COMP538: Introduction to Bayesian Networks Lecture 3: Probabilistic Independence and Graph Separation

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Fall 2008

Objective

- Objective:
 - Discusses the relationship between probabilistic independence and graph separation in Bayesian networks.
 - Given a BN structure, a DAG, what independence relationships are represented?
 - Given a joint distribution, under what conditions can the independence relationships it entails be represented using a DAG? How much?
- Reading: Zhang & Guo: Chapter 3
- Reference: Jensen (2001), Cowell *et al.* (1999), Chapter 5.

An Intuitive Account

Outline

1 An Intuitive Account

- Special Cases
- The General Case

2 D-Separation and Independence

- Some Lemmas
- Proof of Main Result
- Corollaries

3 Representing Independence using DAG

An Intuitive Account

Intuitive Meaning of Independence

- Given: A Bayesian network and two variables X and Y.
- Question:
 - Are X and Y independent?
 - What are the (graph-theoretic) conditions under which X and Y are independent?
- We will try to answer this question based on intuition.
- This exercise will leads to the concept of d-separation.
- Intuitive meaning of independence:
 - X and Y are dependent under some condition C iff knowledge about one influences belief about the other under C.
 - X and Y are independent under some condition C iff knowledge about one does not influence belief about the other under C.

Case 1: Direction connection

- If X and Y are connected by an edge, then X and Y are dependent (under the empty condition).
- Information can be transmitted over one edge.

Example:

- Burglary and Alarm are dependent:
 - My knowing that a burglary has taken place increases my belief that the alarm went off.
 - My knowing that the alarm went off increases my belief that there has been a burglary.

Nevin L. Zhang (HKUST)

Case 2: Serial connection

- If Z is not observed, X and Y are dependent.
- Information can be transmitted between *X* and *Y* through *Z* if *Z* is not observed.
- If Z is observed, X and Y are independent.
- Information cannot be transmitted between *X* and *Y* through *Z* if *Z* is observed. Observing *Z* blocks the information path.

Case 2: Serial connection/Example

- My knowing that a burglary has taken place increases my belief on Marry call.
- My knowing that Marry called increases my belief on burglary.
- If A is observed, B and M are conditionally independent :
 - If I already know that the alarm went off.
 - My further knowing that a burglary has taken place would not increases my belief on Marry call.
 - My further knowing that Marry called would not increases my belief on burglary.

Case 3: Diverging connection (common cause)

- If Z is not observed, X and Y are dependent.
- Information can be transmitted through *Z* among children of *Z* if *Z* is not observed.
- If Z is observed, X and Y are independent.
- Information cannot be transmitted through *Z* among children of *Z* if *Z* is observed. Observing *Z* blocks the information path.

Case 3: Diverging connection/Example

- If A is not observed, J and M are dependent:
 - My knowing that John called increases my belief on Marry call.
 - My knowing that Marry called increases my belief on John call.
- If A is observed, J and M are conditionally independent:
 - If I already know that the alarm went off.
 - My further knowing that John called would not increase my belief on Marry call.
 - My further knowing that Marry called would not increase my belief on John call.

Case 4: Converging connection (common effect)

- If neither Z nor any of its descendant are observed, X and Y are independent.
- Information cannot be transmitted through Z among parents of Z.
 It leaks down Z and its descendants.
- If Z or any of its descendant is observed, X and Y are dependent.
- Information can be transmitted through Z among parents of Z if Z or any of its descendants are observed.
 Observing Z or its descendants opens the information path.

Case 4: Converging connection/Example

- E and B are conditionally dependent if A is observd:
 - If I already know that the alarm went off,
 - My further knowing that there has been a earthquake decreases my belief on Burglary.
 - My further knowing that there has been a burglary decreases my belief on earthquake.

Explaining away.

- E and B are conditionally dependent if M is observed:
 - Observing Marry call gives us some information about Alarm. So we are back to the previous case.
- E and B are marginally independent (if A, M and J not observed).

Hard Evidence and Soft Evidence

- Hard evidence on a variable: The value of the variable is directly observed.
- **Soft evidence** on a variable: The value of the variable is NOT directly observed. However the value of a descendant is observed.

The rules restated:

- Hard evidence blocks information path in the case of serial and diverging connection
- Both hard and soft evidence are enough for opening of information path in the case of converging connection.

Blocked Paths

A path between X and Y is **blocked** by a set **Z** of nodes if

- 1 Either that path contains a node Z that is in **Z** and the connection at Z is either serial or diverging.
- 2 Or that the path contains a node W such that W and its descendants are not in Z and the connection at W is a converging connection.

Blocked Paths

- Suppose all variables in **Z** are the observed variables.
- Then a path between X and Y being blocked by **Z** implies:
 - Either information cannot be transmitted through Z because observing Z blocks that path.
 - 2 Or information cannot be transmitted through W, it leaks through W.

