COMP538: Introduction to Bayesian Networks Lecture 5: Inference as Message Propagation

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Fall 2008

- Discusses another commonly used inference algorithm called clique tree propagation that
	- \blacksquare Is based on the same principle as VE except with a sophisticated caching strategy that
		- Enables one to compute the posterior probability distributions of all variables in twice the time it takes to compute that of one single variable.
		- Works in an intuitively appealing fashion, namely message propagation
- Readings: Zhang and Guo, Chapter 5
- Zhang (1998), Jensen et al 1990, Shafer and Shenoy (1990).

Outline

1 [Clique Trees](#page-6-0)

- 2 [VE on Clique Trees](#page-21-0)
- 3 Correctness of VE on Clique Tree
- 4 The Clique Tree Propagation Algorithm
- 5 Constructing Clique Trees Correctness
- 6 Link to Graph Theory

Clique trees

A clique tree is an undirected tree,

- Where each node represents a set of variables, which is called a **clique**. That is **Variable-connected**
	- \blacksquare If a variable appear in two cliques, it must appear in all cliques on the path between those two cliques.
	- That is, subgraph of cliques containing a given variable is connected.

Clique Trees

A clique tree **covers** a Bayesian network if

- The union of the cliques is the set of variables in the Bayesian network, and
- For any variable X in the Bayesian network, there is a clique that contains the variable and all its parents.
	- **That clique is called the family cover clique of X.**

Outline

1 [Clique Trees](#page-6-0)

2 [VE on Clique Trees](#page-21-0)

- 3 Correctness of VE on Clique Tree
- 4 The Clique Tree Propagation Algorithm
- 5 Constructing Clique Trees Correctness
- 6 Link to Graph Theory

Idea and Initialization

- Suppose we have a clique that covers a Bayesian network (BN) .
- \blacksquare Idea: Use the clique tree to organize inference.
	- \blacksquare 5 steps.
- Step 1: Initialization:
	- For each variable X in BN.
		- Find a family cover clique C of X
		- Attach $P(X|pa(X))$ to the clique C.
	- \blacksquare If a clique is not attached with any function, attach the identity function to it.

 \blacksquare Multiplication of all functions on clique tree $=$ joint distribution of all variables.

VE on Clique Trees

Step 2: Evidence absorption

Same as in VE.

- **Instantiate observed variables** E **in all functions.**
- Example: Suppose $A=y$, $X=y$,

 \blacksquare Let **X** be the set of all unobserved variables:

Multiplication of all functions on clique tree = $P(X, E = e)$ **.**

This corresponds to Step 1 of VE.

Step 3: Choose pivot for inference

Suppose there is only one query variable Q .

Find a clique C_{Ω} that contains Q and use it as a **pivot** of inference.

Example: Compute $P(L|A = y, X = y)$

- Clique [RLB] can be used as a pivot.
- So can [TLR] and [LSB]

VE on Clique Trees

Step 4: Message Passing

- Messages are passed from the leaves toward the pivot.
- A clique ${\mathsf C}$ passes a message to the neighbor ${\mathsf C}'$ in the direction of the pivot after receiving messages from all other neighbors C_1, \ldots, C_k .
- Suppose f_i is the message from ${\bf C}_i$ to ${\bf C}$ and ${\bf g}_j$ are the functions attached to C.
- The message from C to C' is the following function:

$$
h(\mathbf{C}\cap\mathbf{C}'-\mathbf{E})=\sum_{\mathbf{C}\setminus(\mathbf{C}'\cup\mathbf{E})}\prod_i f_i\prod_j g_j.
$$

Nevin L. Zhang (HKUST) [Bayesian Networks](#page-0-0) Fall 2008 10 / 50

VE on Clique Trees

Step 5: Answer Extraction

 $h(Q, X)$ = product of all functions attached or sent to C_Q

X: set of unobserved variables in C_Q other than Q.

