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Objectives

m Discusses another commonly used inference algorithm called clique tree
propagation that

m Is based on the same principle as VE except with a sophisticated
caching strategy that
m Enables one to compute the posterior probability distributions of all
variables in twice the time it takes to compute that of one single

variable.
m Works in an intuitively appealing fashion, namely message propagation

m Readings: Zhang and Guo, Chapter 5
m Zhang (1998), Jensen et al 1990, Shafer and Shenoy (1990).
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Clique Trees

Clique trees
Not a clique tree A clique tree
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m A clique tree is an undirected tree,

m Where each node represents a set of variables, which is called a clique.
m That is Variable-connected:

m If a variable appear in two cliques, it must appear in all cliques on the
path between those two cliques.
m That is, subgraph of cliques containing a given variable is connected.
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Clique Trees

Clique Trees
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A clique tree covers a Bayesian network if

m The union of the cliques is the set of variables in the Bayesian network, and

m For any variable X in the Bayesian network, there is a clique that contains
the variable and all its parents.

m That clique is called the family cover clique of X.
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VE on Clique Trees

Idea and Initialization

m Suppose we have a clique that covers a Bayesian network (BN).

m Idea: Use the clique tree to organize inference.
m 5 steps.

m Step 1: Initialization:

m For each variable X in BN,
m Find a family cover clique C of X
m Attach P(X|pa(X)) to the clique C.
m If a clique is not attached with any function, attach the identity
function to it.

P(A), P(T| A P(S), P(L|S), P(B|S)
m Example: - L) @D
A s
ﬁ P(L\si_ﬁ/ AN
—_— ¢ B rE S PRIT, YT LR @LB 3
P(RT, L) R
xﬂ/ T
P(X| R) P(DR B) PIXI R P(DIR B
m Multiplication of all functions on clique tree = joint distribution of all

variables.
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VE on Clique Trees

Step 2: Evidence absorption

Same as in VE.
m Instantiate observed variables E in all functions.
m Example: Suppose A=y, X=y,

P(A=y), P(TIA=y) P(S), P(LIS), P(BIS)

P(X=y| R) P(DIR B)

m Let X be the set of all unobserved variables:
m Multiplication of all functions on clique tree = P(X,E = e).

m This corresponds to Step 1 of VE.
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VE on Clique Trees

Step 3: Choose pivot for inference

m Suppose there is only one query variable Q.

m Find a clique Cg that contains @ and use it as a pivot of inference.

P(A=y), P(TIA=y) P(S), P(LIS), P(BIS)

P(X=y| R) P(DIR B)

m Example: Compute P(LIA=y, X =y)

m Clique [RLB] can be used as a pivot.
m So can [TLR] and [LSB]
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VE on Clique Trees

Step 4: Message Passing

Messages are passed from the leaves toward the pivot.

A clique C passes a message to the neighbor C’ in the direction of the pivot
after receiving messages from all other neighbors Cy, ..., Cy.

Suppose f; is the message from C; to C and g; are the functions attached to

C.
m The message from C to C’ is the following function:
(caloy ST | § Hg,

C\(C'UE) i
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VE on Clique Trees

Step 5: Answer Extraction

h(Q, X) = product of all functions attached or sent to Cq
m X: set of unobserved variables in Cg other than Q.

m Posterior probability of Q:

P(QIE=¢e) = ZhQX/Zh
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VE on Clique Trees

An Example
m Messages passed toward the pivot:
P(A=Y), P(T| A=y) P(S)., P(LIS), P(BS) fl(T) _ P(A:y)P(T|A:y)
L(R) = P(X=y|R)
f(L,B) = Y P(S)P(LIS)P(B|S)
S
fi(R,B) = Y P(DIR,B)
D
i(LLR) = > A(T)AR(R)P(R|T,L)
m Query: P(L|A=y, X=y) =

m Clique [RLB] as pivot.
m Extract answer:

h(R, L, B) = f3(L, B)fu(R, B)fs(L, R)1
(: 'D(R’ L, B,A:y,X:}/))

P(L|A=y, X=y) =

ZR,B h(Rv L, B)/ ER,L,B h(Rv L, B)-
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VE on Clique Trees

Complexity

m To send out a message, a clique C needs to compute the product of its
attached functions and functions it has received.

m When there are no observations, variables in the product are all in the clique.

m If clique tree constructed using buildCliqueTree (to be given later), all
variables in the clique are also in the product.

m Complexity of message-passing out of C can be measure by:

IT Ixi

XeC

m Complexity of entire process can be measured by:

> I

C XeC

m This is sometime dominated by the largest term.

m The complexity is exponential in the maximum clique size.
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Correctness of VE on Clique Tree

Program Invariants

A clique is un-activated is it has not sent out message.
Proposition (5.1)

Program invariant: The following two properties are preserved during message
passing:

