COMP538: Introduction to Bayesian Networks Lecture 4: Inference in Bayesian Networks: The VE Algorithm

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Fall 2008

- Discuss the variable elimination (VE) algorithm for inference in Bayesian networks
- Reading: Zhang and Guo, Chapter 4 Ĭ
- Reference: Zhang and Poole (1994, 1996 (first few sections)); Dechter (1996)

Outline

1 [Posterior Probability Queries](#page-2-0) ■ [Types of queries](#page-4-0)

2 [The Variable Elimination Inference Algorithm](#page-7-0)

- [A Naive Algorithm](#page-8-0)
- **[Principle via Example](#page-9-0)**
- **Eactorization and Variable Elimination**
- [The VE Algorithm](#page-16-0)

3 [Complexity of the VE Algorithm](#page-22-0) [Determining Complexity of Inference from Network Structure](#page-25-0) Posterior Probability Queries

Queries about posterior probability

- **Posterior queries:**
	- Given: The values of some variables.
	- Task: Compute the posterior probability distributions of other variables?

MAP and MPE queries to be discussed later.

Example:

- Both John and Mary called to report alarm.
- What is the probability of burglary?
- Formally, what is the posterior probability distribution $P(B|J=v, M=v)$?
- General form of query: $P(Q|E=e)$?
	- \blacksquare Q is a list of query variables, usually one.
	- **E** is a list of evidence variables, and **e** is the corresponding list observed values.
	- Note: Bold capital letters denote sets of variables.
- Inference refers to the process of computing the answer to a query.

Nevin L. Zhang (HKUST) [Bayesian Networks](#page-0-0) Fall 2008 4 / 43

Diagnostic and Predictive Inference

 E

P(A|B, E)

Diagnostic inference: From effects to causes.

$$
\blacksquare P(B|M=y)
$$

■ Machine malfunctions. What is wrong?

P(J|A) P(M|A) Predictive/Causal inference: From causes to effects.

- $P(M|B=v)$
- If I hand out candies, will the students like this course better?

P(J A)

 A

 \overline{B} **P(B)** $\qquad \qquad$ **E** \qquad **P(E)**

Inter-causal inference

Inter-causal inference:

Between causes of a common effect.

Example:
$$
P(B|A=y, E=y)
$$

Explaining away:

$$
P(B=y|A=y) < P(B=y|A=y, E=y)
$$

Earthquake explains away $A = y$.

$$
P(B=y|A=y) > P(B=y|A=y, E=n)
$$

 \blacksquare Exercise: Verify the inequalities.

Note: Difficult with logic rules rules:

$$
A = y \rightarrow B = y(0.8).
$$

$$
E = y \rightarrow A = y(0.9).
$$

Fact:
$$
E = y
$$

Conclusion:
$$
B = y(0.72)
$$
. Wrong!

Mixed Inference

Mixed inference:

- Combining two or more of the above. $P(A|J=y, E=Y)$ (Simultaneous use of diagnostic and causal inferences)
- $P(B|J=v, E=n)$ (Simultaneous use of diagnostic and inter-causal inferences)

All those types can be handled in the same way.

In logic inference, different query types are handled differently:

- **Predictive inference: deduction.**
- Diagnostic inference: abduction.

Outline

1 [Posterior Probability Queries](#page-2-0) **[Types of queries](#page-4-0)**

2 [The Variable Elimination Inference Algorithm](#page-7-0)

- [A Naive Algorithm](#page-8-0)
- [Principle via Example](#page-9-0) m,
- [Factorization and Variable Elimination](#page-12-0)
- [The VE Algorithm](#page-16-0) m.