Posterior probability of Q: \blacksquare

$$
P(Q|\mathbf{E}=\mathbf{e})=\sum_{\mathbf{X}}h(Q,\mathbf{X})/\sum_{Q,\mathbf{X}}h(Q,\mathbf{X})
$$

An Example

$$
\blacksquare \text{ Query: } P(L|A=y, X=y)
$$

Clique [RLB] as pivot.

Messages passed toward the pivot:

$$
f_1(T) = P(A=y)P(T|A=y)
$$

\n
$$
f_2(R) = P(X=y|R)
$$

\n
$$
f_3(L, B) = \sum_{S} P(S)P(L|S)P(B|S)
$$

\n
$$
f_4(R, B) = \sum_{D} P(D|R, B)
$$

\n
$$
f_5(L, R) = \sum_{T} f_1(T) f_2(R)P(R|T, L)
$$

■ Extract answer:
\n
$$
h(R, L, B) = f_3(L, B) f_4(R, B) f_5(L, R) 1
$$
\n
$$
(= P(R, L, B, A=y, X=y))
$$
\n
$$
P(L|A=y, X=y) = \sum_{R, B} h(R, L, B) / \sum_{R, L, B} h(R, L, B).
$$

Complexity

- \blacksquare To send out a message, a clique C needs to compute the product of its attached functions and functions it has received.
- When there are no observations, variables in the product are all in the clique.
- If clique tree constructed using buildCliqueTree (to be given later), all variables in the clique are also in the product.
- Complexity of message-passing out of C can be measure by:

$$
\prod_{X\in C}|X|
$$

Complexity of entire process can be measured by:

$$
\sum_C \prod_{X \in C} |X|
$$

- This is sometime dominated by the largest term.
- The complexity is exponential in the **maximum clique size**.

Nevin L. Zhang (HKUST) [Bayesian Networks](#page-0-0) Fall 2008 13 / 50

Outline

- 1 [Clique Trees](#page-6-0)
- 2 [VE on Clique Trees](#page-21-0)
- 3 Correctness of VE on Clique Tree
- 4 The Clique Tree Propagation Algorithm
- 5 Constructing Clique Trees Correctness
- 6 Link to Graph Theory

Program Invariants

A clique is **un-activated** is it has not sent out message.

Proposition (5.1)

Program invariant: The following two properties are preserved during message passing:

- 1 The arguments of the functions attached or sent to a clique all are variables in the clique.
- 2 Product of functions attached or sent to all un-activated cliques $=$ $P(X, E = e)$, where X stands for all unobserved variables in those cliques.

Proof of Proposition 5.1

- The properties are true before message passing starts.
- Induction hypothesis:
	- Suppose the properties hold before $\mathsf C$ sending message to $\mathsf C'.$

- Induction: After C sending message to C':
	- It is clear that the message from C to C' :

$$
h=\sum_{\mathbf{C}\setminus(\mathbf{C}'\cup\mathbf{E})}\prod_i f_i\prod_j g_j
$$

involves only variables in C' . Hence the first property remains true.

Proof of Proposition 5.1 (cont'd)

- X: set of unobserved variables in all un-activated cliques before C sending message to C' .
- X': set of unobserved variables in all un-activated cliques after C sending message to C' .
- r: product of functions attached or sent to all un-activated cliques after C sending message to **C**', **except** h.
- By induction hypothesis, r is a function of X' . Write it as $r(X')$.
- Another description of $r(X')$: the product of functions attached or sent to all un-activated cliques <mark>before C</mark> sending message to C' , except the f_i 's and the g_j 's.

Proof of Proposition 5.1 (cont'd)

By the induction hypothesis, we have

$$
r(\mathbf{X}')\prod_i f_i \prod_j g_j = P(\mathbf{X}, \mathbf{E} = \mathbf{e})
$$

Now consider the set of variables $C \setminus (C' \cup E)$.

