COMP538: Introduction to Bayesian Networks Lecture 2: Bayesian Networks

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Fall 2008

Objective

- Objective: Explain the concept of Bayesian networks
- Reading: Zhang & Guo, Chapter 2
- References: Russell & Norvig, Chapter 15

Outline

- 1 Probabilistic Modeling with Joint Distribution
- 2 Conditional Independence and Factorization
- 3 Bayesian Networks
- 4 Manual Construction of Bayesian Networks
 - Building structures
 - Causal Bayesian networks
 - Determining Parameters
 - Local Structures
- 5 Remarks

The probabilistic approach to reasoning under uncertainty

- A problem domain is modeled by a list of variables X_1, X_2, \ldots, X_n
- Knowledge about the problem domain is represented by a joint probability $P(X_1, X_2, ..., X_n)$.

Example: Alarm (Pearl 1988)

- Story: In LA, burglary and earthquake are not uncommon. They both can cause alarm. In case of alarm, two neighbors John and Mary may call.
- Problem: Estimate the probability of a burglary based who has or has not called.
- Variables: Burglary (B), Earthquake (E), Alarm (A), JohnCalls (J), MaryCalls (M).
- Knowledge required by the probabilistic approach in order to solve this problem:

Joint probability distribution

P(B, E, A, J, M)

В	Ε	Α	J	М	Prob	В	Е	Α	J	М	Prob
У	У	у	у	у	.00001	n	У	У	у	У	.0002
У	У	У	у	n	.000025	n	У	У	у	n	.0004
у	У	У	n	у	.000025	n	У	У	n	У	.0004
У	У	У	n	n	.00000	n	У	У	n	n	.0002
У	У	n	у	у	.00001	n	У	n	у	У	.0002
У	У	n	у	n	.000015	n	У	n	у	n	.0002
у	У	n	n	у	.000015	n	У	n	n	У	.0002
У	У	n	n	n	.0000	n	У	n	n	n	.0002
У	n	У	У	у	.00001	n	n	У	у	У	.0001
У	n	У	У	n	.000025	n	n	У	у	n	.0002
У	n	У	n	у	.000025	n	n	У	n	У	.0002
У	n	У	n	n	.0000	n	n	У	n	n	.0001
У	n	n	у	у	.00001	n	n	n	у	У	.0001
у	n	n	у	n	.00001	n	n	n	у	n	.0001
у	n	n	n	у	.00001	n	n	n	n	У	.0001
У	n	n	n	n	.00000	n	n	n	n	n	.996

Inference with joint probability distribution

- What is the probability of burglary given that Mary called, P(B=y|M=y)?
- Compute *marginal probability*:

$$P(B, M) = \sum_{E,A,J} P(B, E, A, J, M)$$

В	М	Prob
У	у	.000115
У	n	.000075
n	у	.00015
n	n	.99966

■ Compute answer (reasoning by conditioning):

$$P(B=y|M=y) = \frac{P(B=y, M=y)}{P(M=y)}$$

= $\frac{.000115}{.000115 + 000075} = 0.65$

Advantages

- Probability theory well-established and well-understood.
- In theory, can perform arbitrary inference among the variables given a joint probability. This is because the joint probability contains information of all aspects of the relationships among the variables.
 - Diagnostic inference:
 - From effects to causes.
 - Example: P(B=y|M=y)
 - Predictive inference:
 - From causes to effects.
 - Example: P(M=y|B=y)
 - Combining evidence:

$$P(B=y|J=y, M=y, E=n)$$

■ All inference sanctioned by laws of probability and hence has clear semantics.

Difficulty: Complexity in model construction and inference

- In Alarm example:
 - 31 numbers needed.
 - Quite unnatural to assess: e.g.

$$P(B = y, E = y, A = y, J = y, M = y)$$

- Computing P(B=y|M=y) takes 29 additions. [Exercise: Verify this.]
- In general,
 - $P(X_1, X_2, ..., X_n)$ needs at least $2^n 1$ numbers to specify the joint probability. Exponential model size.
 - Knowledge acquisition difficult (complex, unnatural),
 - Exponential storage and inference.