In both cases, information cannot be transmitted between X and Y along the path.

■ If path is not blocked, on the other hand, information CAN flow between X and Y.

D-separation

- Two nodes X and Y are **d-separated** by a set **Z** if
 - All paths between X and Y are blocked by Z.
- Theorem 3.1:
 - If X and Y are d-separated by Z, then $X \perp Y | Z$.
- It should be pointed out that this conclusion is derived from intuition.
- One of the main tasks in this lecture is to rigorously show that the conclusion is indeed true.

Examples

- A d-separated (by empty set) from C, F, G, J
- A d-separated by $\{M, B\}$ from G
- A d-separated by $\{E, K, L\}$ from M
- I d-separated by $\{E, K, L\}$ from M

Exercise: Try more examples on your own.

Outline

An Intuitive Account
Special Cases
The General Case

- 2 D-Separation and Independence
 - Some Lemmas
 - Proof of Main Result
 - Corollaries

3 Representing Independence using DAG

Ancestral Sets

- Let **X** be a set of nodes in a Bayesian network.
- The ancestral set an(X) of X consists of
 - All nodes in X and all the ancestors of nodes in X.

• Example: The ancestral set of $\{I, G\}$ consists of

 $\{I, G, A, B, C, D, E\}$

■ We say that X is ancestral if

$$\mathbf{X} = an(\mathbf{X})$$

A leaf node is one without children. Examples:
M, L

A Lemma

Lemma (3.1)

Suppose \mathcal{N} is a Bayesian network, and Y is a leaf node. Let \mathcal{N}' be the Bayesian network obtained from \mathcal{N} by removing Y. Let \mathbf{X} be the set of all nodes in \mathcal{N}' . Then

$$P_{\mathcal{N}}(\mathbf{X}) = P_{\mathcal{N}'}(\mathbf{X}).$$

Proof

$$P_{\mathcal{N}}(\mathbf{X}) = \sum_{Y} P_{\mathcal{N}}(\mathbf{X}, Y)$$

=
$$\sum_{Y} [\prod_{W \in \mathbf{X}} P(W|pa(W))]P(Y|pa(Y))$$

=
$$\prod_{W \in \mathbf{X}} P(W|pa(W)) \sum_{Y} P(Y|pa(Y))$$

=
$$\prod_{W \in \mathbf{X}} P(W|pa(W))$$

=
$$P_{\mathcal{N}'}(\mathbf{X})$$

A Lemma

- The third equality is true because, being a leaf node, Y is not in X and cannot be in any pa(W) for any $W \in X$.
- The fourth equality is true because probability sum to one. Q.E.D

First Proposition

Proposition (3.1)

Let **X** be a set of nodes in a Bayesian network \mathcal{N} . Suppose **X** is ancestral. Let \mathcal{N}' be the Bayesian network obtained from \mathcal{N}' by removing all nodes outside **X**. Then,

$$P_{\mathcal{N}}(\mathbf{X}) = P_{\mathcal{N}'}(\mathbf{X}).$$

Proof:

- Consider the following procedure
 - While there are nodes outside X,
 - Find a leaf node. (There must be one. Exercise.)
 - Remove it.
- Afterwards, we get \mathcal{N}' .
- And according to Lemma 3.1, the probability distribution of X remains unchanged throughout the procedure.
- The proposition is hence proved. Q.E.D.

Second Proposition

Proposition (3.2)

Let X, Y, and Z be three disjoint sets of nodes in a Bayesian network such that their union is the set of all nodes.

 $\blacksquare \ If \ \textbf{Z} \ d\text{-separates} \ \textbf{X} \ and \ \textbf{Y}, \ then$

 $\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}$

Proof:

- Let Z_1 be the set of nodes in Z that have parents in X. And let $Z_2 = Z \setminus Z_1$.
- Because Z d-separates X and Y,
 - For any $W \in \mathbf{X} \cup \mathbf{Z}_1$, $pa(W) \subseteq \mathbf{X} \cup \mathbf{Z}$.
 - For any $W \in \mathbf{Y} \cup \mathbf{Z}_2$, $pa(W) \subseteq \mathbf{Y} \cup \mathbf{Z}$.