For simplicity, assume the set contains only one variable Z .

- Because of variable-connectedness.
	- Z cannot appear in any cliques separated from C by C' , which include all cliques un-activated right after ${\mathsf C}$ sending message to ${\mathsf C}'$.

Hence Z is not in the set **X'**. So, **X** = **X'** \cup {Z}

Proof of Proposition 5.1 (cont'd)

$Hence$

$$
r(\mathbf{X}').h = r(\mathbf{X}') \sum_{Z} \prod_{i} f_{i} \prod_{j} g_{j}
$$

= $\sum_{Z} r(\mathbf{X}') \prod_{i} f_{i} \prod_{j} g_{j}$ (Fact $Z \notin \mathbf{X}'$ used here)
= $\sum_{Z} P(\mathbf{X}, \mathbf{E} = \mathbf{e}) = \sum_{Z} P(Z, \mathbf{X}', \mathbf{E} = \mathbf{e}) = P(\mathbf{X}', \mathbf{E} = \mathbf{e})$

The proposition is proved. Q.E.D

Correctness of VE on Clique Trees

Theorem (5.1)

Let

- \blacksquare X stands for the set of unobserved variables in \mathbf{C}_{Ω} except Q,
- $h(Q, X)$ = product of all functions attached or sent to C_Q at the end of message passing,

Then

$$
h(Q, \mathbf{X}) = P(Q, \mathbf{X}, \mathbf{E} = \mathbf{e})
$$

Consequently

$$
P(Q|\mathbf{E}=\mathbf{e})=\sum_{\mathbf{X}}h(Q,\mathbf{X})/\sum_{Q,\mathbf{X}}h(Q,\mathbf{X})
$$

Proof: The Theorem follows readily from Proposition 5.1.

Outline

- 1 [Clique Trees](#page-6-0)
- 2 [VE on Clique Trees](#page-21-0)
- 3 Correctness of VE on Clique Tree

4 The Clique Tree Propagation Algorithm

- 5 Constructing Clique Trees Correctness
- 6 Link to Graph Theory

The Clique Tree Propagation Algorithm

Computation sharing in clique tree

- Suppose messages have been propagated toward clique 6.
- Now consider propagating messages toward clique 3.
	- The following message passing steps from the first propagation can be reused:

$$
1 \rightarrow 2, 9 \rightarrow 8, 7 \rightarrow 8, 8 \rightarrow 5, 4 \rightarrow 5
$$

■ Only need to do:

6 \rightarrow 5, 5 \rightarrow 2, 2 \rightarrow 3

Computation sharing opportunities exist between any two queries.

The Clique Tree Propagation Algorithm

- Exploits computation sharing opportunities.
- Computes posterior probabilities of all unobserved variables.
- Several variations. More or less equivalent.
- The algorithm: Two sweep message passing.
	- In the first sweep, called **collection**:
		- **Messages are passed from leaves toward a** pivot clique.
		- Exactly the same as VE on clique trees.
	- In the second sweep, called distribution:
		- **Messages are passed from the pivot clique** toward the leaves
	- Answer extraction: The same as in VE on clique trees and applied to very unobserved variables (or multiple query variables).

4

7

1

Example

- Collection: Messages propagated from leaves to [RLB]. (Done before)
- Distribution: Message propagated from [RLB] to leaves.

$$
f_6(R, L) = \sum_{B} f_4(R, B) f_3(L, B)1
$$

\n
$$
f_7(R, B) = \sum_{L} f_5(R, L) f_3(L, B)1
$$

\n
$$
f_8(L, B) = \sum_{R} f_4(R, B) f_5(R, L)1
$$

\n
$$
f_9(R) = \sum_{T, L} f_6(R, L) f_1(T) P(R|T, L)
$$

\n
$$
f_{10}(T) = \sum_{L, R} f_6(R, L) f_2(R) P(R|T, L)
$$

Note: When computing the message from [RLB] to [TLR], we combine only two of the messages received by [RLB], f_3 and f_4 . f_5 is not included.

