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Objective

Discuss the variable elimination (VE) algorithm for inference in Bayesian
networks

Reading: Zhang and Guo, Chapter 4

Reference: Zhang and Poole (1994, 1996 (first few sections)); Dechter
(1996)
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Posterior Probability Queries

Outline
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Posterior Probability Queries

Queries about posterior probability

Posterior queries:

Given: The values of some variables.
Task: Compute the posterior probability distributions of other
variables?

MAP and MPE queries to be discussed later.

Example:

Both John and Mary called to report alarm.
What is the probability of burglary?
Formally, what is the posterior probability distribution
P(B|J=y ,M=y)?

General form of query: P(Q|E=e)?

Q is a list of query variables, usually one.
E is a list of evidence variables,and e is the corresponding list observed
values.
Note: Bold capital letters denote sets of variables.

Inference refers to the process of computing the answer to a query.
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Posterior Probability Queries Types of queries

Diagnostic and Predictive Inference

   E

   J    M

   A

   B P(B) P(E)

P(A|B, E)

P(J|A) P(M|A)

Semantically, four types of queries:

Diagnostic inference: From effects to causes.

P(B|M=y)
Machine malfunctions. What is wrong?

Predictive/Causal inference: From causes to
effects.

P(M |B=y)
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Posterior Probability Queries Types of queries

Inter-causal inference

   E

   J    M

   A

   B P(B) P(E)

P(A|B, E)

P(J|A) P(M|A)

Inter-causal inference:

Between causes of a common effect.
Example: P(B|A=y ,E=y)

Explaining away:

P(B=y |A=y)>P(B=y |A=y ,E=y)

Earthquake explains away A = y .

P(B=y |A=y)<P(B=y |A=y ,E=n)

Exercise: Verify the inequalities.
Note: Difficult with logic rules rules:

A = y → B = y(0.8).
E = y → A = y(0.9).
Fact: E = y

Conclusion: B = y(0.72). Wrong!
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Posterior Probability Queries Types of queries

Mixed Inference

   E

   J    M

   A

   B P(B) P(E)

P(A|B, E)

P(J|A) P(M|A)

Mixed inference:

Combining two or more of the above.
P(A|J=y ,E=Y ) (Simultaneous use of
diagnostic and causal inferences)

P(B|J=y ,E=n) (Simultaneous use of
diagnostic and inter-causal inferences)

All those types can be handled in the same way.

In logic inference, different query types are handled differently:

Predictive inference: deduction.

Diagnostic inference: abduction.
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The Variable Elimination Inference Algorithm

Outline
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The Variable Elimination Inference Algorithm A Naive Algorithm

A naive inference algorithm

Naive algorithm for computing P(Q|E = e) in a Bayesian network:

Get joint probability distribution P(X) over the set X of all variables by
multiplying conditional probabilities.
Marginalize

P(Q,E) =
∑

X−Q∪E

P(X),P(E) =
∑

Q

P(Q,E)

Condition:

P(Q|E = e) =
P(Q,E = e)

P(E = e)

Example

P(B, J,M) =
∑

E ,A P(B,E ,A, J,M), P(J,M) =
∑

B P(B, J,M).

P(B|J=y ,M=y) = P(B,J=y,M=y)
P(J=y,M=y))

Not making use of the factorization,exponential complexity.

Key issue: How to exploit the factorization to avoid exponential complexity?
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The Variable Elimination Inference Algorithm Principle via Example

Principle Through Example

Network: P(A), P(B|A), P(C |B), P(D|C ).

BA C D

Query: P(D)?

Computation:

P(D) =
∑

A,B,C

P(A,B,C ,D)

=
∑

C

∑

B

∑

A

P(A)P(B|A)P(C |B)P(D|C ) (1)

=
∑

C

∑

B

P(C |B)P(D|C )
∑

A

P(A)P(B|A)

=
∑

C

P(D|C )
∑

B

P(C |B)
∑

A

P(A)P(B|A) (2)
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The Variable Elimination Inference Algorithm Principle via Example

Principle Through Example

Complexity — Number of numerical summations:

Use (1): 23 + 22 + 2.
Use (2): 2 + 2 + 2.

Exercise: How about numerical multiplications?
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The Variable Elimination Inference Algorithm Principle via Example

Principle Through Example

Rewrite expression (2) into an algorithm:

Let F = {P(A),P(B|A),P(C |B),P(D|C )}

Remove from F all the functions that involve A, create a new function by

ψ1(B) =
∑

A

P(A)P(B|A).

put the new function onto F : F = {ψ1(B),P(C |B), p(D|C )}.

