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Objective

m Objective:

m Discusses the relationship between probabilistic independence and
graph separation in Bayesian networks.

m Given a BN structure, a DAG, what independence relationships are
represented?

m Given a joint distribution, under what conditions can the independence
relationships it entails be represented using a DAG? How much?

m Reading: Zhang & Guo: Chapter 3
m Reference: Jensen (2001), Cowell et al. (1999), Chapter 5.
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An Intuitive Account

Intuitive Meaning of Independence

m Given: A Bayesian network and two variables X and Y.

m Question:

m Are X and Y independent?
m What are the (graph-theoretic) conditions under which X and Y are
independent?

We will try to answer this question based on intuition.

m This exercise will leads to the concept of d-separation.

m Intuitive meaning of independence:

m X and Y are dependent under some condition C iff knowledge about
one influences belief about the other under C.

m X and Y are independent under some condition C iff knowledge about
one does not influence belief about the other under C.
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An Intuitive Account  Special Cases

Case 1: Direction connection
m If X and Y are connected by an edge, then X and Y are dependent (under

the empty condition).

m Information can be transmitted over one edge.

Example:

m Burglary and Alarm are dependent:

m My knowing that a burglary has taken place increases my belief that
the alarm went off.

m My knowing that the alarm went off increases my belief that there has
been a burglary.
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An Intuitive Account  Special Cases

Case 2: Serial connection

B—=0—=0

m If Z is not observed, X and Y are dependent.

m Information can be transmitted between X and Y through Z if Z is
not observed.

m If Z is observed, X and Y are independent.

m Information cannot be transmitted between X and Y through Z if Z
is observed. Observing Z blocks the information path.
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An Intuitive Account  Special Cases

Case 2: Serial connection/Example

m If A not observed, B and M call are
dependent:

m My knowing that a burglary has
taken place increases my belief on
Marry call.

m My knowing that Marry called
increases my belief on burglary.

m If A is observed, B and M are
conditionally independent :

m If | already know that the alarm went
off,

m My further knowing that a
burglary has taken place would not
increases my belief on Marry call.

m My further knowing that Marry
called would not increases my
belief on burglary.
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An Intuitive Account  Special Cases

Case 3: Diverging connection (common cause)

m If Z is not observed, X and Y are dependent.

m Information can be transmitted through Z among children of Z if Z is
not observed.

m If Z is observed, X and Y are independent.

m Information cannot be transmitted through Z among children of Z if
Z is observed. Observing Z blocks the information path.
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An Intuitive Account  Special Cases

Case 3: Diverging connection/Example

m If A is not observed, J and M are
dependent:

m My knowing that John called
increases my belief on Marry call.

m My knowing that Marry called
increases my belief on John call.

m If A is observed, J and M are conditionally
independent:

m If | already know that the alarm went
off,

m My further knowing that John
called would not increase my
belief on Marry call.

m My further knowing that Marry
called would not increase my
belief on John call.
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An Intuitive Account  Special Cases

Case 4: Converging connection (common effect)

N

i
w
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m If neither Z nor any of its descendant are

observed, X and Y are independent.

m Information cannot be transmitted

through Z among parents of Z.
It leaks down Z and its descendants.

m If Z or any of its descendant is observed,

X and Y are dependent.

m Information can be transmitted

through Z among parents of Z if Z or
any of its descendants are observed.
Observing Z or its descendants opens
the information path.
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An Intuitive Account  Special Cases

Case 4: Converging connection/Example

m E and B are conditionally dependent if A is observd:

m If | already know that the alarm went off,

m My further knowing that there has been a
earthquake decreases my belief on Burglary.

m My further knowing that there has been a
burglary decreases my belief on earthquake.

