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Objective

Objective: Explain the concept of Bayesian networks

Reading: Zhang & Guo, Chapter 2

References: Russell & Norvig, Chapter 15
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Probabilistic Modeling with Joint Distribution

The probabilistic approach to reasoning under uncertainty

A problem domain is modeled by a list of variables X1, X2, . . . , Xn,

Knowledge about the problem domain is represented by a joint probability
P(X1, X2, . . . , Xn).

Example: Alarm (Pearl 1988)

Story: In LA, burglary and earthquake are not uncommon. They both can
cause alarm. In case of alarm, two neighbors John and Mary may call.

Problem: Estimate the probability of a burglary based who has or has not
called.

Variables: Burglary (B), Earthquake (E), Alarm (A), JohnCalls (J),
MaryCalls (M).

Knowledge required by the probabilistic approach in order to solve this
problem:

P(B, E , A, J, M)
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Probabilistic Modeling with Joint Distribution

Joint probability distribution

P(B, E , A, J, M)
B E A J M Prob B E A J M Prob
y y y y y .00001 n y y y y .0002
y y y y n .000025 n y y y n .0004
y y y n y .000025 n y y n y .0004
y y y n n .00000 n y y n n .0002
y y n y y .00001 n y n y y .0002
y y n y n .000015 n y n y n .0002
y y n n y .000015 n y n n y .0002
y y n n n .0000 n y n n n .0002
y n y y y .00001 n n y y y .0001
y n y y n .000025 n n y y n .0002
y n y n y .000025 n n y n y .0002
y n y n n .0000 n n y n n .0001
y n n y y .00001 n n n y y .0001
y n n y n .00001 n n n y n .0001
y n n n y .00001 n n n n y .0001
y n n n n .00000 n n n n n .996
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Probabilistic Modeling with Joint Distribution

Inference with joint probability distribution

What is the probability of burglary given that Mary called, P(B=y |M=y)?

Compute marginal probability:

P(B, M) =
∑

E ,A,J

P(B, E , A, J, M)

B M Prob
y y .000115
y n .000075
n y .00015
n n .99966

Compute answer (reasoning by conditioning):

P(B=y |M=y) =
P(B=y , M=y)

P(M=y)

=
.000115

.000115 + 000075
= 0.61
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Probabilistic Modeling with Joint Distribution

Advantages

Probability theory well-established and well-understood.

In theory, can perform arbitrary inference among the variables given a joint
probability. This is because the joint probability contains information of all
aspects of the relationships among the variables.

Diagnostic inference:

From effects to causes.
Example: P(B=y |M=y)

Predictive inference:

From causes to effects.
Example: P(M=y |B=y)

Combining evidence:

P(B=y |J=y , M=y , E=n)

All inference sanctioned by laws of probability and hence has clear semantics.
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Probabilistic Modeling with Joint Distribution

Difficulty: Complexity in model construction and inference

In Alarm example:

31 numbers needed,
Quite unnatural to assess: e.g.

P(B = y , E = y , A = y , J = y , M = y)

Computing P(B=y |M=y) takes 29 additions. [Exercise: Verify this.]

In general,

P(X1, X2, . . . , Xn) needs at least 2n − 1 numbers to specify the joint
probability. Exponential model size.
Knowledge acquisition difficult (complex, unnatural),
Exponential storage and inference.
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Conditional Independence and Factorization
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Conditional Independence and Factorization

Chain Rule and Factorization

Overcome the problem of exponential size by exploiting conditional independence

The chain rule of probabilities:

P(X1, X2) = P(X1)P(X2|X1)

P(X1, X2, X3) = P(X1)P(X2|X1)P(X3|X1, X2)

. . .

P(X1, X2, . . . , Xn) = P(X1)P(X2|X1) . . .P(Xn|X1, . . . , Xn−1)

=

n∏

i=1

P(Xi |X1, . . . , Xi−1).

No gains yet. The number of parameters required by the factors is:
2n−1 + 2n−1 + . . . + 1 = 2n − 1.
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Conditional Independence and Factorization

Conditional Independence

About P(Xi |X1, . . . , Xi−1):

Domain knowledge usually allows one to identify a subset
pa(Xi) ⊆ {X1, . . . , Xi−1} such that

Given pa(Xi), Xi is independent of all variables in
{X1, . . . , Xi−1} \ pa(Xi), i.e.

P(Xi |X1, . . . , Xi−1) = P(Xi |pa(Xi))

Then

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi |pa(Xi ))

Joint distribution factorized.

