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Objectives

Discusses another commonly used inference algorithm called clique tree
propagation that

Is based on the same principle as VE except with a sophisticated
caching strategy that

Enables one to compute the posterior probability distributions of all
variables in twice the time it takes to compute that of one single
variable.
Works in an intuitively appealing fashion, namely message propagation

Readings: Zhang and Guo, Chapter 5

Zhang (1998), Jensen et al 1990, Shafer and Shenoy (1990).
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Clique Trees

Clique trees

A T

R X

R S

T L R

R D B

B S R L B

R S

R D B

Not a clique tree

A T

R X

T L R

A clique tree

A clique tree is an undirected tree,

Where each node represents a set of variables, which is called a clique.
That is Variable-connected:

If a variable appear in two cliques, it must appear in all cliques on the
path between those two cliques.
That is, subgraph of cliques containing a given variable is connected.
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Clique Trees

Clique Trees
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Does not cover covers

A clique tree covers a Bayesian network if

The union of the cliques is the set of variables in the Bayesian network, and

For any variable X in the Bayesian network, there is a clique that contains
the variable and all its parents.

That clique is called the family cover clique of X .
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VE on Clique Trees
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VE on Clique Trees

Idea and Initialization

Suppose we have a clique that covers a Bayesian network (BN).

Idea: Use the clique tree to organize inference.

5 steps.

Step 1: Initialization:

For each variable X in BN,
Find a family cover clique C of X

Attach P(X |pa(X )) to the clique C.

If a clique is not attached with any function, attach the identity
function to it.
Example:

P(T|A)

P(R|T, L)

P(L|S)

 

P(D|R, B)

P(B|S)

P(S)P(A)

P(D|R, B)P(X|R)

P(R|T, L)

P(S), P(L|S), P(B|S)P(A), P(T|A)

1

P(X|R)

R X

A T

R D B

L S B

A

T

S

B

D
X

L

R

R L BT L R

Multiplication of all functions on clique tree = joint distribution of all
variables.
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VE on Clique Trees

Step 2: Evidence absorption

Same as in VE.

Instantiate observed variables E in all functions.

Example: Suppose A=y , X=y ,

P(X=y|R)

1

P(D|R, B)

 

P(R|T, L)

P(A=y), P(T|A=y) P(S), P(L|S), P(B|S)

R L B

R D B

A T L S B

T L R

R X

Let X be the set of all unobserved variables:

Multiplication of all functions on clique tree = P(X,E = e).

This corresponds to Step 1 of VE.
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VE on Clique Trees

Step 3: Choose pivot for inference

Suppose there is only one query variable Q.

Find a clique CQ that contains Q and use it as a pivot of inference.

P(X=y|R)

1

P(D|R, B)

 

P(R|T, L)

P(A=y), P(T|A=y) P(S), P(L|S), P(B|S)

R L B

R D B

A T L S B

T L R

R X

Example: Compute P(L|A = y ,X = y)

Clique [RLB] can be used as a pivot.
So can [TLR] and [LSB]
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VE on Clique Trees

Step 4: Message Passing
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Messages are passed from the leaves toward the pivot.

A clique C passes a message to the neighbor C′ in the direction of the pivot
after receiving messages from all other neighbors C1, . . . , Ck .

Suppose fi is the message from Ci to C and gj are the functions attached to
C.

The message from C to C′ is the following function:

h(C∩C′ − E) =
∑

C\(C′∪E)

∏

i

fi
∏

j

gj .
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VE on Clique Trees

Step 5: Answer Extraction

C
j

k

1

hg

f

f

C’ Q

k

1

CC

C

h(Q,X) = product of all functions attached or sent to CQ

X: set of unobserved variables in CQ other than Q.

Posterior probability of Q:

P(Q|E = e) =
∑

X

h(Q,X)/
∑

Q,X

h(Q,X)
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VE on Clique Trees

An Example

f4

P(A=y), P(T|A=y)

 

f

P(X=y|R)

1

P(D|R, B)

P(R|T, L)

P(S), P(L|S), P(B|S)

f1

f5
f3

2

T L R

R X

L S BA T

R D B

R L B

Query: P(L|A=y ,X=y)

Clique [RLB] as pivot.