1 The arguments of the functions attached or sent to a clique all are variables
in the clique.

2 Product of functions attached or sent to all un-activated cliques =
P(X,E =e),
where X stands for all unobserved variables in those cliques.
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Correctness of VE on Clique Tree

Proof of Proposition 5.1

m The properties are true before message passing starts.

m Induction hypothesis:
m Suppose the properties hold before C sending message to C’.

m Induction: After C sending message to C':
m It is clear that the message from C to C’:

ORI

C\(C'UE) i
involves only variables in C’. Hence the flrst property remains true.
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Correctness of VE on Clique Tree

Proof of Proposition 5.1 (cont'd)

T

!
O

m X: set of unobserved variables in all un-activated cliques before C sending
message to C'.

(ar=Tx

h v
?’» .

m X’: set of unobserved variables in all un-activated cliques after C sending
message to C'.

m r: product of functions attached or sent to all un-activated cliques after C
sending message to C’, except h.

m By induction hypothesis, r is a function of X'. Write it as r(X’).

m Another description of r(X’): the product of functions attached or sent to
all un-activated cliques before C sending message to C’, except the f;'s and
the gj's.
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Correctness of VE on Clique Tree

Proof of Proposition 5.1 (cont'd)

@§ 9 n f Cﬁ
? i
O
m By the induction hypothesis, we have
rX)[[f]]& =PX.E=e)
i J

m Now consider the set of variables C\ (C' UE).
m For simplicity, assume the set contains only one variable Z.

m Because of variable-connectedness,

m Z cannot appear in any cliques separated from C by C’, which
m include all cliques un-activated right after C sending message to C’.

m Hence Z is not in the set X’. So, X = X' U {Z}
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Correctness of VE on Clique Tree

Proof of Proposition 5.1 (cont'd)

m Hence

r(X).h = r(X’)ZHfngj
Z H Hg, (Fact Z ¢ X’ used here)
z i
= Y P(XE=e)=) P(ZX E=e)=P(X E=e)
4 z

The proposition is proved. Q.E.D
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Correctness of VE on Clique Tree

Correctness of VE on Clique Trees

Theorem (5.1)
Let

m X stands for the set of unobserved variables in Cq except Q,

m h(Q,X) = product of all functions attached or sent to Cq at the end of
message passing,

Then
h(Q,X)=P(Q,X,E=¢e)
Consequently

P(QIE =) = S h(Q,X)/ 3" h(Q.X)

X QX

Proof: The Theorem follows readily from Proposition 5.1.
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The Clique Tree Propagation Algorithm

Computation sharing in clique tree

‘?
© ©® © ©® ©

m Suppose messages have been propagated toward clique 6.

m Now consider propagating messages toward clique 3.

m The following message passing steps from the first propagation can be
reused:
ml1—-29—-87—88—54—-5
m Only need to do:
m6—-55—22—-3

m Computation sharing opportunities exist between any two queries.
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The Clique Tree Propagation Algorithm

The Clique Tree Propagation Algorithm

m Characteristics:

m Exploits computation sharing opportunities.
m Computes posterior probabilities of all
unobserved variables.

m Several variations. More or less equivalent.
m The algorithm: Two sweep message passing.

m In the first sweep, called collection:
m Messages are passed from leaves toward a
pivot clique.
m Exactly the same as VE on clique trees.
m In the second sweep, called distribution:
B Messages are passed from the pivot clique
toward the leaves
m Answer extraction: The same as in VE on
clique trees and applied to very unobserved
variables (or multiple query variables).

Di stribution
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The Clique Tree Propagation Algorithm

Example

m Collection: Messages propagated from leaves to
[RLB]. (Done before)

m Distribution: Message propagated from [RLB] to

leaves.
f6(R7 L)
P(A=y). P(T| A=y) P(S), P(LIS), P(Bl'S)

(R, B)
fs(L, B)

f(R)

P(X=y| R) P(DIR B)
fio(T)

B
S 6(R, L)f(L, B)L
L
S" (R, B)fs(R, L)1

R
S (R, LYA(T)P(RIT, L)
T,L

S (R, LAR(R)P(RIT, L)
L,R

m Note: When computing the message from [RLB]
to [TLR], we combine only two of the messages
received by [RLB], f3 and f;. f5 is not included.
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

CTP(T,E,e)
Input: 7 — Clique, initialized, evidence absorbed
Output P(X|E = e) of every non-observed variable X
1: Pick one clique Cp as the pivot
2: for (each neighbor C of Cp)
3:  Call CollectMessage(Cp,C)// Cp — C
4: end for
5: for (each neighbor C of Cp)
6: Call DistributeMessage(Cp,C)// Cp — C
7: end for
8: Extract posterior distribution of each non-observed variable.
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

