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Objective

Objective:

Discusses the relationship between probabilistic independence and
graph separation in Bayesian networks.

Given a BN structure, a DAG, what independence relationships are
represented?
Given a joint distribution, under what conditions can the independence
relationships it entails be represented using a DAG? How much?

Reading: Zhang & Guo: Chapter 3

Reference: Jensen (2001), Cowell et al. (1999), Chapter 5.
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An Intuitive Account

Intuitive Meaning of Independence

Given: A Bayesian network and two variables X and Y .

Question:

Are X and Y independent?
What are the (graph-theoretic) conditions under which X and Y are
independent?

We will try to answer this question based on intuition.

This exercise will leads to the concept of d-separation.

Intuitive meaning of independence:

X and Y are dependent under some condition C iff knowledge about
one influences belief about the other under C .
X and Y are independent under some condition C iff knowledge about
one does not influence belief about the other under C .
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An Intuitive Account Special Cases

Case 1: Direction connection

If X and Y are connected by an edge, then X and Y are dependent (under
the empty condition).

Information can be transmitted over one edge.

Example:

   E

   J    M

   A

   B

Burglary and Alarm are dependent:

My knowing that a burglary has taken place increases my belief that
the alarm went off.
My knowing that the alarm went off increases my belief that there has
been a burglary.
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An Intuitive Account Special Cases

Case 2: Serial connection

ZX Y

If Z is not observed, X and Y are dependent.

Information can be transmitted between X and Y through Z if Z is
not observed.

If Z is observed, X and Y are independent.

Information cannot be transmitted between X and Y through Z if Z
is observed. Observing Z blocks the information path.
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An Intuitive Account Special Cases

Case 2: Serial connection/Example

   E

   J    M

   A

   B

If A not observed, B and M call are
dependent:

My knowing that a burglary has
taken place increases my belief on
Marry call.
My knowing that Marry called
increases my belief on burglary.

If A is observed, B and M are
conditionally independent :

If I already know that the alarm went
off,

My further knowing that a
burglary has taken place would not
increases my belief on Marry call.
My further knowing that Marry
called would not increases my
belief on burglary.
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An Intuitive Account Special Cases

Case 3: Diverging connection (common cause)

W....YX

Z

If Z is not observed, X and Y are dependent.

Information can be transmitted through Z among children of Z if Z is
not observed.

If Z is observed, X and Y are independent.

Information cannot be transmitted through Z among children of Z if
Z is observed. Observing Z blocks the information path.
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An Intuitive Account Special Cases

Case 3: Diverging connection/Example

   E

   J    M

   A

   B

If A is not observed, J and M are
dependent:

My knowing that John called
increases my belief on Marry call.
My knowing that Marry called
increases my belief on John call.

If A is observed, J and M are conditionally
independent:

If I already know that the alarm went
off,

My further knowing that John
called would not increase my
belief on Marry call.
My further knowing that Marry
called would not increase my
belief on John call.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 10 / 44



An Intuitive Account Special Cases

Case 4: Converging connection (common effect)

...

W

Z

YX

If neither Z nor any of its descendant are
observed, X and Y are independent.

Information cannot be transmitted
through Z among parents of Z .
It leaks down Z and its descendants.

If Z or any of its descendant is observed,
X and Y are dependent.

Information can be transmitted
through Z among parents of Z if Z or
any of its descendants are observed.
Observing Z or its descendants opens
the information path.
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An Intuitive Account Special Cases

Case 4: Converging connection/Example

   E

   J    M

   A

   B

E and B are conditionally dependent if A is observd:

If I already know that the alarm went off,

My further knowing that there has been a
earthquake decreases my belief on Burglary.
My further knowing that there has been a
burglary decreases my belief on earthquake.

Explaining away.

E and B are conditionally dependent if M is
observed:

Observing Marry call gives us some information
about Alarm. So we are back to the previous
case.

E and B are marginally independent (if A, M and J
not observed).
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An Intuitive Account Special Cases

Hard Evidence and Soft Evidence

Hard evidence on a variable: The value of the variable is directly observed.