 $CTP(T, E, e)$ **Input:** \mathcal{T} – Clique, initialized, evidence absorbed **Output** $P(X|\mathbf{E} = \mathbf{e})$ of every non-observed variable X

- 1: Pick one clique C_P as the pivot
- 2: for (each neighbor C of C_P)
- 3: Call *CollectMessage*(C_P , C)// $C_P \leftarrow C$
- $4 \cdot$ end for
- 5: for (each neighbor C of C_P)
- 6: Call *DistributeMessage*(C_P, C)// $C_P \rightarrow C$
- $7_·$ end for
- 8: Extract posterior distribution of each non-observed variable.

$CollectMessage(C, C') // C \leftarrow C'$ 1: for (each neighbor C'' of C' except C) 2: $CollectMessage(C', C'')$ 3: end for

4: $SendMessage(C', C)$

${\it DistrictMessage(C, C') // C \rightarrow C'}$

- 1: $SendMessage(C, C')$
- 2: for (each neighbor C'' of C')
- 3: DistributeMessage (C', C'')
- 4: end for

SendMessage(**C**', **C**) // **C**' → **C**
1: Suppose **C**₁', **C**₂', ··· , **C**_k' are all the neighbors of **C**' except **C**
2: For
$$
i = 1, 2, \dots, k
$$
, $g_i \leftarrow$ *RetriveMessage*(**C**'_i, **C**',);
3: Let f_1, f_2, \dots, f_l be the function stored at **C**' during
initializationand **Z** = **C**' \ **C** ∪ **E**
4: $\psi \leftarrow \sum_{z} \prod_{i=1}^{l} f_i \prod_{j=1}^{k} g_j$
5: *SaveMessage*(**C**', **C**, ψ)

Example: CTP on the clique tree shown on Slide 22

```
■ CTP: Line 1: Pick pivot, Say Clique 5.
■ CTP: Lines 2-4: For loop
     \blacksquare CM(5, 8): (CM – CollectMessage)
          For-loop:
            CM(8, 7):
               SM(7, 8) (SM – SendMessage)
               Multiply functions stored at 8, Compute and save M(7->8)CM(8, 9): compute and save M(9->8)\blacksquare SM(8, 5):
               M(7->8) and M(9->8) retrieved
               Combine with functions stored at 8
               Compute and save M(8->5)■ CM(5, 2): Compute and save M(2->5), M(1->2), M(3->5)
     ■ CM(5, 4), CM(5, 6): Compute and save M(4->5), M(6->5)
```

```
■ CTP: Lines 5-7, for-loop
     \blacksquare DM(5, 8):
          \blacksquare SM(5, 8)
                Combine M(2->5), M(4->5), M(6->5), with functions at 5
                Compute and save M(5->8) "
          For-loop
                DM(8.7): Save and compute M(8->7)DM(8, 9): compute and save M(9->7)■ DM(5, 2): Compute and save M(5->2), M(2->1), M(2->3)
     \blacksquare DM(5, 4), DM(5, 6): Compute and save M(4->4), M(5->6)
```
■ CTP Line 8: Every clique has received message from all neighbors. So we can extract posterior probability of any variable X in a clique that contains X.

VE versus Clique Tree Propagation

 \blacksquare VF:

- Answers one query at a time.
- Allows pruning of irrelevant variables.
- No computation sharing among different queries.
- Clique tree propagation:
	- Computes posterior probabilities of all unobserved variables.
	- Does not allow pruning of irrelevant variables.
	- Allows computation sharing among different queries.
- See empirical comparisons in Zhang (1998).
- Empirical results suggest that one should use clique tree propagation only when we want posterior probabilities of many unobserved variables.
- Think: How to compute MPE and MAP in a clique tree?
- BN softwares support either VE, or clique tree propagation, or both. Check the software link on course page. (JavaBayes, Genie/Smile, Netica, Hugin, . . .)

