= −E [logP(X |Y )]

The average uncertainty that remains about X when Y is known.
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Basics of Information Theory Entropy

Joint entropy

The joint entropy of X and Y :

H(X , Y ) =
∑

X ,Y

P(X , Y )log
1

P(X , Y )

Chain rule:

H(X , Y ) = H(X ) + H(Y |X ) = H(Y , X ) = H(Y ) + H(X |Y )

Proof:
∑

X ,Y

P(X , Y )log
1

P(X , Y )
=

∑

X ,Y

P(X , Y )log
1

P(X )P(Y |X )

=
∑

X ,Y

P(X , Y )log
1

P(X )
+

∑

X ,Y

P(X , Y )log
1

P(Y |X )

=
∑

X

P(X )log
1

P(X )
+ H(Y |X )

= H(X ) + H(Y |X )
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Basics of Information Theory Entropy

Kullback-Leibler divergence

Relative entropy or Kullback-Leibler divergence

Measures how much a distribution Q(X ) differs from a ”true”
probability distribution P(X ).
K-L divergence of Q from P is defined as follows:

KL(P , Q) =
∑

X

P(X )log
P(X )

Q(X )
= EP [logP(X )] − EP [logQ(X )]

0log 0
0 = 0 and plog p

0 = ∞ if p 6=0

Not symmetric. So, not a distance measure mathematically.
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Basics of Information Theory Entropy

Kullback-Leibler divergence

Theorem (1.2)

(Gibbs’ inequality)
KL(P ,Q)≥0

with equality holds iff P is identical to Q

Proof:
∑

X

P(X )log
P(X )

Q(X )
= −

∑

X

P(X )log
Q(X )

P(X )

≥ −log
∑

X

P(X )
Q(X )

P(X )
Jensen’s inequality

= −log
∑

X

Q(X ) = 0.

KL distance from P to Q is larger than 0 unless P and Q are identical.
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Basics of Information Theory Entropy

A corollary

Corollary (1.1)

Let f (X ) be a nonnegative function of variable X such that
∑

X f (X ) > 0.
Let P∗(X ) be the probability distribution given by

P∗(X ) =
f (X )∑
X f (X )

.

Then for any other probability distribution P(X )

∑

X

f (X )logP∗(X ) ≥
∑

X

f (X )logP(X )

with equality holds iff P∗ and P are identical. In other words,

P∗ = arg sup
P

∑

X

f (X )logP(X )
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Basics of Information Theory Entropy

A corollary

Proof:

KL(P∗,P) =
∑

X

P∗(X )log
P∗(X )

P(X )
≥ 0

Hence ∑

X

P∗(X )logP∗(X ) ≥
∑

X

P∗(X )logP(X )

∑

X

f (X )∑
X f (X )

logP∗(X ) ≥
∑

X

f (X )∑
X f (X )

logP(X )

∑

X

f (X )logP∗(X ) ≥
∑

X

f (X )logP(X )

Q.E.D
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Basics of Information Theory Mutual Information and Independence

Mutual information

The mutual information of X and Y :

I (X ;Y ) = H(X ) − H(X |Y )

Average reduction in uncertainty about X from learning the value of
Y , or

Average amount of information Y conveys about X .
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Basics of Information Theory Mutual Information and Independence

Mutual information and KL Distance

Note that:

I (X ;Y ) =
∑

X

P(X )log
1

P(X )
−

∑

X ,Y

P(X ,Y )log
1

P(X |Y )

=
∑

X ,Y

P(X ,Y )log
1

P(X )
−

∑

X ,Y

P(X ,Y )log
1

P(X |Y )

=
∑

X ,Y

P(X ,Y )log
P(X |Y )

P(X )

=
∑

X ,Y

P(X ,Y )log
P(X ,Y )

P(X )P(Y )
equivalent definition

= KL(P(X ,Y ),P(X )P(Y ))

Due to equivalent definition:

I (X ;Y ) = H(X ) − H(X |Y ) = I (Y ;X ) = H(Y ) − H(Y |X )
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Basics of Information Theory Mutual Information and Independence

Property of Mutual information

Theorem (1.3)

I (X ;Y ) ≥ 0

with equality holds iff X ⊥ Y .

Interpretation: X and Y are independent iff X contains no information
about Y and vice versa.

Proof: Follows from previous slide and Theorem 1.2.
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Basics of Information Theory Mutual Information and Independence

Conditional Entropy Revisited

Theorem (1.4)

H(X |Y ) ≤ H(X ) with equality holds iff X ⊥ Y

Observation reduces uncertainty in average except for the case of
independence.

Proof: Follows from Theorem 1.3.
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Basics of Information Theory Mutual Information and Independence

Mutual information and Entropy

From definition of mutual information

I (X ;Y ) = H(X ) − H(X |Y )

and the chain rule,

H(X ,Y ) = H(Y ) + H(X |Y )

we get

H(X ) + H(Y ) = H(X ,Y ) + I (X ;Y )

I (X ;Y ) = H(X ) + H(Y ) − H(X ,Y )

Consequently

H(X , Y ) ≤ H(X ) + H(Y ) with equality holds iff X ⊥ Y .
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Basics of Information Theory Mutual Information and Independence

Mutual information and entropy

Venn Diagram: Relationships among joint entropy, conditional entropy,
and mutual information

H(X)

H(X,Y)

I(X;Y)

H(Y|X)H(X|Y)

H(Y)

H(X ) + H(Y ) = H(X ,Y ) + I (X ;Y )

I (X ;Y ) = H(X ) − H(X |Y )

I (Y ; X ) = H(Y ) − H(Y |X )
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Basics of Information Theory Mutual Information and Independence

Conditional Mutual information

The conditional mutual information of X and Y given Z :

I (X ;Y |Z ) = H(X |Z ) − H(X |Y ,Z )

Average amount of information Y conveys about X given Z .
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Basics of Information Theory Mutual Information and Independence

Conditional mutual information and KL Distance

Note:

I (X ; Y |Z ) =
∑

X ,Z

P(X , Z )log
1

P(X |Z )
−

∑

X ,Y ,Z

P(X , Y , Z )log
1

P(X |Y , Z )

=
∑

X ,Y ,Z

P(X , Y , Z )log
1

P(X |Z )
−

∑

X ,Y ,Z

P(X , Y , Z )log
1

P(X |Y , Z )

=
∑

X ,Y ,Z

P(X , Y , Z )log
P(X |Y , Z )

P(X |Z )
equivalent definition

=
∑

Z

P(Z )
∑

X ,Y

P(X , Y |Z )log
P(X , Y |Z )

P(X |Z )P(Y |Z )

=
∑

Z

P(Z )KL(P(X , Y |Z ), P(X |Z )P(Y |Z )) ≥ 0.
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Basics of Information Theory Mutual Information and Independence

Property of conditional mutual information

Theorem (1.5)

I (X ;Y |Z ) ≥ 0

H(X |Z ) ≥ H(X |Y ,Z )

with equality hold iff X ⊥ Y |Z.

Interpretation:

More observations reduce uncertainty on average except for the case
of conditional independence.

X and Y are independently given Z iff X contain no information
about Y given Z and vice versa:

X ⊥ Y |Z ≡ I (X ;Y |Z ) = 0.

Another characterization of conditional independence.
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