3 [Complexity of the VE Algorithm](#page-22-0) [Determining Complexity of Inference from Network Structure](#page-25-0)

A naive inference algorithm

- Naive algorithm for computing $P(Q|E = e)$ in a Bayesian network:
	- Get joint probability distribution $P(X)$ over the set X of all variables by multiplying conditional probabilities.
	- **Marginalize**

$$
P(\mathbf{Q}, \mathbf{E}) = \sum_{\mathbf{X} - \mathbf{Q} \cup \mathbf{E}} P(\mathbf{X}), P(\mathbf{E}) = \sum_{\mathbf{Q}} P(\mathbf{Q}, \mathbf{E})
$$

Condition:

$$
P(\mathbf{Q}|\mathbf{E}=\mathbf{e})=\frac{P(\mathbf{Q},\mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})}
$$

Example

■
$$
P(B, J, M) = \sum_{E, A} P(B, E, A, J, M), P(J, M) = \sum_{B} P(B, J, M).
$$

■ $P(B|J=y, M=y) = \frac{P(B, J=y, M=y)}{P(J=y, M=y)}$

Not making use of the factorization,exponential complexity.

Key issue: How to exploit the factorization to avoid exponential complexity?

Principle Through Example

Network: $P(A)$, $P(B|A)$, $P(C|B)$, $P(D|C)$.

 \blacksquare Query: $P(D)$?

Computation: Ī

$$
P(D) = \sum_{A,B,C} P(A,B,C,D)
$$

=
$$
\sum_{C} \sum_{B} \sum_{A} P(A)P(B|A)P(C|B)P(D|C)
$$

=
$$
\sum_{C} \sum_{B} P(C|B)P(D|C) \sum_{A} P(A)P(B|A)
$$

=
$$
\sum_{C} P(D|C) \sum_{B} P(C|B) \sum_{A} P(A)P(B|A)
$$
 (2)

Principle Through Example

 \Box Complexity — Number of numerical summations:

Use (1):
$$
2^3 + 2^2 + 2
$$
.

Use (2):
$$
2 + 2 + 2
$$
.

Exercise: How about numerical multiplications?

Principle Through Example

Rewrite expression [\(2\)](#page-9-2) into an algorithm:

Let $\mathcal{F} = \{P(A), P(B|A), P(C|B), P(D|C)\}\$

Remove from $\mathcal F$ all the functions that involve A, create a new function by

$$
\psi_1(B) = \sum_A P(A)P(B|A).
$$

put the new function onto $\mathcal{F} : \mathcal{F} = \{\psi_1(B), P(C|B), p(D|C)\}.$

Remove from F all the functions that involve B, create a new function by

$$
\psi_2(\mathcal{C}) = \sum_{B} P(C|B)\psi_1(B).
$$

put the new function onto \mathcal{F} : $\mathcal{F} = \{\psi_2(C), p(D|C)\}.$

Remove from F all the function that involve C, create a new function by

$$
\psi_3(D)=\sum_C P(D|C)\psi_2(C).
$$

Return $\psi_3(D)$ (which is exactly $P(D)$).

Factorization

- A factorization of a joint distribution is a list of functions whose product is the joint distribution.
	- **Functions on the list are called factors.**
- A BN gives a factorization of a joint probability:

$$
P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^n P(X_i | pa(X_i)).
$$

Example:

This BN factorizes $P(A, B, C, D, E, F)$ into the following list of factors:

 $P(A), P(B), P(C), P(D|A, B), P(E|B, C), P(F|D, E).$

Eliminating a variable

■ Consider a joint distribution

$$
P(Z_1, Z_2, \ldots, Z_m)
$$

Eliminating Z_1 from P means to compute \blacksquare

$$
P(Z_2,...,Z_m)=\sum_{Z_1}P(Z_1,Z_2,...,Z_m).
$$

 \blacksquare The complexity is exponential in m .

Eliminating a variable

- Now suppose we have factorization: $P(Z_1, Z_2, \ldots, Z_m) = f_1 \times f_2 \times \ldots \times f_n$
- Obtaining a factorization of $P(Z_2, \ldots, Z_m)$ could be done with much less computation:

Procedure eliminate (F, Z) :

- **Inputs:** \mathcal{F} A list of functions; Z A variable.
- Output: Another list of functions.
- Remove from the F all the functions, say f_1, \ldots, f_k , that involve Z,
- 2 Compute new function $g=\prod_{i=1}^k f_i$.
- 3 Compute new function $h = \sum_{Z} g$.
- Add the new function h to \mathcal{F} .
- 5 Return F .
- $\sum_{Z}\prod_{i=1}^{k}f_{i}$ can be much cheaper than $\sum_{Z}P(Z_{1},Z_{2},\ldots,Z_{m}).$

Eliminating a variable

Theorem (4.1)

Suppose $\mathcal F$ is a factorization of a joint probability distribution $P(Z_1, Z_2, \ldots, Z_m)$. Then eliminate (\mathcal{F}, Z_1) is a factorization of the marginal probability distribution $P(Z_2, \ldots, Z_m)$.