CollectMessage(C,C') // C— C’
1: for(each neighbor C” of C’ except C)
2:  CollectMessage(C’,C")
3: end for
4: SendMessage(C’, C)

DistributeMessage(C,C’) // C — C’
1: SendMessage(C, C’)
2: for(each neighbor C” of C')
3:  DistributeMessage(C’,C")
4: end for
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

SendMessage(C’',C) // C' = C
1: Suppose Cy’,Cy’,---,Cy’ are all the neighbors of C’ except C
2: For i=1,2,---,k, gi < RetrieveMessage(C{,C’,);
3: Let fi,f,---,f be the function stored at C’ during
initializataionand Z = C'\ CUE
43, H;:1 fi HJI'(:1 &j
5: SaveMessage(C’, C, )
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

Example: CTP on the clique tree shown on Slide 22

m CTP: Line 1: Pick pivot, Say Clique 5.

m CTP: Lines 2-4: For loop
m CM(5, 8): (CM — CollectMessage)

m For-loop:
CM(8, 7):
SM(7, 8) (SM — SendMessage)
Multiply functions stored at 8, Compute and save M(7->8)
CM(8, 9): compute and save M(9->8)
m SM(8, 5):
M(7->8) and M(9->8) retrieved
Combine with functions stored at 8
Compute and save M(8->5)

m CM(5, 2): Compute and save M(2->5), M(1->2), M(3->5)
m CM(5, 4), CM(5, 6): Compute and save M(4->5), M(6->5)
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

m CTP: Lines 5-7, for-loop
m DM(5, 8):
m SM(5, 8)
Combine M(2->5), M(4->5), M(6->5), with functions at 5
Compute and save M(5->8) "
m For-loop
DM(8, 7): Save and compute M(8->7)
DM(8, 9): compute and save M(9->7)
m DM(5, 2): Compute and save M(5->2), M(2->1), M(2->3)
m DM(5, 4), DM(5, 6): Compute and save M(4->4), M(5->6)

m CTP Line 8: Every clique has received message from all neighbors. So we
can extract posterior probability of any variable X in a clique that contains X.
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The Clique Tree Propagation Algorithm

VE versus Clique Tree Propagation

m VE:

m Answers one query at a time.

m Allows pruning of irrelevant variables.

m No computation sharing among different queries.
m Clique tree propagation:

m Computes posterior probabilities of all unobserved variables.
m Does not allow pruning of irrelevant variables.
m Allows computation sharing among different queries.

m See empirical comparisons in Zhang (1998).

m Empirical results suggest that one should use clique tree propagation only
when we want posterior probabilities of many unobserved variables.

m Think: How to compute MPE and MAP in a clique tree?

m BN softwares support either VE, or clique tree propagation, or both. Check
the software link on course page. (JavaBayes, Genie/Smile, Netica, Hugin,

)
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Constructing Clique Trees

Constructing Clique Trees

m Given: A Bayesian network.
m Task: Construct a clique tree

m That covers the Bayesian network,
m whose cliques are as small as possible.

m Solution: Build clique tree via elimination in moral graph.
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Constructing Clique Trees

An Algorithm

Let G be the moral graph of a BN and p be an elimination ordering.

Procedure buildCliqueTree(G, p)

1

2

3

Remove the first node Z from p. Set S = adj(Z)
Create clique C ={Z} US

If C contains all nodes in G, return the clique tree that consists of only one
clique C.

Else

1 Add edges to G so that nodes in S are pairwise connected.
2 Remove Z from G.
3 Recursive call: 7 = buildCliqueTree(g, p)

In 7, find clique C’ s.t. S C C’ (we will show that such clique must exist).
Add C to T by connecting it to C’.
Return 7.
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m BN and moral graph:



Constructing Clique Trees

An Example (cont'd)

m Elimination ordering: A, X, D, S, B, L, T, R

L

A S S /
TN /\ N N, .
L T —
\/ \/ T—,——=8
\\/// / // _— \R// \R/
o e b Hininate: S Elininate: B Elininate:
Elinm DA Elimnate: X I mnate: X . ai . : i . L
d:g]ugél{eA, . SN aigque (R B D Qique: {L, S B ique: {R L B} dique: {T, L, R

A

D &? o@D Co—ED @

@ G @ o

Coul d connect to RLB or RBD
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Constructing Clique Trees  Correctness

g-Clique and t-cliques

m In an undirected graph, a set of nodes is a clique if vertices in the set are
pairwise connected. (Standard graph-theoretic definition.)

m To avoid confusion:

m Call such a clique a g-clique,
m Call nodes in a clique tree t-cliques.