Remove from F all the functions that involve B, create a new function by

ψ2(C ) =
∑

B

P(C |B)ψ1(B).

put the new function onto F : F = {ψ2(C ), p(D|C )}.

Remove from F all the function that involve C , create a new function by

ψ3(D) =
∑

C

P(D|C )ψ2(C ).

Return ψ3(D) (which is exactly P(D)).
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The Variable Elimination Inference Algorithm Factorization and Variable Elimination

Factorization

A factorization of a joint distribution is a list of functions whose product is
the joint distribution.

Functions on the list are called factors.

A BN gives a factorization of a joint probability:

P(X1,X2, . . . ,Xn) =
n∏

i=1

P(Xi |pa(Xi )).

Example:
BA C

D

F

E

This BN factorizes P(A,B,C ,D,E ,F ) into the following list of factors:

P(A),P(B),P(C ),P(D|A,B),P(E |B,C ),P(F |D,E ).
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The Variable Elimination Inference Algorithm Factorization and Variable Elimination

Eliminating a variable

Consider a joint distribution

P(Z1,Z2, . . . ,Zm)

Eliminating Z1 from P means to compute

P(Z2, . . . ,Zm) =
∑

Z1

P(Z1,Z2, . . . ,Zm).

The complexity is exponential in m.
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The Variable Elimination Inference Algorithm Factorization and Variable Elimination

Eliminating a variable

Now suppose we have factorization: P(Z1,Z2, . . . ,Zm) = f1×f2× . . .×fn

Obtaining a factorization of P(Z2, . . . ,Zm) could be done with much less
computation:

Procedure eliminate(F ,Z ):

Inputs: F — A list of functions; Z — A variable.
Output: Another list of functions.

1 Remove from the F all the functions, say f1, . . . , fk , that involve Z ,
2 Compute new function g =

∏k
i=1 fi .

3 Compute new function h =
∑

Z g .
4 Add the new function h to F .
5 Return F .

∑
Z

∏k

i=1 fi can be much cheaper than
∑

Z P(Z1,Z2, . . . ,Zm).
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The Variable Elimination Inference Algorithm Factorization and Variable Elimination

Eliminating a variable

Theorem (4.1)

Suppose F is a factorization of a joint probability distribution
P(Z1,Z2, . . . ,Zm).Then eliminate(F ,Z1) is a factorization of the marginal
probability distribution P(Z2, . . . ,Zm).

Proof:

Suppose F consists of factors f1, f2, . . . , fn.

Suppose Z1 appears in and only in factors f1, f2, . . . , fk .

P(Z2, . . . ,Zm) =
∑

Z1

P(Z1,Z2, . . . ,Zm)

=
∑

Z1

n∏

i=1

fi =
∑

Z1

k∏

i=1

fi

n∏

i=k+1

fi

= [

n∏

i=k+1

fi ][
∑

Z1

k∏

i=1

fi ] = [

n∏

i=k+1

fi ]h. Q.E.D
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The Variable Elimination Inference Algorithm The VE Algorithm

Observed variable instantiation

Function h(X ,Y ).

X \ Y 0 1
0 .3 .8
1 .6 0

Suppose X is observed and X=0.

Instantiating X in h (to its observed value) resulting a function
g(Y ) = h(X = 0,Y ) of Y only:

Y 0 1
.3 .8
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The Variable Elimination Inference Algorithm The VE Algorithm

The Variable Elimination Algorithm

Procedure VE(F ,Q,E, e, ρ) //for computing P(Q|E=e):

Inputs: F — The list of CPTs in a BN;
Q — A list of query variables;
E — A list of observed variables; e — Observed values;
ρ — Ordering of variables /∈Q∪E(Elimination ordering).
Output: P(Q|E=e).