Outline

- 1 [Clique Trees](#page-6-0)
- 2 [VE on Clique Trees](#page-21-0)
- 3 Correctness of VE on Clique Tree
- 4 The Clique Tree Propagation Algorithm
- 5 Constructing Clique Trees Correctness
- 6 Link to Graph Theory

Constructing Clique Trees

- Given: A Bayesian network.
- Task: Construct a clique tree
	- That covers the Bayesian network,
	- whose cliques are as small as possible.
- Solution: Build clique tree via elimination in moral graph.

An Algorithm

Let G be the moral graph of a BN and ρ be an elimination ordering.

Procedure buildCliqueTree(G, ρ)

- 1 Remove the first node Z from ρ . Set $S = adj(Z)$
- 2 Create clique $C = \{Z\} \cup S$
- 3 If C contains all nodes in G , return the clique tree that consists of only one clique C.

4 Else

- Add edges to G so that nodes in S are pairwise connected.
- 2 Remove Z from \mathcal{G} .
- 3 Recursive call: $\mathcal{T} = \text{buildCliqueTree}(\mathcal{G}, \rho)$
- 5 In $\mathcal T$, find clique $\mathsf C'$ s.t. $\mathsf S\subseteq \mathsf C'$ (we will show that such clique must exist).
- 6 Add C to T by connecting it to C' .
- 7 Return T .

An Example

BN and moral graph:

Constructing Clique Trees

An Example (cont'd)

Elimination ordering: A, X, D, S, B, L, T, R

Clique: {R, X}

Clique: {R, B, D} Eliminate: D

B

Eliminate: S

S

T L R R L B T L R

Clique: {R, L, B} Eliminate: B Clique: {L, S, B}

T L R R L B

L S B

Clique: {T, L, R} Eliminate: L

L

Could connect to RLB or RBD

g-Clique and t-cliques

- In an undirected graph, a set of nodes is a **clique** if vertices in the set are pairwise connected. (Standard graph-theoretic definition.)
- To avoid confusion:
	- \blacksquare Call such a clique a g -clique,
	- Call nodes in a clique tree **t-cliques**.

Proposition (5.2)

Let G be an undirected graph and T be the tree constructed by buildCliqueTree for G. If a set of variables **X** is a g-clique in G, then there exists a t-clique C in T such that

$$
\textbf{X} \subseteq \textbf{C}
$$

Proof:

 \blacksquare Let C be the clique created when eliminating the first node in **X**.

■ Then $X \subseteq C$. Q.E.D

Nevin L. Zhang (HKUST) [Bayesian Networks](#page-0-0) Fall 2008 37 / 50

Families covered

Corollary (5.2)

Let G be the moral graph of a BN and T be the tree constructed by buildCliqueTree for G . Then for any node X of the BN, there exists a t-clique C in T such that

 $\{X\} \cup pa(X) \subseteq C$

Proof:

- $\{X\} \cup pa(X)$ is a g-clique in the moral graph \mathcal{G} .
- The corollary follows from Proposition 5.2. Q.E.D

Step 5 of Algorithm

Corollary (5.1)

Step 5 of buildCliqueTree is always successful.

Proof: Right after eliminating Z.

- **S** is a g-clique in \mathcal{G} .
- \blacksquare Let $\mathcal T$ be the tree constructed by the recursive call to buildCliqueTree right after the removal of Z.
- According to Proposition 5.2, there must be a clique C' in $\mathcal T$ s.t. $\mathsf{S}\subseteq \mathsf{C}'$. Q.E.D

Variable-Connectedness

Proposition (5.3)

The tree T constructed by buildCliqueTree from undirected graph G is variable-connected.