Proof:

- Suppose F consists of factors f_1, f_2, \ldots, f_n .
- Suppose Z_1 appears in and only in factors f_1, f_2, \ldots, f_k .

$$
P(Z_2,...,Z_m) = \sum_{Z_1} P(Z_1, Z_2,..., Z_m)
$$

=
$$
\sum_{Z_1} \prod_{i=1}^n f_i = \sum_{Z_1} \prod_{i=1}^k f_i \prod_{i=k+1}^n f_i
$$

=
$$
[\prod_{i=k+1}^n f_i][\sum_{Z_1} \prod_{i=1}^k f_i] = [\prod_{i=k+1}^n f_i]h. Q.E.D
$$

Observed variable instantiation

Function $h(X, Y)$.

Suppose X is observed and $X=0$.

Instantiating X in h (to its observed value) resulting a function \blacksquare $g(Y) = h(X = 0, Y)$ of Y only:

The Variable Elimination Algorithm

Procedure VE $(\mathcal{F}, \mathbf{Q}, \mathbf{E}, \mathbf{e}, \rho)$ //for computing P(Q|E=e):

Inputs: $F -$ The list of CPTs in a BN: $Q - A$ list of query variables; $E - A$ list of observed variables; $e - O$ bserved values; ρ — Ordering of variables \notin **Q∪E**(Elimination ordering). Output: $P(Q|E=e)$.

1 While ρ is not empty,

Remove the first variable Z from ρ ,

2 Call eliminate (F, Z) . Endwhile

2 Set $h =$ product of all the factors in \mathcal{F} .

- 3 Instantiate observed variables in h to their observed values.
- 4 Return h $(\mathbf{Q})/\sum_{\mathbf{Q}}$ h (\mathbf{Q}) . \not / Re-normalization

Example

Query: $P(A|F = 0)$?

- Elimination ordering: ρC , E, B, D
- Initial factorization: $\mathcal{F} = \{P(A), P(B), P(C), P(D|A, B), P(E|B, C), P(F|D, E)\}$
- Inference process:
	- Step 1, eliminate C :

 $\mathcal{F} = \{P(A), P(B), P(D|A, B), P(F|D, E), \psi_1(B, E)\}\$ where $\psi_1(B,E) = \sum_{\mathcal{C}} P(\mathcal{C}) P(E|B,\mathcal{C})$. Step 1, eliminate E :

 $\mathcal{F} = \{P(A), P(B), P(D|A, B), \psi_2(B, D, F)\}$

where $\psi_2(B, D, F) = \sum_{E} P(F|D, E)\psi_1(B, E).$

Example (cont'd)

- Continued from previous slide
	- Step 1, eliminate B :

$$
\mathcal{F} = \{P(A), \psi_3(A, D, F)\}
$$

where $\psi_3(A, D, F) = \sum_B P(B) P(D|A, B) \psi_2(B, D, F)$ Step 1, eliminate D :

$$
\mathcal{F} = \{P(A), \psi_4(A, F)\}
$$

where
$$
\psi_4(A) = \sum_D \psi_3(A, D, F)
$$

\n**Step 2:** $h(A, F) = P(A)\psi_4(A, F)$.
\n**Step 3:** $h(A) = h(A, F = 0)$.
\n**Step 4:** $P(A|F=0) = \frac{h(A)}{\sum_A h(A)}$.