Soft evidence on a variable: The value of the variable is NOT directly
observed. However the value of a descendant is observed.

The rules restated:

Hard evidence blocks information path in the case of serial and
diverging connection
Both hard and soft evidence are enough for opening of information
path in the case of converging connection.
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An Intuitive Account The General Case

Blocked Paths

WX Y

Z YX

X YZ

Z YX

A path between X and Y is blocked by a set Z of nodes if

1 Either that path contains a node Z that is in Z and the connection at Z is
either serial or diverging.

2 Or that the path contains a node W such that W and its descendants are
not in Z and the connection at W is a converging connection.
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An Intuitive Account The General Case

Blocked Paths

WX Y

Z YX

X YZ

Z YX

Suppose all variables in Z are the observed variables.

Then a path between X and Y being blocked by Z implies:

1 Either information cannot be transmitted through Z because observing
Z blocks that path.

2 Or information cannot be transmitted through W , it leaks through W .

In both cases, information cannot be transmitted between X and Y along
the path.

If path is not blocked, on the other hand, information CAN flow between X
and Y .
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An Intuitive Account The General Case

D-separation

Two nodes X and Y are d-separated by a set Z if

All paths between X and Y are blocked by Z.

Theorem 3.1:

If X and Y are d-separated by Z, then X ⊥ Y |Z.

It should be pointed out that this conclusion is derived from intuition.

One of the main tasks in this lecture is to rigorously show that the
conclusion is indeed true.
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An Intuitive Account The General Case

Examples

A

M

LK

G

J

F

IH

ED

CB A d-separated (by empty set) from C, F,
G, J

A d-separated by {M , B} from G

A d-separated by {E , K , L} from M

I d-separated by {E , K , L} from M

Exercise: Try more examples on your own.
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D-Separation and Independence Some Lemmas

Ancestral Sets

A

M

LK

G

J

F

IH

ED

CB

Let X be a set of nodes in a Bayesian network.

The ancestral set an(X) of X consists of

All nodes in X and all the ancestors of
nodes in X.

Example: The ancestral set of {I , G} consists of

{I , G , A, B, C , D, E}

We say that X is ancestral if

X = an(X)

A leaf node is one without children. Examples:
M, L
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D-Separation and Independence Some Lemmas

A Lemma

Lemma (3.1)

Suppose N is a Bayesian network, and Y is a leaf node. Let N ′ be the Bayesian
network obtained from N by removing Y . Let X be the set of all nodes in N ′.
Then

PN (X) = PN ′(X).

Proof

PN (X) =
∑

Y

PN (X, Y )

=
∑

Y

[
∏

W∈X

P(W |pa(W ))]P(Y |pa(Y ))

=
∏

W∈X

P(W |pa(W ))
∑

Y

P(Y |pa(Y ))

=
∏

W∈X

P(W |pa(W ))

= PN ′(X)
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D-Separation and Independence Some Lemmas

A Lemma

The third equality is true because, being a leaf node, Y is not in X and
cannot be in any pa(W ) for any W ∈ X.

The fourth equality is true because probability sum to one. Q.E.D
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D-Separation and Independence Some Lemmas

First Proposition

Proposition (3.1)

Let X be a set of nodes in a Bayesian network N . Suppose X is ancestral. Let N ′

be the Bayesian network obtained from N ′ by removing all nodes outside X.Then,

PN (X) = PN ′(X).

Proof:

Consider the following procedure

While there are nodes outside X,
Find a leaf node. (There must be one. Exercise.)
Remove it.

Afterwards, we get N ′.

And according to Lemma 3.1,the probability distribution of X remains
unchanged throughout the procedure.

The proposition is hence proved. Q.E.D.
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D-Separation and Independence Some Lemmas

Second Proposition

Proposition (3.2)

Let X, Y, and Z be three disjoint sets of nodes in a Bayesian network such that
their union is the set of all nodes.