Proof:

- Induction on the number *n* of nodes in G .
- When $n = 1$, the proposition is trivially true.
- **Induction hypothesis**: Assume the proposition is true when $n = k$.
- **Induction step:** Consider the case $n = k + 1$.
- **■** Consider any two cliques C_1 and C_2 in T and suppose $X \in C_1 \cap C_2$.
- \blacksquare Need to show: X appears in all cliques on the path between ${\sf C}_1$ and ${\sf C}_2$.

Variable-Connectedness

- \blacksquare Let Z be the first variable eliminated.
- Let T' be the tree return by the first recursive call.
- According to the induction hypothesis, \mathcal{T}' is variable-connected.
- ${\mathcal T}$ is ${\mathcal T}'$ plus the clique created when eliminating $Z.$
- If neither C_1 nor C_2 is the clique created when eliminating Z,
	- Then they are both in T' .
	- Since \mathcal{T}' is variable-connected, X appears in all cliques between C_1 and C_2 .

Proof of Proposition 5.3 (cont'd)

- Now assume C_1 is the clique created when eliminating Z.
- \blacksquare X cannot be Z because X is in C_2 .
- Then X must be in the set **S**, i.e. $adj(Z)$ in the graph G
- Let C' be the only neighbor of C_1 (determined at step 5).

Then, $S \subseteq C'$.

- Hence X must be in \mathbb{C}' , which is in \mathcal{T}' .
- Since \mathcal{T}' is variable-connected, X appears in all cliques between C' and $\mathsf{C}_2.$
- Hence X appears in all cliques between C_1 and C_2 . Q.E.D

Correctness of buildCliqueTree

Theorem (5.2)

Let G be the moral graph of a BN and T be the tree constructed by buildCliqueTree for G . Then T is a clique tree that covers the Bayesian network.

Proof:

- According to Proposition 5.3, $\mathcal G$ is a clique tree.
- According to Corollary 5.2, G covers the Bayesian network.

Minimal Clique Trees

- A clique tree is **minimal**: if none of the cliques are subsets of their neighbors.
- The tree obtained by buildCliqueTree might not be a minimal.
	- Example: Elimination ordering: E, D, C, B A

As shown, can be easily made minimal.

Outline

- 1 [Clique Trees](#page-6-0)
- 2 [VE on Clique Trees](#page-21-0)
- 3 Correctness of VE on Clique Tree
- 4 The Clique Tree Propagation Algorithm
- 5 Constructing Clique Trees Correctness
- 6 Link to Graph Theory

Why Link to Graph Theory

- I have explained the construction of clique trees in a way different from existing literature.
- Advantage: Easier to understand.
- Disadvantage: Intuition behind terminology (why clique tree) not clear.
- So it is necessary to explicate the link to graph theory.
- Also useful when reading papers.

Triangulated Graphs

- An undirected graph is **triangulated (chordal)** if every cycle with four or more nodes contains a *chord* - An edge between two nonconsecutive nodes.
- Example:

G1 is not triangulated: Cycle S-L-R-B has no chords. G2 is triangulated.

Triangulation

- **Triangulation**: Convert a graph that is not triangulated into one that is by adding edges.
- Example: \blacksquare

G1 is not triangulated. Adding edge L-B, we get G2, which is triangulated.

Maximal Cliques

- \blacksquare A g-clique is **maximal** if none of its supersets are g-cliques.
- Example:

- Maximal cliques of G1: [AT], [TLR], [XR], [RDB], [SL], [SB] Maximal cliques of G2: [AT], [TLR], [XR], [RDB], [RLB], [SBL]
- Maximal cliques of a triangulated graph can be arranged into a clique tree.

Traditional Way to Build Clique Trees

- $G:$ moral graph of a BN.
	- **T** Triangulate G by adding edges (equivalent to triangulation-via-elimination using an EO ρ).
	- Find all maximal g-cliques in triangulated graph.
	- Arrange them into a tree.

The result is the same as that given by buildCliqueTree after minimization.