Outline

- 1 Probabilistic Modeling with Joint Distribution
- 2 Conditional Independence and Factorization
- 3 Bayesian Networks
- 4 Manual Construction of Bayesian Networks
 - Building structures
 - Causal Bayesian networks
 - Determining Parameters
 - Local Structures
- 5 Remarks

Chain Rule and Factorization

Overcome the problem of exponential size by exploiting conditional independence

■ The chain rule of probabilities:

$$P(X_{1}, X_{2}) = P(X_{1})P(X_{2}|X_{1})$$

$$P(X_{1}, X_{2}, X_{3}) = P(X_{1})P(X_{2}|X_{1})P(X_{3}|X_{1}, X_{2})$$
...
$$P(X_{1}, X_{2}, ..., X_{n}) = P(X_{1})P(X_{2}|X_{1})...P(X_{n}|X_{1}, ..., X_{n-1})$$

$$= \prod_{i=1}^{n} P(X_{i}|X_{1}, ..., X_{i-1}).$$

■ No gains yet. The number of parameters required by the factors is: $2^{n-1} + 2^{n-1} + \dots + 1 = 2^n - 1$

Conditional Independence

- About $P(X_i|X_1,...,X_{i-1})$:
 - Domain knowledge usually allows one to identify a subset $pa(X_i) \subseteq \{X_1, \dots, X_{i-1}\}$ such that
 - Given $pa(X_i)$, X_i is independent of all variables in $\{X_1, \ldots, X_{i-1}\} \setminus pa(X_i)$, i.e.

$$P(X_i|X_1,\ldots,X_{i-1})=P(X_i|pa(X_i))$$

Then

$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | pa(X_i))$$

- Joint distribution factorized.
- The number of parameters might have been substantially reduced.

Example continued

$$P(B, E, A, J, M)$$
= $P(B)P(E|B)P(A|B, E)P(J|B, E, A)P(M|B, E, A, J)$
= $P(B)P(E)P(A|B, E)P(J|A)P(M|A)$ (Factorization)

- \blacksquare $pa(B) = \{\}, pa(E) = \{\}, pa(A) = \{B, E\}, pa(J) = \{A\}, pa(M) = \{A\}.$
- Conditional probabilities tables (CPT)

	В	P(B)	E		P(E)	A	в	Е	P(A B, E))
	Y	.01	Y		.02	Y	Y	Y	.95	_
	N	.99	N		.98	N	Y	Y	.05	
						Y	Y	N	.94	
				_		N	Y	N	.06	
		P(M A)	_ J A		(J A)	Y	N	Y	.29	
Y	Y	.9	Y	Y	.7	N	N	Y	.71	
N	Y	.1	N	Y	.3	Y	N	N	.001	
Y	N	.05	Y	N	.01	N	N	N	.999	
N	N	.95	N	N	.99					

Example continued

- \blacksquare Model size reduced from 31 to 1+1+4+2+2=10
- Model construction easier
 - Fewer parameters to assess.
 - Parameters more natural to assess:e.g.

$$P(B = Y), P(E = Y), P(A = Y|B = Y, E = Y),$$

 $P(J = Y|A = Y), P(M = Y|A = Y)$

■ Inference easier. Will see this later.

Outline

- 1 Probabilistic Modeling with Joint Distribution
- 2 Conditional Independence and Factorization
- 3 Bayesian Networks
- 4 Manual Construction of Bayesian Networks
 - Building structures
 - Causal Bayesian networks
 - Determining Parameters
 - Local Structures
- 5 Remarks

From Factorizations to Bayesian Networks

Graphically represent the conditional independency relationships:

■ construct a directed graph by drawing an arc from X_j to X_i iff $X_j \in pa(X_i)$

$$pa(B) = \{\}, pa(E) = \{\}, pa(A) = \{B, E\}, pa(J) = \{A\}, pa(M) = \{A\}.$$

- Also attach the conditional probability (table) $P(X_i|pa(X_i))$ to node X_i .
- What results in is a **Bayesian network**. Also known as **belief network**, **probabilistic network**.

Formal Definition

A Bayesian network is:

- An directed acyclic graph (DAG), where
- Each node represents a random variable
- And is associated with the conditional probability of the node given its parents.

Recall: In introduction, we said that

■ Bayesian networks are networks of random variables.

Understanding Bayesian networks

- Qualitative level:
 - A directed acyclic graph (DAG) where arcs represent direct probabilistic dependence.

- Absence of arc indicates conditional independence:
 - A variable is conditionally independent of all its **nondescendants** given its parents. (Will prove this later.)
- The above DAG implies the following conditional independence relationships:
 - \blacksquare $B \perp E$; $J \perp B|A$; $J \perp E|A$; $M \perp B|A$; $M \perp E|A$; $M \perp J|A$
- The following are not implied:
 - \blacksquare $J \perp B$; $J \perp E$; $J \perp M$; $B \perp E | A$

Understanding Bayesian networks

- Quantitative (numerical) level:
 - Conditional probability tables:

В	P(B)	E	P(E)	A	в	E	P(A B, E)
Y N	.01 .99	Y N	.02 .98	Y	Y	Y	.95
.,	• • • • • • • • • • • • • • • • • • • •			N Y	Y Y	Y N	.05 .94
M A	P(M A)	J A	P(J A)	N Y	Y N	N Y	.06 .29
	Y .9 Y .1	Y Y N Y		N	N	Y	.71
Y	N .05	YN	.01	Y N	N N	N N	.001 .999

■ Describe how parents of a variable influence the variable.