Explaining away.

m E and B are conditionally dependent if M is
observed:

m Observing Marry call gives us some information
about Alarm. So we are back to the previous
case.

m E and B are marginally independent (if A, M and J
not observed).
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An Intuitive Account  Special Cases

Hard Evidence and Soft Evidence

m Hard evidence on a variable: The value of the variable is directly observed.

m Soft evidence on a variable: The value of the variable is NOT directly
observed. However the value of a descendant is observed.

m The rules restated:

m Hard evidence blocks information path in the case of serial and
diverging connection

m Both hard and soft evidence are enough for opening of information
path in the case of converging connection.
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An Intuitive Account  The General Case

Blocked Paths

® o= O
®  —@ O
® ~@-  ©
® @ O

A path between X and Y is blocked by a set Z of nodes if

1 Either that path contains a node Z that is in Z and the connection at Z is
either serial or diverging.

2 Or that the path contains a node W such that W and its descendants are
not in Z and the connection at W is a converging connection.
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An Intuitive Account  The General Case

Blocked Paths

® o= O
®  —@ O
® ~@-  ©
® @ O

m Suppose all variables in Z are the observed variables.
m Then a path between X and Y being blocked by Z implies:

1 Either information cannot be transmitted through Z because observing

Z blocks that path.
2 Or information cannot be transmitted through W, it leaks through W.

In both cases, information cannot be transmitted between X and Y along
the path.

m If path is not blocked, on the other hand, information CAN flow between X
and Y.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 16 / 44



An Intuitive Account  The General Case

D-separation

m Two nodes X and Y are d-separated by a set Z if
m All paths between X and Y are blocked by Z.

m Theorem 3.1:
m If X and Y are d-separated by Z, then X L Y|Z.

m It should be pointed out that this conclusion is derived from intuition.

m One of the main tasks in this lecture is to rigorously show that the
conclusion is indeed true.
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An Intuitive Account  The General Case

Examples

(B) ‘ /©\ m A d-separated (by empty set) from C, F,
Sy e e

m A d-separated by {M, B} from G
C? © m A d-separated by {£, K, L} from M
) m |/ d-separated by {E, K, L} from M

Exercise: Try more examples on your own.
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D-Separation and Independence  Some Lemmas

Ancestral Sets

m Let X be a set of nodes in a Bayesian network.
m The ancestral set an(X) of X consists of

m All nodes in X and all the ancestors of
nodes in X.

()
of @ (? m Example: The ancestral set of {/, G} consists of
QR {I,G,A,B,C,D,E}

We say that X is ancestral if

X = an(X)

m A leaf node is one without children. Examples:
M, L
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D-Separation and Independence  Some Lemmas

A Lemma

Lemma (3.1)

Suppose N is a Bayesian network, and Y is a leaf node. Let N” be the Bayesian
network obtained from N by removing Y. Let X be the set of all nodes in N”.

Then

Proof
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Pn(X) = P (X).
ZPN(X, Y)
Z[H P(W|pa(W))]P(Y|pa(Y))
Y weX
1T P(Wipa(w Z P(Y|pa(Y))
[T P(Wipa(w))
weX
Par(X)
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D-Separation and Independence  Some Lemmas

A Lemma

m The third equality is true because, being a leaf node, Y is not in X and
cannot be in any pa(W) for any W € X.

m The fourth equality is true because probability sum to one. Q.E.D
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D-Separation and Independence  Some Lemmas

First Proposition

Proposition (3.1)

Let X be a set of nodes in a Bayesian network N'. Suppose X is ancestral. Let N
be the Bayesian network obtained from N by removing all nodes outside X. Then,

Pnr(X) = Ppr(X).
Proof:

m Consider the following procedure

m While there are nodes outside X,

m Find a leaf node. (There must be one. Exercise.)
m Remove it.

m Afterwards, we get N,

m And according to Lemma 3.1,the probability distribution of X remains
unchanged throughout the procedure.

m The proposition is hence proved. Q.E.D.
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D-Separation and Independence  Some Lemmas

Second Proposition

Proposition (3.2)