1 While ρ is not empty,

1 Remove the first variable Z from ρ,
2 Call eliminate(F ,Z ). Endwhile

2 Set h = product of all the factors in F .
3 Instantiate observed variables in h to their observed values.
4 Return h(Q)/

∑
Q h(Q). // Re-normalization
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The Variable Elimination Inference Algorithm The VE Algorithm

Example

Query: P(A|F = 0)?
BA C

D

F

E

Elimination ordering: ρ — C ,E ,B,D

Initial factorization:
F = {P(A),P(B),P(C ),P(D|A,B),P(E |B,C ),P(F |D,E )}

Inference process:

Step 1, eliminate C :

F = {P(A),P(B),P(D|A,B),P(F |D,E ), ψ1(B,E )}

where ψ1(B,E ) =
∑

C P(C )P(E |B,C ).
Step 1, eliminate E :

F = {P(A),P(B),P(D|A,B), ψ2(B,D,F )}

where ψ2(B,D,F ) =
∑

E P(F |D,E )ψ1(B,E ).
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The Variable Elimination Inference Algorithm The VE Algorithm

Example (cont’d)

Continued from previous slide

Step 1, eliminate B:

F = {P(A), ψ3(A,D,F )}

where ψ3(A,D,F ) =
∑

B P(B)P(D|A,B)ψ2(B,D,F )
Step 1, eliminate D:

F = {P(A), ψ4(A,F )}

where ψ4(A) =
∑

D ψ3(A,D,F )
Step 2: h(A,F ) = P(A)ψ4(A,F ).
Step 3: h(A) = h(A,F = 0).

Step 4: P(A|F=0) = h(A)∑
A h(A) .
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The Variable Elimination Inference Algorithm The VE Algorithm

The Variable Elimination Algorithm

Theorem (4.2)

The output of VE(F ,Q,E, e, ρ) is P(Q|E=e).

Proof:

By repeatedly applying Theorem 4.1, we conclude that,after the while-loop,
F is a factorization of P(Q,E).

Hence, after step 2, h is:
h(Q,E) = P(Q,E).

After step 3, h is: h(Q) = P(Q,E=e).

Consequently,

h(Q)∑
Q h(Q)

=
P(Q,E=e)∑
Q P(Q,E=e))

=
P(Q,E=e)

P(E=e))
= P(Q|E=e). Q.E.D
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The Variable Elimination Inference Algorithm The VE Algorithm

A Modification

Procedure VE(F ,Q,E, e, ρ)

1 Instantiate observed variables in all functions.

2 While ρ is not empty,

1 Remove the first variable Z from ρ,
2 Call eliminate(F ,Z ). Endwhile

3 Set h = the multiplication of all the factors on F .

4 Return h(Q)/
∑

Q h(Q).

Exercises:

Formally show the correctness of this version of VE.

Explain why it is more efficient that the version given earlier.

Note: This algorithm was first described in Zhang and Poole (1994).
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Complexity of the VE Algorithm

Outline
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Complexity of the VE Algorithm

Measuring the Complexity of One Step

For any variable, let w(X ) be the number of possible values of X .

Complexity of eliminate:

At step 2, a new function g is constructed.
The size of g=∏
{w(X ) : X appears in one of the functions that involve Z .}.

The size is a good and nature measurement of the complexity of
eliminating Z .
(Accurate operation counts are difficult.)
We call the size of g the cost of eliminating z from F and denote it by
c(Z ).

In the previous example, assume all variables are binary.

The cost of eliminating C is: 8
The cost of eliminating E is: 16
The cost of eliminating B is: 16
The cost of eliminating D is: 8
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Complexity of the VE Algorithm

Measuring the Complexity of the VE Algorithm

Complexity of VE:

Suppose the elimination ordering is: Z1, Z2, . . . , Zm.
The cost of VE is defined to be:

m∑

i=1

c(Zi)

Complexity in the previous example:

Cost of VE is: 8 + 8 + 8 + 4 = 36.

Often, one term dominates all others. The term usually referred to as
maximum clique size. We will see the reason behind this terminology later.
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Determining Complexity of Inference

It is often desirable to know the complexity of inference beforehand.

In the next few slides, we show how the complexity of VE can easily be
determined from network structure.
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Structural Graph of Factorization

Given a list F of function, the structural graph of F is an undirected graph
obtained as follows:

For any two variables X and Y , connect them iff they appear in
the same factor.

Example:

F =
{P(A),P(T |A),P(S),P(L|S),P(B|S),P(R |T , L),P(X |R),P(D|R ,B)}
The structural graph of F is:

L

A

T

R

S

B

D
X
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Moral Graph of DAG

The moral graph m(G) of a DAG is the undirected graph obtained from G
by

Marrying the parents of each node (i.e adding an edge between each
pair of parents), and
Dropping all directions.

A

T

R

S

B

D
X

L

A

T

R

S

B

D
X

L

Note: If F is the list of CPTs of a BN, then the structural graph of F is
simply the moral graph of the BN.