Messages passed toward the pivot:

f1(T ) = P(A=y)P(T |A=y)

f2(R) = P(X=y |R)

f3(L, B) =
∑

S

P(S)P(L|S)P(B|S)

f4(R, B) =
∑

D

P(D|R, B)

f5(L, R) =
∑

T

f1(T )f2(R)P(R|T , L)

Extract answer:
h(R, L, B) = f3(L, B)f4(R, B)f5(L, R)1
(= P(R, L, B, A=y ,X=y))

P(L|A=y ,X=y) =∑
R,B h(R, L, B)/

∑
R,L,B h(R, L, B).
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VE on Clique Trees

Complexity

To send out a message, a clique C needs to compute the product of its
attached functions and functions it has received.

When there are no observations, variables in the product are all in the clique.

If clique tree constructed using buildCliqueTree (to be given later), all
variables in the clique are also in the product.

Complexity of message-passing out of C can be measure by:
∏

X∈C

|X |

Complexity of entire process can be measured by:
∑

C

∏

X∈C

|X |

This is sometime dominated by the largest term.

The complexity is exponential in the maximum clique size.
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Correctness of VE on Clique Tree

Program Invariants

A clique is un-activated is it has not sent out message.

Proposition (5.1)

Program invariant: The following two properties are preserved during message
passing:

1 The arguments of the functions attached or sent to a clique all are variables
in the clique.

2 Product of functions attached or sent to all un-activated cliques =
P(X,E = e),
where X stands for all unobserved variables in those cliques.
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Correctness of VE on Clique Tree

Proof of Proposition 5.1

The properties are true before message passing starts.

Induction hypothesis:

Suppose the properties hold before C sending message to C′.

C
j

k

1

hg

f

f

C’ Q

k

1

CC

C

Induction: After C sending message to C′:

It is clear that the message from C to C′:

h =
∑

C\(C′∪E)

∏

i

fi
∏

j

gj

involves only variables in C′. Hence the first property remains true.
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Correctness of VE on Clique Tree

Proof of Proposition 5.1 (cont’d)

C
j

k

1

hg

f

f

C’ Q

k

1

CC

C

X: set of unobserved variables in all un-activated cliques before C sending
message to C′.

X′: set of unobserved variables in all un-activated cliques after C sending
message to C′.

r : product of functions attached or sent to all un-activated cliques after C
sending message to C′, except h.

By induction hypothesis, r is a function of X′. Write it as r(X′).

Another description of r(X′): the product of functions attached or sent to
all un-activated cliques before C sending message to C′, except the fi ’s and
the gj ’s.
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Correctness of VE on Clique Tree

Proof of Proposition 5.1 (cont’d)

C
j

k

1

hg

f

f

C’ Q

k

1

CC

C

By the induction hypothesis, we have

r(X′)
∏

i

fi
∏

j

gj = P(X,E = e)

Now consider the set of variables C \ (C′ ∪ E).

For simplicity, assume the set contains only one variable Z .

Because of variable-connectedness,

Z cannot appear in any cliques separated from C by C′, which
include all cliques un-activated right after C sending message to C′.

Hence Z is not in the set X′. So, X = X′ ∪ {Z}
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Correctness of VE on Clique Tree

Proof of Proposition 5.1 (cont’d)

Hence

r(X′).h = r(X′)
∑

Z

∏

i

fi
∏

j

gj

=
∑

Z

r(X′)
∏

i

fi
∏

j

gj (Fact Z /∈ X′ used here)

=
∑

Z

P(X,E = e) =
∑

Z

P(Z ,X′,E = e) = P(X′,E = e)

The proposition is proved. Q.E.D
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Correctness of VE on Clique Tree

Correctness of VE on Clique Trees

Theorem (5.1)

Let

X stands for the set of unobserved variables in CQ except Q,

h(Q,X) = product of all functions attached or sent to CQ at the end of
message passing,

Then
h(Q,X) = P(Q,X,E = e)

Consequently

P(Q|E = e) =
∑

X

h(Q,X)/
∑

Q,X

h(Q,X)

Proof: The Theorem follows readily from Proposition 5.1.
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The Clique Tree Propagation Algorithm
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The Clique Tree Propagation Algorithm

Computation sharing in clique tree

9

8

7

6

5

4

3

2

11

2

3

4

5

6

7

8

9

Suppose messages have been propagated toward clique 6.