Let X, Y, and Z be three disjoint sets of nodes in a Bayesian network such that
their union is the set of all nodes.

m I Z d-separates X and Y, then

X1Y|Z

Proof:

m Let Z; be the set of nodes in Z that have
parents in X. And let Z, = Z\ Z;.

m Because Z d-separates X and Y,

, m Forany W e XUZ,,

» pa(W) C XUZ.
m Forany W €Y UZ,,

pa(W) CYUZ.
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D-Separation and Independence  Some Lemmas

Proof Second Proposition (cont'd)

m Consider
P(X.Z2Y) = ][I P(Wlpa(w))
WeXUuzuY
= [ [T PWipatw)l T] P(WIpa(
WwexXuz, WGZQUY
m Note that

® [[yexuz, P(W|pa(W)) is a function of X and Z
" [[yez,uy P(W|pa(W)) is a function of Z and Y.

m It follows from Proposition 1.1 (of Lecture 1) that

X1Y|Z

Q.ED

W)l
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D-Separation and Independence Proof of Main Result

Global Markov property

Theorem (3.1)

Given a Bayesian network, let X and Y be two variables and Z be a set of
variables that does not contain X or Y. If Z d-separates X and Y, then

X1lY|Z
Proof:

m Because of Proposition 3.1, we can assume that an({X, Y} U Z) equals the
set of all nodes.

m X L Y|Z in original network iff it is true in the restriction onto the
ancestral set.

m Z d-separates X and Y in original network iff it is true in the
restriction onto the ancestral set. (Exercise)
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D-Separation and Independence Proof of Main Result

Proof of Global Markov property (cont'd)

m Let X be the set of all nodes that are NOT d-separated from X by Z.
m Let Y be the set of all nodes that are neither in X or Z.
m Because of Proposition 3.2, X L Y|Z.

m Because of Proposition 1.1, there must exist functions (X, Z) and g(Z,Y)
such that
P(X,Z,Y) = f(X,2)g(Z,Y)
m Notethat X € Xand Y €Y.
m Let X' = X\ {X}and Y =Y\ {V}.

m We have
P(X,X',Z,Y, Y =f(X,X',Z)g(Z,Y,Y’)
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D-Separation and Independence Proof of Main Result

Proof of Global Markov property (cont'd)

m Consequently

P(X,Y,Z) = > P(X,X,Z,Y,Y)
X’,Y’

= > f(X,X,2)g(Z,Y.Y)
X’,Y’

= [Z f(X, X, Z)][Z g(Z.Y, Y/)]
= fI(X, Z)g’(Z, Y)

That is
X1lY|Zz

Q.ED
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D-Separation and Independence  Corollaries

Markov blanket

m In a Bayesian network, the Markov blanket of a node X is the set
consisting of

m Parents of X
m Children of X
m Parents of children of X

@“(kaa?

@

m Example:

The Markov blanket of / is {E,H,J,K, L}
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D-Separation and Independence Corollaries

Markov blanket

m Corollary (3.1)

In a Bayesian network, a variable X is conditionally independent of all other
variables given its Markov blanket.(This is why it is so called.)

m Proof:

m Because of Theorem 3.1, it suffices to show that
m The Markov blanket of X d-separates X from all other nodes.

m This is true because, in any path from X to outside its Markov blanket,

the connection at that last node before leaving the blanket is either
serial or diverging. Q.E.D
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D-Separation and Independence Corollaries

Local Markov property

Corollary (3.2)

(Local Markov property) In a Bayesian network, a variable X is independent of
all its non-descendants given its parents.

Proof:

m Because of Theorem 3.1, it suffices to show that
m pa(X) d-separates X from the non-descendants of X.

m Consider a path between X and a non-descendant Y. Let Z be the neighbor
of X on the path.

m Case 1: Z € pa(X),
m The connection at Z is not converging because we have Z — X.
m Hence, path is blocked by pa(X).

m Case 2: Z ¢ pa(X):
m Moving downward from Z, we can reach a converging node on the

path.

m The converging node and its descendants are not in pa(X).
m The path is blocked by pa(X).