F = {P(A),P(T |A),P(S),P(L|S),P(B|S),P(R |T , L),P(X |R),P(D|R ,B)}
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Cost of Eliminating One Variable

For any vertex Z in an undirected graph, let adj(Z ) be the set of all
neighbors of Z .

Fact 1: If G is the structural graph of F , the cost of eliminating Z from F
is given by

c(Z ) = w(Z )
∏

X∈adj(Z )

w(X ).

Why?Recall

1 Remove from the F all the functions, say f1, . . . , fk , that involve Z ,
2 Compute new function g =

∏k

i=1 fi .
3 . . .
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Cost of Eliminating One Variable

F =
{P(A),P(T |A),P(S),P(L|S),P(B|S),P(R |T , L),P(X |R),P(D|R ,B)}

The structural graph of F is:

L

A

T

R

S

B

D
X

Eliminating T :

Needs to compute: P(T |A)P(R |T , L)
Cost: c(T ) = w(T )w(A)w(R)w(L)

adj(T ) = {A,R , L}.

So, c(T ) = w(T )
∏

X∈adj(T )

w(X ).
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Eliminating Vertex from Graph

Eliminating a vertex Z from an undirected graph G means:

Adding edges so that all nodes in adj(Z ) are pairwise adjacent,and
Removing Z and its incident edges.

Denote the result graph by eliminate(G ,Z ).

Example: eliminate(G ,T ) is

A

R

S

B

D
X

L

A

R

S

B

D
X

L
T
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Elimination in Factorization and Elimination in Graph

Fact 2: If G is the structural graph of F , then eliminate(G ,Z ) is the
structural graph of eliminate(F ,Z ).

Example:

eliminate(F ,T ) =
{P(A),P(S),P(L|S),P(B|S),P(X |R),P(D|R ,B), ψ(A, L,R)},
where ψ(A, L,R) =

∑
T P(T |A)P(R |T , L).

eliminate(G ,T ) is
A

R

S

B

D
X

L

A

R

S

B

D
X

L
T

We see that eliminate(G ,T ) is the graph for eliminate(F ,T ).
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Determining the Complexity of VE

Fact 1 and Fact 2 allow us to determine the complexity of VE by
manipulating graphs.

Z1 Z2 Z3

F1 → F2 → F3 → . . .
||| ||| |||
G1 → G2 → G3 → . . .

c(Z1) c(Z2) c(Z3)

There are no numerical calculations in the process. It is fast.
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Determining the Complexity of VE

Procedure costVE(N ,E, ρ)

Inputs: N — A Bayesian network structure.
E — Set of observed variables.
ρ — An elimination ordering.

Output: complexity of VE.

1 Compute moral graph G of N .

2 Remove from G all nodes in E.
// Structural graph of F after step 1 of VE

3 C = 0.

4 While ρ is not empty,

1 Remove the first variable Z from ρ,
2 C += w(Z )

∏
X∈adj(Z ) w(X ).

3 eliminate(G,Z ).

5 Return C
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Example of costVE

Example 1: A,X ,D,B, S , L,T ,R

Eliminate: REliminate: T
3

Eliminate: L
3

33
Eliminate: DEliminate: X

Cost: 22Cost: 2Cost: 2Cost: 2

Cost: 2Cost: 22Cost: 2Cost: 2
Eliminate: A

Eliminate: S

2

Eliminate: B

T

R

S

B

X

L

D

T

R

B

D

L T

R

B
L

T

R

L

S S

T

R R

L

X
D

B

S

R

T

A

T

R

B
L
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Example of costVE

Example 2: R , L,T ,D,B, S ,A,X

XEliminate: R
Cost: 2

X

Eliminate: A
2Cost: 2

5
Eliminate: D

6
Eliminate: T

6
Eliminate: L

6Cost: 2
Eliminate: AR Cost: 2Cost: 2Cost: 2

Eliminate: S
3Cost: 2Cost: 24

Eliminate: B

A S

B

D

T
L

X

T

S

B

D
X

A S

B

D
X

A

X

A

A S

B

X

A S

X

L

X
D

B

S

R

T

A
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Complexity of the VE Algorithm Determining Complexity of Inference from Network Structure

Optimal Elimination Ordering

Different elimination orderings lead to different costs.

The optimal elimination ordering: the one with minimum cost.

It is NP-hard to find an optimal elimination ordering (Arnborg et al, 1987).

The best we can hope for are some heuristics.

Will give some heuristics in Lecture 4.1.
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