The number of parameters might have been substantially reduced.
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Conditional Independence and Factorization

Example continued

P(B, E , A, J, M)

= P(B)P(E |B)P(A|B, E )P(J|B, E , A)P(M |B, E , A, J)

= P(B)P(E )P(A|B, E )P(J|A)P(M |A)(Factorization)

pa(B) = {}, pa(E ) = {},pa(A) = {B, E}, pa(J) = {A},pa(M) = {A}.

Conditional probabilities tables (CPT)

M  A  P(M|A)

Y   Y   .9

N   Y   .1
Y   N   .05

N   N   .95

E

Y
N

.02

.98

P(E) B P(B)

Y
N

.01

.99

A  B  E  P(A|B, E)

Y  Y  Y   .95

N  Y  Y   .05

Y  Y  N   .94
N  Y  N   .06

Y  

N  N  Y   .71

Y  N  N   .001
N  N  N   .999

N  Y   .29
Y   Y   .7

N   Y   .3
Y   N   .01

N   N   .99

J  A  P(J|A)
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Conditional Independence and Factorization

Example continued

Model size reduced from 31 to 1+1+4+2+2=10

Model construction easier

Fewer parameters to assess.
Parameters more natural to assess:e.g.

P(B = Y ), P(E = Y ), P(A = Y |B = Y , E = Y ),

P(J = Y |A = Y ), P(M = Y |A = Y )

Inference easier.Will see this later.
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Bayesian Networks

From Factorizations to Bayesian Networks

Graphically represent the conditional independency relationships:

construct a directed graph by drawing an arc from Xj to Xi iff Xj ∈ pa(Xi )

pa(B) = {}, pa(E ) = {}, pa(A) = {B, E}, pa(J) = {A}, pa(M) = {A}.

   E

   J    M

   A

   B P(B) P(E)

P(A|B, E)

P(J|A) P(M|A)

Also attach the conditional probability (table) P(Xi |pa(Xi )) to node Xi .

What results in is a Bayesian network.Also known as belief network,
probabilistic network.
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Bayesian Networks

Formal Definition

A Bayesian network is:

An directed acyclic graph (DAG), where

Each node represents a random variable

And is associated with the conditional probability of the node given its
parents.

Recall: In introduction, we said that

Bayesian networks are networks of random variables.
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Bayesian Networks

Understanding Bayesian networks

Qualitative level:

A directed acyclic graph (DAG) where arcs represent direct probabilistic
dependence.

   E

   J    M

   A

   B

Absence of arc indicates conditional independence:
A variable is conditionally independent of all its nondescendants given
its parents. (Will prove this later.)

The above DAG implies the following conditional independence
relationships:

B ⊥ E ; J ⊥ B|A; J ⊥ E |A; M ⊥ B|A; M ⊥ E |A; M ⊥ J|A

The following are not implied:
J ⊥ B; J ⊥ E ; J ⊥ M; B ⊥ E |A
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Bayesian Networks

Understanding Bayesian networks

Quantitative (numerical) level:

Conditional probability tables:

M  A  P(M|A)

Y   Y   .9

N   Y   .1
Y   N   .05

N   N   .95

E

Y
N

.02

.98

P(E) B P(B)

Y
N

.01

.99

A  B  E  P(A|B, E)

Y  Y  Y   .95

N  Y  Y   .05

Y  Y  N   .94
N  Y  N   .06

Y  

N  N  Y   .71

Y  N  N   .001
N  N  N   .999

N  Y   .29
Y   Y   .7

N   Y   .3
Y   N   .01

N   N   .99

J  A  P(J|A)

Describe how parents of a variable influence the variable.
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Bayesian Networks

Understanding Bayesian Networks

As a whole:

A Bayesian network represents a factorization of a joint distribution.

P(X1, X2, . . . , Xn) =

n∏

i=1

P(Xi |pa(Xi ))

Multiplying all the CPTs results in a joint distribution over all variables.
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Bayesian Networks

Example networks

Network repository

Bayesian Network Repository:
http://www.cs.huji.ac.il/labs/compbio/Repository/

Genie & Smile Network Repository:
http://genie.sis.pitt.edu/networks.html

Netica Net Library: http://www.norsys.com/netlibrary/index.htm

Hugin Case Studies: http://www.hugin.com/cases/

Software

Genie & Smile: http://genie.sis.pitt.edu/. Free.