Understanding Bayesian Networks

- As a whole:
 - A Bayesian network represents a **factorization** of a joint distribution.

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^n P(X_i | pa(X_i))$$

■ Multiplying all the CPTs results in a joint distribution over all variables.

Example networks

Network repository

- Bayesian Network Repository: http://www.cs.huji.ac.il/labs/compbio/Repository/
- Genie & Smile Network Repository: http://genie.sis.pitt.edu/networks.html
- Netica Net Library: http://www.norsys.com/netlibrary/index.htm
- Hugin Case Studies: http://www.hugin.com/cases/

Software

- Genie & Smile: http://genie.sis.pitt.edu/. Free.
- Netica: http://www.norsys.com/. Free version for small nets.

Outline

- 1 Probabilistic Modeling with Joint Distribution
- 2 Conditional Independence and Factorization
- 3 Bayesian Networks
- 4 Manual Construction of Bayesian Networks
 - Building structures
 - Causal Bayesian networks
 - Determining Parameters
 - Local Structures
- 5 Remarks

Procedure for constructing Bayesian network structures

- 1 Choose a set of variables that describes the application domain.
- 2 Choose an ordering for the variables.
- 3 Start with the empty network and add variables to the network one by one according to the ordering.
- 4 To add the *i*-th variable X_i ,
 - 1 Determine a subset $pa(X_i)$ of variables already in the network (X_1, \ldots, X_{i-1}) such that

$$P(X_i|X_1,\ldots,X_{i-1})=P(X_i|pa(X_i))$$

(Domain knowledge is needed here.)

2 Draw an arc from each variable in $pa(X_i)$ to X_i .

Examples

- Order 1: *B*, *E*, *A*, *J*, *M*
 - $pa(B) = \{\}, pa(E) = \{\},$ $pa(A) = \{B, E\}, pa(J) = \{A\}, pa(M) = \{A\}.$

Examples

- Order 2: *M*, *J*, *A*, *B*, *E*
 - $pa(M) = \{\}, pa(J) = \{M\}, pa(A) = \{M, J\}, pa(B) = \{A\}, pa(E) = \{A, B\}.$

Examples

- Order 3: *M*, *J*, *E*, *B*, *A*
 - $pa(M) = \{\}, pa(J) = \{M\}, pa(E) = \{M, J\}, pa(B) = \{M, J, E\}, pa(A) = \{M, J, B, E\}.$

Building Bayesian network structures

Which order?

- Naturalness of probability assessment (Howard and Matheson).
 - (B, E, A, J, M) is a good ordering because the following distributions natural to assess
 - \blacksquare P(B), P(E): frequency of burglary and earthquake
 - P(A|B, E): property of Alarm system.
 - \blacksquare P(M|A): knowledge about Mary
 - \blacksquare P(J|A): knowledge about John.
 - The order M, J, E, B, A is not good because, for instance, P(B|J, M, E) is unnatural and hence difficult to assess directly.

Building Bayesian network structures

Which order?

- Minimize number of arcs (J. Q. Smith).
 - The order (M, J, E, B, A) is bad because too many arcs.
 - In contrast, the order (B, E, A, J, M) is good is because it results in a simple structure.
- Use causal relationships (Pearl): cause come before their effects.
 - The order (M, J, E, B, A) is not good because, for instance, M and J are effects of A but come before A.
 - In contrast, the order (B, E, A, J, M) is good is because it respects the causal relationships among variables.

Exercise in Structure Building

- Five variable about what happens to an office building
 - Fire: There is a fire in the building.
 - Smoke: There is smoke in the building.
 - Alarm: Fire alarm goes off.
 - Leave: People leaves the building.
 - Tampering: Someone tamper with the fire system (e.g., open fire exit)
- Build network structures using the following ordering. Clearly state your assumption.
 - 1 Order 1: tampering, fire, smoke, alarm, leave
 - 2 Order 2: leave, alarm, smoke, fire, tampering

Causal Bayesian networks

- Build a Bayesian network using casual relationships:
 - Choose a set of variables that describes the domain.
 - Draw an arc to a variable from each of its DIRECT causes. (Domain knowledge needed here.)
- What results in is a causal Bayesian network, or simply causal networks,
 - Arcs are interpreted as indicating cause-effect relationships.