Proof Second Proposition (cont'd)

Consider

$$P(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) = \prod_{W \in \mathbf{X} \cup \mathbf{Z} \cup \mathbf{Y}} P(W|pa(W))$$

=
$$[\prod_{W \in \mathbf{X} \cup \mathbf{Z}_1} P(W|pa(W))][\prod_{W \in \mathbf{Z}_2 \cup \mathbf{Y}} P(W|pa(W))]$$

Note that

- $\prod_{W \in \mathbf{X} \cup \mathbf{Z}_1} P(W|pa(W))$ is a function of **X** and **Z** $\prod_{W \in \mathbf{Z}_2 \cup \mathbf{Y}} P(W|pa(W))$ is a function of **Z** and **Y**.
- It follows from Proposition 1.1 (of Lecture 1) that

$X \perp Y | Z$

Q.E.D

Global Markov property

Theorem (3.1)

Given a Bayesian network, let X and Y be two variables and Z be a set of variables that does not contain X or Y. If Z d-separates X and Y, then

$X \perp Y | \mathbf{Z}$

Proof:

- Because of Proposition 3.1, we can assume that $an({X, Y} \cup Z)$ equals the set of all nodes.
 - $X \perp Y | \mathbf{Z}$ in original network iff it is true in the restriction onto the ancestral set.
 - Z d-separates X and Y in original network iff it is true in the restriction onto the ancestral set. (Exercise)

Proof of Global Markov property (cont'd)

- **Let X** be the set of all nodes that are NOT d-separated from X by \mathbf{Z} .
- Let Y be the set of all nodes that are neither in X or Z.
- Because of Proposition 3.2, $\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}$.
- Because of Proposition 1.1, there must exist functions $f(\mathbf{X}, \mathbf{Z})$ and $g(\mathbf{Z}, \mathbf{Y})$ such that

$$P(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) = f(\mathbf{X}, \mathbf{Z})g(\mathbf{Z}, \mathbf{Y})$$

• Note that $X \in \mathbf{X}$ and $Y \in \mathbf{Y}$.

• Let
$$\mathbf{X}' = \mathbf{X} \setminus \{X\}$$
 and $\mathbf{Y}' = \mathbf{Y} \setminus \{Y\}$.

We have

$$P(X, \mathbf{X}', \mathbf{Z}, Y, \mathbf{Y}') = f(X, \mathbf{X}', \mathbf{Z})g(\mathbf{Z}, Y, \mathbf{Y}')$$

Proof of Global Markov property (cont'd)

Consequently

$$P(X, Y, \mathbf{Z}) = \sum_{\mathbf{X}', \mathbf{Y}'} P(X, \mathbf{X}', \mathbf{Z}, Y, \mathbf{Y}')$$

$$= \sum_{\mathbf{X}', \mathbf{Y}'} f(X, \mathbf{X}', \mathbf{Z}) g(\mathbf{Z}, Y, \mathbf{Y}')$$

$$= [\sum_{\mathbf{X}'} f(X, \mathbf{X}', \mathbf{Z})] [\sum_{\mathbf{Y}'} g(\mathbf{Z}, Y, \mathbf{Y}')]$$

$$= f'(X, \mathbf{Z}) g'(\mathbf{Z}, Y)$$

That is

 $X \perp Y | \mathbf{Z}$

Q.E.D

Markov blanket

- In a Bayesian network, the Markov blanket of a node X is the set consisting of
 - Parents of X
 - Children of X
 - Parents of children of X
- Example:

The Markov blanket of I is $\{E, H, J, K, L\}$

Markov blanket

Corollary (3.1)

In a Bayesian network, a variable X is conditionally independent of all other variables given its Markov blanket.(This is why it is so called.)

Proof:

- Because of Theorem 3.1, it suffices to show that
 - **The Markov blanket of** X d-separates X from all other nodes.
- This is true because, in any path from X to outside its Markov blanket, the connection at that last node before leaving the blanket is either serial or diverging. Q.E.D

Local Markov property

Corollary (3.2)

(Local Markov property) In a Bayesian network, a variable X is independent of all its non-descendants given its parents.

Proof:

- Because of Theorem 3.1, it suffices to show that
 - \square pa(X) d-separates X from the non-descendants of X.
- Consider a path between X and a non-descendant Y. Let Z be the neighbor of X on the path.
 - Case 1: $Z \in pa(X)$,
 - The connection at Z is not converging because we have $Z \rightarrow X$.
 - Hence, path is blocked by pa(X).
 - Case 2: $Z \notin pa(X)$:
 - \blacksquare Moving downward from Z, we can reach a converging node on the path.
 - The converging node and its descendants are not in pa(X).
 - The path is blocked by pa(X).

Some Notes

- The local Markov property was first mentioned in Lecture 2, when introducing the concept of BN. It is now proved.
- This also explains why we need to make the causal Markov assumption when we causality to build BN structure (slide 36 of Lecture 2):
 - If you use a causal network as a Bayesian network, then we are assuming that causality implies the local Markov property.