Netica: http://www.norsys.com/. Free version for small nets.
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Manual Construction of Bayesian Networks
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Manual Construction of Bayesian Networks Building structures

Procedure for constructing Bayesian network structures

1 Choose a set of variables that describes the application domain.

2 Choose an ordering for the variables.

3 Start with the empty network and add variables to the network one by one
according to the ordering.

4 To add the i-th variable Xi ,

1 Determine a subset pa(Xi ) of variables already in the network (X1, . . . ,
Xi−1) such that

P(Xi |X1, . . . , Xi−1) = P(Xi |pa(Xi ))

(Domain knowledge is needed here.)
2 Draw an arc from each variable in pa(Xi ) to Xi .
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Manual Construction of Bayesian Networks Building structures

Examples

Order 1: B, E , A, J, M

pa(B) = {}, pa(E ) = {},
pa(A) = {B, E}, pa(J) = {A}, pa(M) = {A}.
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Manual Construction of Bayesian Networks Building structures

Examples

Order 2: M , J, A, B, E

pa(M) = {}, pa(J) = {M}, pa(A) = {M , J}, pa(B) = {A},
pa(E ) = {A, B}.
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Manual Construction of Bayesian Networks Building structures

Examples

Order 3: M , J, E , B, A

pa(M) = {}, pa(J) = {M}, pa(E ) = {M , J}, pa(B) = {M , J, E},
pa(A) = {M , J, B, E}.
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Manual Construction of Bayesian Networks Building structures

Building Bayesian network structures

Which order?

Naturalness of probability assessment (Howard and Matheson).

(B, E, A, J, M) is a good ordering because the following distributions
natural to assess

P(B), P(E): frequency of burglary and earthquake
P(A|B, E): property of Alarm system.
P(M|A): knowledge about Mary
P(J|A): knowledge about John.

The order M, J, E, B, A is not good because, for instance,
P(B|J, M , E ) is unnatural and hence difficult to assess directly.
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Manual Construction of Bayesian Networks Building structures

Building Bayesian network structures

Which order?

Minimize number of arcs (J. Q. Smith).

The order (M, J, E, B, A) is bad because too many arcs.
In contrast, the order (B, E, A, J, M) is good is because it results in a
simple structure.

Use causal relationships (Pearl): cause come before their effects.

The order (M, J, E, B, A) is not good because, for instance, M and J
are effects of A but come before A.
In contrast, the order (B, E, A, J, M) is good is because it respects the
causal relationships among variables.
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Manual Construction of Bayesian Networks Building structures

Exercise in Structure Building

Five variable about what happens to an office building

Fire: There is a fire in the building.
Smoke: There is smoke in the building.
Alarm: Fire alarm goes off.
Leave: People leaves the building.
Tampering: Someone tamper with the fire system (e.g., open fire exit)

Build network structures using the following ordering. Clearly state your
assumption.

1 Order 1: tampering, fire, smoke, alarm, leave
2 Order 2: leave, alarm, smoke, fire, tampering

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 29 / 55



Manual Construction of Bayesian Networks Building structures

Causal Bayesian networks

Build a Bayesian network using casual relationships:

Choose a set of variables that describes the domain.
Draw an arc to a variable from each of its DIRECT causes. (Domain
knowledge needed here.)

What results in is a causal Bayesian network, or simply causal networks,

Arcs are interpreted as indicating cause-effect relationships.
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Manual Construction of Bayesian Networks Building structures

Example:

Travel (Lauritzen and Spiegelhalter)

Adventure

X−ray Dyspnea

Bronchitis

Smoking

Lung CancerTuberculosis
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Manual Construction of Bayesian Networks Building structures

Use of Causality: Issue 1

Causality is not a well understood concept.

No widely accepted definition.

No consensus on

Whether it is a property of the world,
Or a concept in our minds helping us to organize our perception of the
world.
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Manual Construction of Bayesian Networks Building structures

Causality

Sometimes causal relations are obvious:

Alarm causes people to leave building.
Lung Cancer causes mass on chest X-ray.

At other times, they are not that clear.

Whether gender influences ability in technical sciences.
Most of us believe Smoking cause lung cancer,but the tobacco industry
has a different story:

s c

g

s c

Tobacco Industry

Surgeon General (1964)
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Manual Construction of Bayesian Networks Building structures

Working Definition of Causality

Imagine an all powerful agent, GOD, who can change the states of variables .

X causes Y if knowing that GOD has changed the state of X changes
your believe about Y .

Example:

“Smoking” and “yellow finger” are correlated.
If we force someone to smoke for sometime, his finger will probably
become yellow. So ”Smoking” is a cause of “yellow finger”.
If we paint someone’s finger yellow, that will not affect our belief on
whether s/he smokes. So “yellow finger” does not cause “smoking”.