Example:

■ Travel (Lauritzen and Spiegelhalter)

Use of Causality: Issue 1

Causality is not a well understood concept.

- No widely accepted definition.
- No consensus on
 - Whether it is a property of the world,
 - Or a concept in our minds helping us to organize our perception of the world.

Causality

- Sometimes causal relations are obvious:
 - Alarm causes people to leave building.
 - Lung Cancer causes mass on chest X-ray.
- At other times, they are not that clear.
 - Whether gender influences ability in technical sciences.
 - Most of us believe Smoking cause lung cancer, but the tobacco industry has a different story:

Surgeon General (1964)

Tobacco Industry

Working Definition of Causality

- Imagine an all powerful agent, GOD, who can change the states of variables .
 - X causes Y if knowing that GOD has changed the state of X changes your believe about Y.
- Example:
 - "Smoking" and "yellow finger" are correlated.
 - If we force someone to smoke for sometime, his finger will probably become yellow. So "Smoking" is a cause of "yellow finger".
 - If we paint someone's finger yellow, that will not affect our belief on whether s/he smokes. So "yellow finger" does not cause "smoking".
- Similar example with Earthquake and Alarm

Causality

Coin tossing example revisited:

- Knowing that GOD somehow made sure the coin drawn from the bag is a fair coin would affect our belief on the results of tossing.
- Knowing that GOD somehow made sure that the first tossing resulted in a head does not affect our belief on the type of the coin.
- So arrows go from coin type to results of tossing.

Use of Causality: Issue 2

- Causality ⇒ network structure (building process)
- Network structure \Rightarrow conditional independence (Semantics of BN)

The causal Markov assumption bridges causality and conditional independence:

■ A variable is independent of all its non-effects (non-descendants) given its direct causes (i.e. parents).

We make this assumption if we determine Bayesian network structure using causality.

Determining probability parameters

- Later in this course, we will discuss in detail how to learn parameters from data.
- We will not be so much concerned with eliciting probability values from experts.
- However, people do that some times. In such a case, one would want the number of parameters be as small as possible.
- The rest of the lecture describe two concepts for reducing the number of parameters:
 - Causal Independence.
 - Context-specific independence.
- Left to students as reading materials.

Determining probability parameters

- Sometimes conditional probabilities are given by domain theory¶
 - Genetic inheritance in Stud (horse) farm (Jensen, F. V. (2001). Bayesian networks and decision graphs. Springer.):

P(Child|Father, Mother)

(3			
	aa	aA	AA
aa	(1, 0, 0)	(.5, .5, 0)	(0, 1, 0)
аA	(.5, .5, 0)	(.25, .5, 25)	(0, .5, .5)
AA	(0, 1, 0)	(0, .5, .5)	(0, 0, 1)

Genotypes: aa - sick, aA - carrier, AA - pure.

- Sometimes, we need to get the numbers from the experts.
 - This is a time-consuming and difficult process.
 - Nonetheless, many networks have been built. See Bayesian Network Repository at

```
http://www.cs.huji.ac.il/labs/compbio/Repository/
```

- Combine experts' knowledge and data
 - Use assessments by experts as a start point.
 - When data become available, combine data and experts' assessments.
 - As more and more data become available, influence of experts is automatically reduced.

We will show how this can be done when discussing parameter learning.

Note: Much of the course will be about how to learning Bayesian networks (structures and parameters) from data.

Reducing the number of parameters

■ Let E be a variable in a BN and let C_1, C_2, \ldots, C_m be its parents.

- The size of the conditional probability $P(E|C_1, C_2, ..., C_m)$ is exponential in m.
- This poses a problem for knowledge acquisition, learning, and inference.
- In application, there usually exist local structures that one can exploit to reduce the size of conditional probabilities

- Causal independence refers to the situation where
 - the causes C_1 , C_2 ..., and C_m influence E independently.
 - In other words, the ways by which the C_i 's influence e are independent.

■ Example:

- Burglary and earthquake trigger alarm independently.
- Precise statement: A_b and A_e are independent.
- $A = A_b \vee A_e$, hence **Noisy-OR gate** (Good 1960).