Proposition (5.2)

Let G be an undirected graph and T be the tree constructed by
buildCliqueTree for G. If a set of variables X is a g-clique in G, then there
exists a t-clique C in T such that

XccC

Proof:
m Let C be the clique created when eliminating the first node in X.
m Then XC C. QE.D
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Constructing Clique Trees  Correctness

Families covered

Corollary (5.2)

Let G be the moral graph of a BN and T be the tree constructed by

buildCliqueTree for G. Then for any node X of the BN, there exists a t-clique
C in T such that

{X}Upa(X)cC

Proof:
m {X} U pa(X) is a g-clique in the moral graph G.
m The corollary follows from Proposition 5.2. Q.E.D
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Constructing Clique Trees  Correctness

Step 5 of Algorithm

Corollary (5.1)
Step 5 of buildCliqueTree is always successful.
Proof: Right after eliminating Z,

m S is a g-clique in G.

m Let 7 be the tree constructed by the recursive call to buildCliqueTree
right after the removal of Z.

m According to Proposition 5.2, there must be a clique C' in 7 s.t. S C C'.
Q.E.D
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Constructing Clique Trees  Correctness

Variable-Connectedness

Proposition (5.3)

The tree T constructed by buildCliqueTree from undirected graph G is
variable-connected.

Proof:

m Induction on the number n of nodes in G.

m When n =1, the proposition is trivially true.

m Induction hypothesis: Assume the proposition is true when n = k.
m Induction step: Consider the case n = k + 1.

m Consider any two cliques C; and C; in 7 and suppose X € C; N C,.

m Need to show: X appears in all cliques on the path between C; and C,.
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Constructing Clique Trees  Correctness

Variable-Connectedness

m Let Z be the first variable eliminated.

m Let 77 be the tree return by the first recursive call.

m According to the induction hypothesis, 7" is variable-connected.
m 7 is 7’ plus the clique created when eliminating Z.

m If neither C; nor C; is the clique created when eliminating Z,

m Then they are both in 7".
m Since 7" is variable-connected, X appears in all cliques between C; and
C..
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Constructing Clique Trees  Correctness

Proof of Proposition 5.3 (cont'd)

o b d
@Gtg

T

2

m Now assume C; is the clique created when eliminating Z.

m X cannot be Z because X is in C».

m Then X must be in the set S, i.e. adj(Z) in the graph G

m Let C’ be the only neighbor of C; (determined at step 5).

m Then,SCC.

m Hence X must be in C’, which is in 77,

m Since 7" is variable-connected, X appears in all cliques between C’ and C,.

m Hence X appears in all cliques between C; and C,. Q.E.D
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Constructing Clique Trees  Correctness

Correctness of buildCliqueTree

Theorem (5.2)

Let G be the moral graph of a BN and T be the tree constructed by

buildCliqueTree for G. Then 7 is a clique tree that covers the Bayesian
network.

Proof:
m According to Proposition 5.3, G is a clique tree.

m According to Corollary 5.2, G covers the Bayesian network.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008

43 / 50



Constructing Clique Trees  Correctness

Minimal Clique Trees

m A clique tree is minimal: if none of the cliques are subsets of their neighbors.

m The tree obtained by buildCliqueTree might not be a minimal.

m Example: Elimination ordering: E, D, C, B A

-§ L=

m As shown, can be easily made minimal.
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Link to Graph Theory

Why Link to Graph Theory

| have explained the construction of clique trees in a way different from
existing literature.

m Advantage: Easier to understand.

Disadvantage: Intuition behind terminology (why clique tree) not clear.

m So it is necessary to explicate the link to graph theory.

m Also useful when reading papers.
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Link to Graph Theory

Triangulated Graphs

m An undirected graph is triangulated (chordal) if every cycle with four or
more nodes contains a chord —An edge between two nonconsecutive nodes.

m Example:

A A S

| / N\, TN

/\B

BN /// ~ ///

m Gl is not triangulated: Cycle S-L-R-B has no chords.
m G2 is triangulated.
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Link to Graph Theory

Triangulation

m Triangulation: Convert a graph that is not triangulated into one that is by
adding edges.

m Example:
N,
\/// \R//
x/ ~p

G1 is not triangulated.
Adding edge L-B, we get G2, which is triangulated.
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Link to Graph Theory

Maximal Cliques

m A g-clique is maximal if none of its supersets are g-cliques.
m Example:

T/\T/\

/\B

BN /// ~ ///

Gl G2

m Maximal cliques of G1: [AT], [TLR], [XR], [RDB], [SL], [SB]
m Maximal cliques of G2: [AT], [TLR], [XR], [RDB], [RLB], [SBL]

m Maximal cliques of a triangulated graph can be arranged into a clique tree.
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Link to Graph Theory

Traditional Way to Build Clique Trees

G: moral graph of a BN.

m Triangulate G by adding edges (equivalent to triangulation-via-elimination
using an EO p) .

m Find all maximal g-cliques in triangulated graph.

m Arrange them into a tree.

The result is the same as that given by buildCliqueTree after minimization.
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