Similar example with Earthquake and Alarm
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Manual Construction of Bayesian Networks Building structures

Causality

Coin tossing example revisited:

Knowing that GOD somehow made sure the coin drawn from the bag is a
fair coin would affect our belief on the results of tossing.

Knowing that GOD somehow made sure that the first tossing resulted in a
head does not affect our belief on the type of the coin.

So arrows go from coin type to results of tossing.

...

Coin 
Type

Toss n
Result

Toss 2
Result

Toss 1
Result
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Manual Construction of Bayesian Networks Building structures

Use of Causality: Issue 2

Adventure

X−ray Dyspnea

Bronchitis

Smoking

Lung CancerTuberculosis

Causality ⇒ network structure (building process)

Network structure ⇒ conditional independence (Semantics of BN)

The causal Markov assumption bridges causality and conditional independence:

A variable is independent of all its non-effects (non-descendants) given its
direct causes (i.e. parents).

We make this assumption if we determine Bayesian network structure using
causality.
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Manual Construction of Bayesian Networks Determining Parameters

Determining probability parameters

Later in this course, we will discuss in detail how to learn parameters from
data.

We will not be so much concerned with eliciting probability values from
experts.

However, people do that some times. In such a case, one would want the
number of parameters be as small as possible.

The rest of the lecture describe two concepts for reducing the number of
parameters:

Causal Independence.
Context-specific independence.

Left to students as reading materials.
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Manual Construction of Bayesian Networks Determining Parameters

Determining probability parameters

Sometimes conditional probabilities are given by domain theory¶

Genetic inheritance in Stud (horse) farm
(Jensen, F. V. (2001). Bayesian networks and decision graphs.
Springer.):

P(Child|Father, Mother)
aa aA AA

aa (1, 0, 0) (.5, .5, 0) (0, 1, 0)
aA (.5, .5, 0) (.25, .5, 25) (0, .5, .5)
AA (0, 1, 0) (0, .5, .5) (0, 0, 1)

Genotypes: aa - sick, aA - carrier, AA - pure.
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Manual Construction of Bayesian Networks Determining Parameters

Determining probability parameters

Sometimes, we need to get the numbers from the experts.

This is a time-consuming and difficult process.
Nonetheless, many networks have been built. See Bayesian Network
Repository at
http://www.cs.huji.ac.il/labs/compbio/Repository/

Combine experts’ knowledge and data

Use assessments by experts as a start point.
When data become available, combine data and experts’ assessments.
As more and more data become available, influence of experts is
automatically reduced.

We will show how this can be done when discussing parameter learning.

Note: Much of the course will be about how to learning Bayesian networks
(structures and parameters) from data.
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Manual Construction of Bayesian Networks Determining Parameters

Reducing the number of parameters

Let E be a variable in a BN and let C1, C2, . . . , Cm be its parents.

C2 CmC1

E

....

The size of the conditional probability P(E |C1, C2, . . . , Cm) is exponential in
m.

This poses a problem for knowledge acquisition, learning, and inference.

In application, there usually exist local structures that one can exploit to
reduce the size of conditional probabilities
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Manual Construction of Bayesian Networks Determining Parameters

Causal independence

Causal independence refers to the situation where

the causes C1, C2 . . . , and Cm influence E independently.
In other words, the ways by which the Ci ’s influence e are independent.

Burglary Earthquake

Alarm

Earthquake

Alarm

Burglary

(A  )e(A  )b
Alarm-due-to-EarthquakeAlarm-due-to-Burglary

Example:

Burglary and earthquake trigger alarm independently.
Precise statement: Ab and Ae are independent.
A = Ab ∨ Ae , hence Noisy-OR gate (Good 1960).
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Manual Construction of Bayesian Networks Determining Parameters

Causal Independence

C1 C2
Cm

E

....1 2 mξ ξ ξ

*

Formally, C1, C2 . . . , and Cm are said to be causally independent w.r.t
effect E if

there exist random variables ξ1, ξ2 . . . , and ξm such that
1 For each i , ξi probabilistically depends on Ci and is conditionally

independent of all other Cj ’s and all other ξj ’s given Ci , and
2 There exists a commutative and associative binary operator ∗ over the

domain of e such that

E = ξ1∗ξ2∗ . . . ∗ξm

.
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Manual Construction of Bayesian Networks Determining Parameters

Causal Independence

C1 C2
Cm

E

....1 2 mξ ξ ξ

*

In words, individual contributions from different causes are independent and
the total influence on effect is a combination of the individual contributions.

ξi – contribution of Ci to E .

* – base combination operator.