- Formally, C_1 , C_2 ..., and C_m are said to be **causally independent** w.r.t effect F if
 - there exist random variables $\xi_1, \xi_2 \ldots$, and ξ_m such that
 - 1 For each i, ξ_i probabilistically depends on C_i and is conditionally independent of all other C_j 's and all other ξ_j 's given C_i , and
 - 2 There exists a commutative and associative binary operator * over the domain of e such that

$$E = \xi_1 * \xi_2 * \dots * \xi_m$$

- In words, individual contributions from different causes are independent and the total influence on effect is a combination of the individual contributions.
- ξ_i **contribution** of C_i to E.
- * base combination operator.
- E independent cause (IC) variable. Known as convergent variable in Zhang & Poole (1996).

- Example: Lottery
 - C_i : money spent on buying lottery of type i.
 - \blacksquare *E*: change of wealth.
 - \blacksquare ξ_i : change in wealth due to buying the *i*th type lottery.
 - Base combination operator: "+". (Noisy-adder)
- Other causal independence models:
 - Noisy MAX-gate max
 - 2 Noisy AND-gate \wedge

Theorem (2.1)

If C_1, C_2, \ldots, C_m are causally independent w.r.t E, then the conditional probability $P(E|C_1,...,C_m)$ can be obtained from the conditional probabilities $P(\xi_i|C_i)$ through

$$P(E=e|C_1,\ldots,C_m) = \sum_{\alpha_1*\ldots*\alpha_k=e} P(\xi_1=\alpha_1|C_1)\ldots P(\xi_m=\alpha_m|C_m), \qquad (1)$$

for each value e of E. Here * is the base combination operator of E.

See Zhang and Poole (1996) for the proof.

Notes:

- Causal independence reduces model size:
 - In the case of binary variable, it reduces model sizes from 2^{m+1} to 4m.
 - Examples: CPSC, Carpo
- It can also be used to speed up inference (Zhang and Poole 1996).
- Relationship with logistic regression? (Potential term project)

Parent divorcing

Another technique to reduce the number of parameters

- Top figure: A more natural model for the Travel example. But it requires 1+1+2+2+2+4+8=20 parameters.
- Low figure: requires only 1+1+2+2+2+4+2+4=18 parameters.
- The difference would be bigger if, for example, D have other parents.
- The trick is to introduce a new node (TB-or-LC).
- It divorces T and L from the other parent B of D.
- Note that the trick would not help if the new node TB-or-LC has 4 or more states.

Context specific independence (CSI)

- Let C be a set of variables. A context on C is an assignment of one value to each variable in C.
- We denote a context by C=c, where c is a set of values of variables in C.
- Two contexts are **incompatible** if there exists a variable that is assigned different values in the contexts.
- They are **compatible** otherwise.

Context-specific independence

- Let X, Y, Z, and C be four disjoint sets of variables.
- X and Y are independent given Z in context C=c if

$$P(X|Z,Y,C=c) = P(X|Z,C=c)$$

whenever $P(\mathbf{Y}, \mathbf{Z}, \mathbf{C} = \mathbf{c}) > 0$.

■ When **Z** is empty, one simply says that **X** and **Y** are **independent in context C**=**c**.

Context-specific independence

- Shafer's Example:
 - Number of pregnancies (N) is independent of Age(A) in the context Gender=Male(G=m).

$$P(N|A, G=m) = P(N|G=m)$$

■ Number of parameters reduced by (|A|-1)(|N|-1).

Context-specific independence

Income independent of Weather in context Profession=Programmer.

$$P(I|W, P=Prog, Q) = P(I|P=Prog, Q)$$

$$P(I|W, P=Farmer, Q) = P(I|W, P=Farmer)$$

 CSI can also be exploited to speed up inference (Zhang and Poole 1999).

Outline

- 1 Probabilistic Modeling with Joint Distribution
- 2 Conditional Independence and Factorization
- 3 Bayesian Networks
- 4 Manual Construction of Bayesian Networks
 - Building structures
 - Causal Bayesian networks
 - Determining Parameters
 - Local Structures
- 5 Remarks

Reasons for the popularity of Bayesian networks

- It's graphical language is intuitive and easy to understand because it captures what might be called "intuitive causality".
- Pearl (1986) claims that it is a model for human's inferential reasoning:
 - Notations of dependence and conditional dependence are basic to human reasoning.
 - The fundamental structure of human knowledge can be represented by dependence graphs.

Reasons for the popularity of Bayesian networks

- In practice, the graphical language
 - Functions as a convenient language to organizes one's knowledge about a domain.
 - Facilitates interpersonal communication.
- On the other hand, the language is well-defined enough to allow computer processing.
 - Correctness of results guaranteed by probability theory.
- For probability theory, Bayesian networks provide a whole new perspective:
- "Probability is not really about numbers; It is about the structure of reasoning." (Glenn Shafer)