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 34 / 44



D-Separation and Independence  Corollaries

Some Notes

m The local Markov property was first mentioned in Lecture 2, when
introducing the concept of BN. It is now proved.

m This also explains why we need to make the causal Markov assumption when
we causality to build BN structure (slide 36 of Lecture 2):

m If you use a causal network as a Bayesian network, then we are
assuming that causality implies the local Markov property.
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Representing Independence using DAG

Representing independence using DAG

m A joint distribution P(V) entails conditional independence relationships
among variables:

m Use X Lp Y|Z denotes the fact that, under P, X and Y are
conditional independent given Z, i.e.,

P(X,Y|Z) = P(X|Z)P(Y|Z) whenever P(Z) > 0

m In a DAG G, there D-separation relationships:
m Use Sg(X,Y,Z) denotes that the fact that Z d-separates X and Y in G.
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Representing Independence using DAG

Representing independence using DAG

m P(V) obeys the global Markov property according to G if for any three
disjoint subsets of variables X, Y, and Z.

Sg(X,Y,Z) implies X Lp Y|Z

m When it is the case, we say that G represents some of the independence
relationships entailed by P:

m We can identify independence under P by examining G.

m When can we use a DAG G to represent independence relationships entailed
by a joint distribution P?
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m P(V) factorizes according to G if there exists a Bayesian network such that

m Its network structure us G
m The joint probability it represents is P(V).



Representing Independence using DAG

Local Makov properties

m P(V) obeys the local Markov property according to G if for any variable X
X Llp ndg(X)|pag(X)

where nd(X) stands for the set of non-descendants of X.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 40 / 44



Representing Independence using DAG

Factorization and independence

Theorem (3.2)

Let P(V) be a joint probability and G be a DAG over a set of variables V. The
following statements are equivalent:
1 P(V) factorizes according to G.

2 P(V) obeys the global Markov property according to G.

3 P(V) obeys the local Markov property according to G

Proof:
m 1 = 2: Theorem 3.1.
m 2 = 3: Corollary 3.2.
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Representing Independence using DAG

Proof of Theorem 3.2 (cont'd)

m3=1:

Induction on the number of nodes.

Trivially true where there is only one node.

Suppose true in the case of n—1 nodes.

Consider the case of n nodes.
m Let X be aleaf node in G, V' =V \ {X}.
m By (3), X is independent of all other nodes given pa(X).
m Hence

P(V) = P(V)P(X|V') = P(V')P(X]|pa(X)

Let G’ be obtained from G by removing X.

Then P(V') obeys the local Markov property according to G’.

Since there are only n—1 nodes in V’, P(V’) factorizes according to G'.
m Hence P(V) factorizes according to G.

m The theorem is proved. Q.E.D
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Representing Independence using DAG

I-Map and D-Map

m G is an I-map of P(V) if for any three disjoint subsets of variables X, Y, and
Z:

Sg(X,Y,Z) implies X Lp Y|Z
i.e. d-Separation in DAG implies independence.
m G is an D-map of P(V) if
X Lp Y|Z implies Sg(X,Y,Z)
i.e. Independence implies separation in DAG. Non-separation implies
dependence.
m G is an perfect map of P(V) if

m it is both an I-map and a D-map.

This is ideal case. But there are joint distributions that do not have perfect
maps. (Can you think of one?)
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Representing Independence using DAG

I-Map and D-Map

m Adding an edge in an |-map results in another I-map. (Exercise)

Deleting an edge in a D-map results in another D-Map. (Exercise)

m A minimal I-map of P(V) is an I-map such that deletion of one edge will
render the graph a non-l-map.

m When constructing BN structure following the procedure given on Slide 24
of Lecture 2,

m If pa(X;) is selected to be minimal, then resulting network is an I-map
of P.
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