Now consider propagating messages toward clique 3.

The following message passing steps from the first propagation can be
reused:

1 → 2, 9 → 8, 7 → 8, 8 → 5, 4 → 5

Only need to do:
6 → 5, 5 → 2, 2 → 3

Computation sharing opportunities exist between any two queries.
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The Clique Tree Propagation Algorithm

The Clique Tree Propagation Algorithm

Collection

9

8

7

6

5

4

3

2

1

1

2

3

4

5

6

7

8

9

Distribution

Characteristics:

Exploits computation sharing opportunities.
Computes posterior probabilities of all
unobserved variables.

Several variations. More or less equivalent.

The algorithm: Two sweep message passing.

In the first sweep, called collection:

Messages are passed from leaves toward a
pivot clique.
Exactly the same as VE on clique trees.

In the second sweep, called distribution:

Messages are passed from the pivot clique
toward the leaves

Answer extraction: The same as in VE on
clique trees and applied to very unobserved
variables (or multiple query variables).
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The Clique Tree Propagation Algorithm

Example

f

P(A=y), P(T|A=y)

P(X=y|R)

 

9

1

P(D|R, B)

P(R|T, L)

P(S), P(L|S), P(B|S)

f1

f5
f3

f4

f10

f8

f2 f6 f7

L S B

R X

A T

R D B

R L BT L R

Collection: Messages propagated from leaves to
[RLB]. (Done before)

Distribution: Message propagated from [RLB] to
leaves.

f6(R, L) =
∑

B

f4(R, B)f3(L, B)1

f7(R, B) =
∑

L

f5(R, L)f3(L, B)1

f8(L, B) =
∑

R

f4(R, B)f5(R, L)1

f9(R) =
∑

T ,L

f6(R, L)f1(T )P(R|T , L)

f10(T ) =
∑

L,R

f6(R, L)f2(R)P(R|T , L)

Note: When computing the message from [RLB]
to [TLR], we combine only two of the messages
received by [RLB], f3 and f4. f5 is not included.
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

CTP(T ,E, e)
Input: T — Clique, initialized, evidence absorbed
Output P(X |E = e) of every non-observed variable X

1: Pick one clique CP as the pivot
2: for (each neighbor C of CP)
3: Call CollectMessage(CP,C)// CP ← C
4: end for
5: for (each neighbor C of CP)
6: Call DistributeMessage(CP,C)// CP → C
7: end for
8: Extract posterior distribution of each non-observed variable.
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

CollectMessage(C,C′) // C← C′

1: for(each neighbor C′′ of C′ except C)
2: CollectMessage(C′,C′′)
3: end for
4: SendMessage(C′,C)

DistributeMessage(C,C′) // C→ C′

1: SendMessage(C,C′)
2: for(each neighbor C′′ of C′ )
3: DistributeMessage(C′,C′′)
4: end for
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

SendMessage(C′,C) // C′ → C
1: Suppose C1

′,C2
′, · · · ,Ck

′ are all the neighbors of C′ except C
2: For i = 1, 2, · · · , k , gi ← RetrieveMessage(C′

i ,C
′, );

3: Let f1, f2, · · · , fl be the function stored at C′ during
initializataionand Z = C′ \ C ∪ E

4: ψ ←
∑

Z

∏l

i=1 fi
∏k

j=1 gj

5: SaveMessage(C′,C, ψ)
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

Example: CTP on the clique tree shown on Slide 22

CTP: Line 1: Pick pivot, Say Clique 5.