The Variable Elimination Algorithm

Theorem (4.2)

The output of $VE(\mathcal{F}, \mathbf{Q}, \mathbf{E}, \mathbf{e}, \rho)$ is $P(\mathbf{Q}|\mathbf{E}=\mathbf{e})$.

Proof:

- \blacksquare By repeatedly applying Theorem 4.1, we conclude that, after the while-loop, F is a factorization of $P(Q, E)$.
- Hence, after step 2, h is:

$$
h(\mathbf{Q}, \mathbf{E}) = P(\mathbf{Q}, \mathbf{E}).
$$

After step 3, h is: $h(\mathbf{Q}) = P(\mathbf{Q}, \mathbf{E}=\mathbf{e}).$

■ Consequently,

$$
\frac{h(\mathbf{Q})}{\sum_{\mathbf{Q}} h(\mathbf{Q})} = \frac{P(\mathbf{Q}, \mathbf{E}=\mathbf{e})}{\sum_{\mathbf{Q}} P(\mathbf{Q}, \mathbf{E}=\mathbf{e})} = \frac{P(\mathbf{Q}, \mathbf{E}=\mathbf{e})}{P(\mathbf{E}=\mathbf{e})} = P(\mathbf{Q}|\mathbf{E}=\mathbf{e}).
$$
 Q.E.D

A Modification

Procedure VE (F, Q, E, e, ρ)

- Instantiate observed variables in all functions.
- 2 **While** ρ is not empty,
	- Remove the first variable Z from ρ ,
	- 2 Call eliminate(F, Z). Endwhile
- 3 Set $h =$ the multiplication of all the factors on \mathcal{F} .
- 4 Return $h(\mathbf{Q})/\sum_{\mathbf{Q}}h(\mathbf{Q})$.

Exercises:

- Formally show the correctness of this version of VE.
- Explain why it is more efficient that the version given earlier.

Note: This algorithm was first described in Zhang and Poole (1994).

Outline

- 1 [Posterior Probability Queries](#page-2-0) **[Types of queries](#page-4-0)**
- 2 [The Variable Elimination Inference Algorithm](#page-7-0)
	- [A Naive Algorithm](#page-8-0)
	- **[Principle via Example](#page-9-0)**
	- **Eactorization and Variable Elimination**
	- [The VE Algorithm](#page-16-0)
- 3 [Complexity of the VE Algorithm](#page-22-0) [Determining Complexity of Inference from Network Structure](#page-25-0) m,

Measuring the Complexity of One Step

- For any variable, let $w(X)$ be the number of possible values of X.
- Complexity of eliminate:
	- At step 2, a new function g is constructed.
		- The size of $g\!=$ $\prod \{w(X) : X$ appears in one of the functions that involve Z.}.
	- The size is a good and nature measurement of the complexity of eliminating Z.

(Accurate operation counts are difficult.)

- We call the size of g the **cost** of eliminating z from $\mathcal F$ and denote it by $c(Z)$.
- In the previous example, assume all variables are binary.
	- \blacksquare The cost of eliminating C is: 8
	- The cost of eliminating E is: 16
	- \blacksquare The cost of eliminating B is: 16
	- The cost of eliminating D is: 8

Measuring the Complexity of the VE Algorithm

■ Complexity of VE:

Suppose the elimination ordering is: Z_1, Z_2, \ldots, Z_m . The cost of VE is defined to be:

$$
\sum_{i=1}^m c(Z_i)
$$

Complexity in the previous example:

Cost of VE is: $8 + 8 + 8 + 4 = 36$.

Often, one term dominates all others. The term usually referred to as **maximum clique size.** We will see the reason behind this terminology later.

Determining Complexity of Inference

- It is often desirable to know the complexity of inference beforehand.
- \blacksquare In the next few slides, we show how the complexity of VE can easily be determined from network structure.

Structural Graph of Factorization

Given a list F of function, the **structural graph** of F is an undirected graph obtained as follows:

> For any two variables X and Y , connect them iff they appear in the same factor.