If Z d-separates X and Y, then

X ⊥ Y|Z

X
2

1Z

Z
Y

Proof:

Let Z1 be the set of nodes in Z that have
parents in X. And let Z2 = Z \ Z1.

Because Z d-separates X and Y,

For any W ∈ X ∪ Z1,
pa(W ) ⊆ X ∪ Z.
For any W ∈ Y ∪ Z2,
pa(W ) ⊆ Y ∪ Z.
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D-Separation and Independence Some Lemmas

Proof Second Proposition (cont’d)

Consider

P(X,Z,Y) =
∏

W∈X∪Z∪Y

P(W |pa(W ))

= [
∏

W∈X∪Z1

P(W |pa(W ))][
∏

W∈Z2∪Y

P(W |pa(W ))]

Note that
∏

W∈X∪Z1
P(W |pa(W )) is a function of X and Z∏

W∈Z2∪Y P(W |pa(W )) is a function of Z and Y.

It follows from Proposition 1.1 (of Lecture 1) that

X ⊥ Y|Z

Q.E.D
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D-Separation and Independence Proof of Main Result

Global Markov property

Theorem (3.1)

Given a Bayesian network, let X and Y be two variables and Z be a set of
variables that does not contain X or Y . If Z d-separates X and Y , then

X ⊥ Y |Z

Proof:

Because of Proposition 3.1, we can assume that an({X , Y } ∪ Z) equals the
set of all nodes.

X ⊥ Y |Z in original network iff it is true in the restriction onto the
ancestral set.
Z d-separates X and Y in original network iff it is true in the
restriction onto the ancestral set. (Exercise)
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D-Separation and Independence Proof of Main Result

Proof of Global Markov property (cont’d)

Let X be the set of all nodes that are NOT d-separated from X by Z.

Let Y be the set of all nodes that are neither in X or Z.

Because of Proposition 3.2, X ⊥ Y|Z.

Because of Proposition 1.1, there must exist functions f (X,Z) and g(Z,Y)
such that

P(X,Z,Y) = f (X,Z)g(Z,Y)

Note that X ∈ X and Y ∈ Y.

Let X′ = X \ {X} and Y′ = Y \ {Y }.

We have
P(X ,X′,Z, Y ,Y′) = f (X ,X′,Z)g(Z, Y ,Y′)
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D-Separation and Independence Proof of Main Result

Proof of Global Markov property (cont’d)

Consequently

P(X , Y ,Z) =
∑

X′
,Y′

P(X ,X′,Z, Y ,Y′)

=
∑

X′
,Y′

f (X ,X′,Z)g(Z, Y ,Y′)

= [
∑

X′

f (X ,X′,Z)][
∑

Y′

g(Z, Y ,Y′)]

= f ′(X ,Z)g ′(Z, Y )

That is
X ⊥ Y |Z

Q.E.D
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D-Separation and Independence Corollaries

Markov blanket

In a Bayesian network, the Markov blanket of a node X is the set
consisting of

Parents of X
Children of X
Parents of children of X

Example:

A

M

LK

G

J

F

IH

ED

CB

The Markov blanket of I is {E , H , J, K , L}
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D-Separation and Independence Corollaries

Markov blanket

Corollary (3.1)

In a Bayesian network, a variable X is conditionally independent of all other
variables given its Markov blanket.(This is why it is so called.)

Proof:

Because of Theorem 3.1, it suffices to show that

The Markov blanket of X d-separates X from all other nodes.

This is true because, in any path from X to outside its Markov blanket,
the connection at that last node before leaving the blanket is either
serial or diverging. Q.E.D
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D-Separation and Independence Corollaries

Local Markov property

Corollary (3.2)

(Local Markov property) In a Bayesian network, a variable X is independent of
all its non-descendants given its parents.

Proof:

Because of Theorem 3.1, it suffices to show that

pa(X ) d-separates X from the non-descendants of X .

Consider a path between X and a non-descendant Y . Let Z be the neighbor
of X on the path.

Case 1: Z ∈ pa(X ),
The connection at Z is not converging because we have Z → X .
Hence, path is blocked by pa(X ).