CTP: Lines 2-4: For loop

CM(5, 8): (CM – CollectMessage)

For-loop:
CM(8, 7):

SM(7, 8) (SM – SendMessage)
Multiply functions stored at 8, Compute and save M(7->8)

CM(8, 9): compute and save M(9->8)
SM(8, 5):

M(7->8) and M(9->8) retrieved
Combine with functions stored at 8
Compute and save M(8->5)

CM(5, 2): Compute and save M(2->5), M(1->2), M(3->5)
CM(5, 4), CM(5, 6): Compute and save M(4->5), M(6->5)
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The Clique Tree Propagation Algorithm

Clique Tree Propagation

CTP: Lines 5-7, for-loop

DM(5, 8):

SM(5, 8)
Combine M(2->5), M(4->5), M(6->5), with functions at 5
Compute and save M(5->8) ”

For-loop
DM(8, 7): Save and compute M(8->7)
DM(8, 9): compute and save M(9->7)

DM(5, 2): Compute and save M(5->2), M(2->1), M(2->3)
DM(5, 4), DM(5, 6): Compute and save M(4->4), M(5->6)

CTP Line 8: Every clique has received message from all neighbors. So we
can extract posterior probability of any variable X in a clique that contains X.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 29 / 50



The Clique Tree Propagation Algorithm

VE versus Clique Tree Propagation

VE:

Answers one query at a time.
Allows pruning of irrelevant variables.
No computation sharing among different queries.

Clique tree propagation:

Computes posterior probabilities of all unobserved variables.
Does not allow pruning of irrelevant variables.
Allows computation sharing among different queries.

See empirical comparisons in Zhang (1998).

Empirical results suggest that one should use clique tree propagation only
when we want posterior probabilities of many unobserved variables.

Think: How to compute MPE and MAP in a clique tree?

BN softwares support either VE, or clique tree propagation, or both. Check
the software link on course page. (JavaBayes, Genie/Smile, Netica, Hugin,
. . . )
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Constructing Clique Trees

Constructing Clique Trees

Given: A Bayesian network.

Task: Construct a clique tree

That covers the Bayesian network,
whose cliques are as small as possible.

Solution: Build clique tree via elimination in moral graph.
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Constructing Clique Trees

An Algorithm

Let G be the moral graph of a BN and ρ be an elimination ordering.

Procedure buildCliqueTree(G, ρ)

1 Remove the first node Z from ρ. Set S = adj(Z )

2 Create clique C = {Z} ∪ S

3 If C contains all nodes in G, return the clique tree that consists of only one
clique C.

4 Else

1 Add edges to G so that nodes in S are pairwise connected.
2 Remove Z from G.
3 Recursive call: T = buildCliqueTree(G, ρ)

5 In T , find clique C′ s.t. S ⊆ C′ (we will show that such clique must exist).

6 Add C to T by connecting it to C′.

7 Return T .
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Constructing Clique Trees

An Example

BN and moral graph:

A

T

R

S

B

D
X

L

A

T

R

S

B

D
X

L
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Constructing Clique Trees

An Example (cont’d)

Elimination ordering: A, X, D, S, B, L, T, R

T L R R L B

L S B

R B DR X

T L R R L B

L S B

R B DR X

T L R R L B

L S B

R B D

T L R R L B

L S B

T L R R L B T L R

Eliminate: S

Clique: {R, B, D}

Eliminate: D

Could connect to RLB or RBD

A T

Clique: {T, L, R}

Eliminate: L

Clique: {A, T}
Eliminate: A Eliminate: X

Clique: {R, X}
Clique: {R, L, B}

Eliminate: B

Clique: {L, S, B}

T

R

B
L

L
B

R

T

S

L

D

B

R

T
L

X
D

B

S

R

T

S

L

X
D

B

S

R

T

A

T

R

L
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Constructing Clique Trees Correctness

g-Clique and t-cliques

In an undirected graph, a set of nodes is a clique if vertices in the set are
pairwise connected. (Standard graph-theoretic definition.)

To avoid confusion:

Call such a clique a g-clique,
Call nodes in a clique tree t-cliques.

Proposition (5.2)

Let G be an undirected graph and T be the tree constructed by
buildCliqueTree for G. If a set of variables X is a g-clique in G, then there
exists a t-clique C in T such that

X ⊆ C

Proof:

Let C be the clique created when eliminating the first node in X.

Then X ⊆ C. Q.E.D
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Constructing Clique Trees Correctness

Families covered

Corollary (5.2)

Let G be the moral graph of a BN and T be the tree constructed by
buildCliqueTree for G. Then for any node X of the BN, there exists a t-clique
C in T such that

{X} ∪ pa(X ) ⊆ C

Proof:

{X} ∪ pa(X ) is a g-clique in the moral graph G.