Outline

An Intuitive AccountSpecial Cases

- The General Case
- 2 D-Separation and Independence
 - Some Lemmas
 - Proof of Main Result
 - Corollaries

3 Representing Independence using DAG

Representing independence using DAG

- A joint distribution *P*(**V**) entails conditional independence relationships among variables:
 - Use X ⊥_P Y |Z denotes the fact that, under P, X and Y are conditional independent given Z, i.e.,

$$P(\mathbf{X}, \mathbf{Y} | \mathbf{Z}) = P(\mathbf{X} | \mathbf{Z}) P(\mathbf{Y} | \mathbf{Z})$$
 whenever $P(\mathbf{Z}) > 0$

- In a DAG \mathcal{G} , there D-separation relationships:
 - Use $S_{\mathcal{G}}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ denotes that the fact that \mathbf{Z} d-separates \mathbf{X} and \mathbf{Y} in \mathcal{G} .

Representing independence using DAG

■ *P*(**V**) obeys the **global Markov property** according to *G* if for any three disjoint subsets of variables **X**, **Y**, and **Z**.

 $S_{\mathcal{G}}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ implies $\mathbf{X} \perp_{P} \mathbf{Y} | \mathbf{Z}$

- When it is the case, we say that *G* **represents** some of the independence relationships entailed by *P*:
 - We can identify independence under P by examining \mathcal{G} .
- When can we use a DAG *G* to represent independence relationships entailed by a joint distribution *P*?

Factorization

• $P(\mathbf{V})$ factorizes according to \mathcal{G} if there exists a Bayesian network such that

- \blacksquare Its network structure us ${\cal G}$
- The joint probability it represents is $P(\mathbf{V})$.

Representing Independence using DAG

Local Makov properties

• $P(\mathbf{V})$ obeys the **local Markov property** according to \mathcal{G} if for any variable X

$$X \perp_P \mathsf{nd}_{\mathcal{G}}(X) | \mathsf{pa}_{\mathcal{G}}(X)$$

where nd(X) stands for the set of non-descendants of X.

Factorization and independence

Theorem (3.2)

Let $P(\mathbf{V})$ be a joint probability and \mathcal{G} be a DAG over a set of variables \mathbf{V} . The following statements are equivalent:

- 1 $P(\mathbf{V})$ factorizes according to \mathcal{G} .
- 2 $P(\mathbf{V})$ obeys the global Markov property according to \mathcal{G} .
- 3 $P(\mathbf{V})$ obeys the local Markov property according to $\mathcal G$

Proof:

- 1 \Rightarrow 2: Theorem 3.1.
- $2 \Rightarrow 3$: Corollary 3.2.

Representing Independence using DAG

Proof of Theorem 3.2 (cont'd)

 \blacksquare 3 \Rightarrow 1:

- Induction on the number of nodes.
- Trivially true where there is only one node.
- Suppose true in the case of n-1 nodes.
- Consider the case of n nodes.
 - Let X be a leaf node in \mathcal{G} , $\mathbf{V}' = \mathbf{V} \setminus \{X\}$.
 - By (3), X is independent of all other nodes given pa(X).

Hence

$$P(\mathbf{V}) = P(\mathbf{V}')P(X|\mathbf{V}') = P(\mathbf{V}')P(X|pa(X))$$

- Let \mathcal{G}' be obtained from \mathcal{G} by removing X.
- Then $P(\mathbf{V}')$ obeys the local Markov property according to \mathcal{G}' .
- Since there are only n-1 nodes in **V**', $P(\mathbf{V}')$ factorizes according to \mathcal{G}' .
- Hence $P(\mathbf{V})$ factorizes according to \mathcal{G} .
- The theorem is proved. Q.E.D

I-Map and D-Map

■ G is an I-map of P(V) if for any three disjoint subsets of variables X, Y, and Z:

 $S_{\mathcal{G}}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ implies $\mathbf{X} \perp_{P} \mathbf{Y} | \mathbf{Z}$

i.e. d-Separation in DAG implies independence.

G is an **D-map** of $P(\mathbf{V})$ if

 $\textbf{X} \perp_{P} \textbf{Y} | \textbf{Z} \text{ implies } S_{\mathcal{G}}(\textbf{X},\textbf{Y},\textbf{Z})$

i.e. Independence implies separation in DAG. Non-separation implies dependence.

\square \mathcal{G} is an **perfect map** of $P(\mathbf{V})$ if

■ it is both an I-map and a D-map.

This is ideal case. But there are joint distributions that do not have perfect maps. (Can you think of one?)

I-Map and D-Map

- Adding an edge in an I-map results in another I-map. (Exercise)
- Deleting an edge in a D-map results in another D-Map. (Exercise)
- A minimal I-map of $P(\mathbf{V})$ is an I-map such that deletion of one edge will render the graph a non-I-map.
- When constructing BN structure following the procedure given on Slide 24 of Lecture 2,
 - If $pa(X_i)$ is selected to be minimal, then resulting network is an I-map of *P*.