E – independent cause (IC) variable. Known as convergent variable in
Zhang & Poole (1996).
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Manual Construction of Bayesian Networks Determining Parameters

Causal Independence

Example: Lottery

Ci : money spent on buying lottery of type i .
E : change of wealth.
ξi : change in wealth due to buying the ith type lottery.
Base combination operator: “+”. (Noisy-adder)

Other causal independence models:

1 Noisy MAX-gate — max
2 Noisy AND-gate — ∧
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Manual Construction of Bayesian Networks Determining Parameters

Causal Independence

Theorem (2.1)

If C1, C2, . . . , Cm are causally independent w.r.t E ,then the conditional
probability P(E |C1, . . . , Cm) can be obtained from the conditional probabilities
P(ξi |Ci ) through

P(E=e|C1, . . . , Cm) =
∑

α1∗...∗αk=e

P(ξ1=α1|C1). . .P(ξm=αm|Cm), (1)

for each value e of E . Here ∗ is the base combination operator of E .

See Zhang and Poole (1996) for the proof.
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Manual Construction of Bayesian Networks Determining Parameters

Causal Independence

Notes:

Causal independence reduces model size:

In the case of binary variable, it reduces model sizes from 2m+1 to 4m.
Examples: CPSC, Carpo

It can also be used to speed up inference (Zhang and Poole 1996).

Relationship with logistic regression? (Potential term project)
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Manual Construction of Bayesian Networks Determining Parameters

Parent divorcing

Another technique to reduce the number of parameters

Adventure

X−ray Dyspnea

Bronchitis

Smoking

Lung CancerTuberculosis

Tuberculosis Lung Cancer

Smoking

Bronchitis

DyspneaX-ray

Tuberculosis or
Lung Cancer

Adventure

Top figure: A more natural model for the
Travel example. But it requires
1+1+2+2+2+4+8=20 parameters.

Low figure: requires only
1+1+2+2+2+4+2+4=18 parameters.

The difference would be bigger if, for
example, D have other parents.

The trick is to introduce a new node
(TB-or-LC).

It divorces T and L from the other parent
B of D.

Note that the trick would not help if the
new node TB-or-LC has 4 or more states.
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Manual Construction of Bayesian Networks Determining Parameters

Context specific independence (CSI)

Let C be a set of variables. A context on C is an assignment of one value
to each variable in C.

We denote a context by C=c, where c is a set of values of variables in C.

Two contexts are incompatible if there exists a variable that is assigned
different values in the contexts.

They are compatible otherwise.
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Manual Construction of Bayesian Networks Determining Parameters

Context-specific independence

Let X, Y, Z, and C be four disjoint sets of variables.

X and Y are independent given Z in context C=c if

P(X|Z,Y,C=c) = P(X|Z,C=c)

whenever P(Y,Z,C=c)>0.

When Z is empty, one simply says that X and Y are independent in
context C=c.
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Manual Construction of Bayesian Networks Determining Parameters

Context-specific independence

GenderAge

Number of
Pregnancies

Shafer’s Example:

Number of pregnancies (N) is independent of Age (A) in the context
Gender=Male (G=m).

P(N |A, G=m) = P(N |G=m)

Number of parameters reduced by (|A|−1)(|N |−1).
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Manual Construction of Bayesian Networks Determining Parameters

Context-specific independence

Weather
(W)   (Q)

Qualification

(I)
Income

(P)
Profession 

 P(I|W, P, Q)

Income independent of Weather in
context Profession=Programmer.

P(I |W , P=Prog , Q) = P(I |P=Prog , Q)

Income independent of Qualification in
context Profession=Farmer.

P(I |W , P=Farmer , Q) = P(I |W , P=Farmer)

Number of parameters reduced by:
(|W |−1)|Q|(|I |−1) + (|Q|−1)|W |(|I |−1)

CSI can also be exploited to speed up
inference (Zhang and Poole 1999).
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Remarks

Reasons for the popularity of Bayesian networks

It’s graphical language is intuitive and easy to understand because it
captures what might be called “intuitive causality”.

Pearl (1986) claims that it is a model for human’s inferential reasoning:

Notations of dependence and conditional dependence are basic to
human reasoning.
The fundamental structure of human knowledge can be represented by
dependence graphs.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 54 / 55



Remarks

Reasons for the popularity of Bayesian networks

In practice, the graphical language

Functions as a convenient language to organizes one’s knowledge about
a domain.
Facilitates interpersonal communication.

On the other hand, the language is well-defined enough to allow computer
processing.

Correctness of results guaranteed by probability theory.

For probability theory, Bayesian networks provide a whole new perspective:

“Probability is not really about numbers; It is about the structure of
reasoning.” (Glenn Shafer)
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