The corollary follows from Proposition 5.2. Q.E.D
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Constructing Clique Trees Correctness

Step 5 of Algorithm

Corollary (5.1)

Step 5 of buildCliqueTree is always successful.

Proof: Right after eliminating Z ,

S is a g-clique in G.

Let T be the tree constructed by the recursive call to buildCliqueTree

right after the removal of Z .

According to Proposition 5.2, there must be a clique C′ in T s.t. S ⊆ C′.
Q.E.D
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Constructing Clique Trees Correctness

Variable-Connectedness

Proposition (5.3)

The tree T constructed by buildCliqueTree from undirected graph G is
variable-connected.

Proof:

Induction on the number n of nodes in G.

When n = 1, the proposition is trivially true.

Induction hypothesis: Assume the proposition is true when n = k .

Induction step: Consider the case n = k + 1.

Consider any two cliques C1 and C2 in T and suppose X ∈ C1 ∩ C2.

Need to show: X appears in all cliques on the path between C1 and C2.
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Constructing Clique Trees Correctness

Variable-Connectedness

Let Z be the first variable eliminated.

Let T ′ be the tree return by the first recursive call.

According to the induction hypothesis, T ′ is variable-connected.

T is T ′ plus the clique created when eliminating Z .

If neither C1 nor C2 is the clique created when eliminating Z ,

Then they are both in T ′.
Since T ′ is variable-connected, X appears in all cliques between C1 and
C2.
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Constructing Clique Trees Correctness

Proof of Proposition 5.3 (cont’d)

Now assume C1 is the clique created when eliminating Z .

X cannot be Z because X is in C2.

Then X must be in the set S, i.e. adj(Z ) in the graph G

Let C′ be the only neighbor of C1 (determined at step 5).

Then, S ⊆ C′.

Hence X must be in C′, which is in T ′.

Since T ′ is variable-connected, X appears in all cliques between C′ and C2.

Hence X appears in all cliques between C1 and C2. Q.E.D

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 42 / 50



Constructing Clique Trees Correctness

Correctness of buildCliqueTree

Theorem (5.2)

Let G be the moral graph of a BN and T be the tree constructed by
buildCliqueTree for G. Then T is a clique tree that covers the Bayesian
network.

Proof:

According to Proposition 5.3, G is a clique tree.

According to Corollary 5.2, G covers the Bayesian network.
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Constructing Clique Trees Correctness

Minimal Clique Trees

A clique tree is minimal: if none of the cliques are subsets of their neighbors.

The tree obtained by buildCliqueTree might not be a minimal.

Example: Elimination ordering: E, D, C, B A

A

B

E

C D BCDE BCD

AB

BC

BCDE

AB

BC

BCDE AB

As shown, can be easily made minimal.
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Link to Graph Theory
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Link to Graph Theory

Why Link to Graph Theory

I have explained the construction of clique trees in a way different from
existing literature.

Advantage: Easier to understand.

Disadvantage: Intuition behind terminology (why clique tree) not clear.

So it is necessary to explicate the link to graph theory.

Also useful when reading papers.
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Link to Graph Theory

Triangulated Graphs

An undirected graph is triangulated (chordal) if every cycle with four or
more nodes contains a chord —An edge between two nonconsecutive nodes.

Example:
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G1 is not triangulated: Cycle S-L-R-B has no chords.
G2 is triangulated.
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Link to Graph Theory

Triangulation

Triangulation: Convert a graph that is not triangulated into one that is by
adding edges.

Example:
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G1 is not triangulated.
Adding edge L-B, we get G2, which is triangulated.
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Link to Graph Theory

Maximal Cliques

A g-clique is maximal if none of its supersets are g-cliques.

Example:
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Maximal cliques of G1: [AT], [TLR], [XR], [RDB], [SL], [SB]
Maximal cliques of G2: [AT], [TLR], [XR], [RDB], [RLB], [SBL]

Maximal cliques of a triangulated graph can be arranged into a clique tree.
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Link to Graph Theory

Traditional Way to Build Clique Trees

G: moral graph of a BN.

Triangulate G by adding edges (equivalent to triangulation-via-elimination
using an EO ρ) .

Find all maximal g-cliques in triangulated graph.

Arrange them into a tree.

The result is the same as that given by buildCliqueTree after minimization.
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