- Example:
	- $\mathcal{F} =$

 $\{P(A), P(T|A), P(S), P(L|S), P(B|S), P(R|T, L), P(X|R), P(D|R, B)\}$

 \blacksquare The structural graph of $\mathcal F$ is:

Moral Graph of DAG

- The **moral** graph $m(G)$ of a DAG is the undirected graph obtained from G by
	- Marrying the parents of each node (i.e adding an edge between each pair of parents), and
	- Dropping all directions.

Note: If F is the list of CPTs of a BN, then the structural graph of F is simply the moral graph of the BN.

 $\mathcal{F} = \{P(A), P(T|A), P(S), P(L|S), P(B|S), P(R|T, L), P(X|R), P(D|R, B)\}\$

Cost of Eliminating One Variable

- For any vertex Z in an undirected graph, let $adj(Z)$ be the set of all neighbors of Z.
- **F** Fact 1: If G is the structural graph of F, the cost of eliminating Z from $\mathcal F$ is given by

$$
c(Z) = w(Z) \prod_{X \in adj(Z)} w(X).
$$

■ Why?Recall

- 1 Remove from the F all the functions, say f_1, \ldots, f_k , that involve Z,
- 2 Compute new function $g=\prod_{i=1}^k f_i$.

3 . . .

Cost of Eliminating One Variable

 \blacksquare $\mathcal{F} =$ ${P(A), P(T|A), P(S), P(L|S), P(B|S), P(R|T, L), P(X|R), P(D|R, B)}$

 \blacksquare The structural graph of $\mathcal F$ is:

Eliminating T:

Needs to compute: $P(T|A)P(R|T,L)$ Cost: $c(T) = w(T)w(A)w(R)w(L)$

■ adj
$$
(T)
$$
 = { A, R, L }.
■ So,
$$
c(T) = w(T) \prod_{X \in adj(T)} w(X).
$$

Eliminating Vertex from Graph

Eliminating a vertex Z from an undirected graph G means:

Adding edges so that all nodes in $adj(Z)$ are pairwise adjacent, and

Removing Z and its incident edges.

Denote the result graph by eliminate (G, Z) .

Example: eliminate(G, T) is

Elimination in Factorization and Elimination in Graph

- Fact 2: If G is the structural graph of F, then eliminate(G, Z) is the structural graph of eliminate (F, Z) .
- Example:

We see that eliminate(G, T) is the graph for eliminate(\mathcal{F}, T).

Determining the Complexity of VE

Fact 1 and Fact 2 allow us to determine the complexity of VE by manipulating graphs.

$$
\begin{array}{ccccc}&&Z_1\\{\mathcal F}_1&\to&{\mathcal F}_2&\to&{\mathcal F}_3&\to&\ldots\\[1mm] \parallel\,\,&&\parallel\,\,&&\parallel\,\,\\ G_1&\to&G_2&\to&G_3&\to&\ldots\\[1mm] &c(Z_1)&c(Z_2)&c(Z_3) &\\ \end{array}
$$

■ There are no numerical calculations in the process. It is fast.

Determining the Complexity of VE

Procedure costVE($\mathcal{N}, \mathsf{E}, \rho$)

- **Inputs:** $N A$ Bayesian network structure.
	- E Set of observed variables.
	- ρ An elimination ordering.
- Output: complexity of VE.
- 1 Compute moral graph $\mathcal G$ of $\mathcal N$.
- 2 Remove from G all nodes in E . // Structural graph of $\mathcal F$ after step 1 of VE
- $3 \quad C = 0.$
- **While** ρ is not empty,
	- 1 Remove the first variable Z from ρ ,
	- 2 $C + = w(Z) \prod_{X \in adj(Z)} w(X)$.
	- 3 eliminate (G, Z) .
- 5 Return C

Example of costVE

Example 1: A, X, D, B, S, L, T, R

Example of costVE

Example 2: R, L, T, D, B, S, A, X

Optimal Elimination Ordering

- Different elimination orderings lead to different costs.
- The **optimal elimination ordering**: the one with minimum cost.
- It is NP-hard to find an optimal elimination ordering (Arnborg *et al*, 1987).
- The best we can hope for are some heuristics.
- Will give some heuristics in Lecture 4.1.