Case 2: Z /∈ pa(X ):
Moving downward from Z , we can reach a converging node on the
path.
The converging node and its descendants are not in pa(X ).
The path is blocked by pa(X ).
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D-Separation and Independence Corollaries

Some Notes

The local Markov property was first mentioned in Lecture 2, when
introducing the concept of BN. It is now proved.

This also explains why we need to make the causal Markov assumption when
we causality to build BN structure (slide 36 of Lecture 2):

If you use a causal network as a Bayesian network, then we are
assuming that causality implies the local Markov property.
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Representing Independence using DAG

Representing independence using DAG

A joint distribution P(V) entails conditional independence relationships
among variables:

Use X ⊥P Y|Z denotes the fact that, under P , X and Y are
conditional independent given Z, i.e.,

P(X,Y|Z) = P(X|Z)P(Y|Z) whenever P(Z) > 0

In a DAG G, there D-separation relationships:

Use SG(X,Y,Z) denotes that the fact that Z d-separates X and Y in G.
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Representing Independence using DAG

Representing independence using DAG

P(V) obeys the global Markov property according to G if for any three
disjoint subsets of variables X, Y, and Z.

SG(X,Y,Z) implies X ⊥P Y|Z

When it is the case, we say that G represents some of the independence
relationships entailed by P :

We can identify independence under P by examining G.

When can we use a DAG G to represent independence relationships entailed
by a joint distribution P?
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Representing Independence using DAG

Factorization

P(V) factorizes according to G if there exists a Bayesian network such that

Its network structure us G
The joint probability it represents is P(V).

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 39 / 44



Representing Independence using DAG

Local Makov properties

P(V) obeys the local Markov property according to G if for any variable X

X ⊥P ndG(X )|paG(X )

where nd(X ) stands for the set of non-descendants of X .
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Representing Independence using DAG

Factorization and independence

Theorem (3.2)

Let P(V) be a joint probability and G be a DAG over a set of variables V.The
following statements are equivalent:

1 P(V) factorizes according to G.

2 P(V) obeys the global Markov property according to G.

3 P(V) obeys the local Markov property according to G

Proof:

1 ⇒ 2: Theorem 3.1.

2 ⇒ 3: Corollary 3.2.
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Representing Independence using DAG

Proof of Theorem 3.2 (cont’d)

3 ⇒ 1:

Induction on the number of nodes.
Trivially true where there is only one node.
Suppose true in the case of n−1 nodes.
Consider the case of n nodes.

Let X be a leaf node in G, V′ = V \ {X}.
By (3), X is independent of all other nodes given pa(X ).
Hence

P(V) = P(V′)P(X |V′) = P(V′)P(X |pa(X )

Let G′ be obtained from G by removing X .
Then P(V′) obeys the local Markov property according to G′.
Since there are only n−1 nodes in V′, P(V′) factorizes according to G′.
Hence P(V) factorizes according to G.

The theorem is proved. Q.E.D

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 42 / 44



Representing Independence using DAG

I-Map and D-Map

G is an I-map of P(V) if for any three disjoint subsets of variables X, Y, and
Z:

SG(X,Y,Z) implies X ⊥P Y|Z

i.e. d-Separation in DAG implies independence.

G is an D-map of P(V) if

X ⊥P Y|Z implies SG(X,Y,Z)

i.e. Independence implies separation in DAG. Non-separation implies
dependence.

G is an perfect map of P(V) if

it is both an I-map and a D-map.

This is ideal case. But there are joint distributions that do not have perfect
maps. (Can you think of one?)
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Representing Independence using DAG

I-Map and D-Map

Adding an edge in an I-map results in another I-map. (Exercise)

Deleting an edge in a D-map results in another D-Map. (Exercise)

A minimal I-map of P(V) is an I-map such that deletion of one edge will
render the graph a non-I-map.

When constructing BN structure following the procedure given on Slide 24
of Lecture 2,

If pa(Xi ) is selected to be minimal, then resulting network is an I-map
of P .
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