
Overview of Course

So far, we have studied

The concept of Bayesian network

Independence and Separation in Bayesian networks

Inference in Bayesian networks

The rest of the course: Data analysis using Bayesian network

Parameter learning: Learn parameters for a given structure.

Structure learning: Learn both structures and parameters

Learning latent structures: Discover latent variables behind observed
variables and determine their relationships.
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Objective

Objective:

Principles for parameter learning in Bayesian networks.
Algorithms for the case of complete data.

Reading: Zhang and Guo (2007), Chapter 7

Reference: Heckerman (1996) (first half), Cowell et al (1999, Chapter 9)
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Problem Statement

Parameter Learning

Given:

A Bayesian network structure.
X1 X2

X3

X5

X4

A data set
X1 X2 X3 X4 X5

0 0 1 1 0
1 0 0 1 0
0 1 0 0 1
0 0 1 1 1
: : : : :

Estimate conditional probabilities:

P(X1), P(X2), P(X3|X1, X2), P(X4|X1), P(X5|X1, X3, X4)
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Principles of Parameter Learning
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Principles of Parameter Learning Maximum likelihood estimation

Single-Node Bayesian Network

TH

X: result of tossing a thumbtack

X

Consider a Bayesian network with one
node X , where X is the result of tossing a
thumbtack and ΩX = {H , T}.

Data cases:
D1 = H , D2 = T , D3 = H , . . . , Dm = H

Data set: D = {D1, D2, D3, . . . , Dm}

Estimate parameter: θ = P(X=H).
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Principles of Parameter Learning Maximum likelihood estimation

Likelihood

Data: D = {H , T , H , T , T , H , T}

As possible values of θ, which of the following is the most likely? Why?

θ = 0
θ = 0.01
θ = 10.5

θ = 0 contradicts data because P(D|θ = 0) = 0.It cannot explain the data
at all.

θ = 0.01 almost contradicts with the data. It does not explain the data well.
However, it is more consistent with the data than θ = 0 because
P(D|θ = 0.01) > P(D|θ = 0).

So θ = 0.5 is more consistent with the data than θ = 0.01 because
P(D|θ = 0.5) > P(D|θ = 0.01)
It explains the data the best among the three and is hence the most likely.
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Principles of Parameter Learning Maximum likelihood estimation

Maximum Likelihood Estimation

θ *

θL(  |D)

θ
10

In general, the larger P(D|θ = v) is, the
more likely θ = v is.

Likelihood of parameter θ given data set:

L(θ|D) = P(D|θ)

The maximum likelihood estimation
(MLE) θ∗ of θ is a possible value of θ

such that

L(θ∗|D) = supθL(θ|D).

MLE best explains data or best fits data.
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Principles of Parameter Learning Maximum likelihood estimation

i.i.d and Likelihood

Assume the data cases D1, . . . , Dm are independent given θ:

P(D1, . . . , Dm|θ) =

m
∏

i=1

P(Di |θ)

Assume the data cases are identically distributed:

P(Di = H) = θ, P(Di = T ) = 1−θ for all i

(Note: i.i.d means independent and identically distributed)

Then

L(θ|D) = P(D|θ) = P(D1, . . . , Dm|θ)

=

m
∏

i=1

P(Di |θ) = θmh(1 − θ)mt (1)

where mh is the number of heads and mt is the number of tail.
Binomial likelihood.
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Principles of Parameter Learning Maximum likelihood estimation

Example of Likelihood Function

Example: D = {D1 = H , D2T , D3 = H , D4 = H , D5 = T}

L(θ|D) = P(D|θ)

= P(D1 = H |θ)P(D2 = T |θ)P(D3 = H |θ)P(D4 = H |θ)P(D5 = T |θ)

= θ(1 − θ)θθ(1 − θ)

= θ3(1 − θ)2.
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Principles of Parameter Learning Maximum likelihood estimation

Sufficient Statistic

A sufficient statistic is a function s(D) of data that summarizing the
relevant information for computing the likelihood. That is

s(D) = s(D′) ⇒ L(θ|D) = L(θ|D′)

Sufficient statistics tell us all there is to know about data.

Since L(θ|D) = θmh(1 − θ)mt ,
the pair (mh, mt) is a sufficient statistic.
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Principles of Parameter Learning Maximum likelihood estimation

Loglikelihood

Loglikelihood:

l(θ|D) = logL(θ|D) = logθmh(1 − θ)mt = mhlogθ + mt log(1 − θ)

Maximizing likelihood is the same as maximizing loglikelihood. The latter is
easier.

By Corollary 1.1 of Lecture 1, the following value maximizes l(θ|D):

θ∗ =
mh

mh + mt

=
mh

m

MLE is intuitive.

It also has nice properties:

E.g. Consistence: θ∗ approaches the true value of θ with probability 1
as m goes to infinity.
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Principles of Parameter Learning Bayesian estimation

Drawback of MLE

Thumbtack tossing:

(mh, mt) = (3, 7). MLE: θ = 0.3.
Reasonable. Data suggest that the thumbtack is biased toward tail.

Coin tossing:

Case 1: (mh, mt) = (3, 7). MLE: θ = 0.3.
Not reasonable.
Our experience (prior) suggests strongly that coins are fair, hence
θ=1/2.
The size of the data set is too small to convince us this particular coin
is biased.
The fact that we get (3, 7) instead of (5, 5) is probably due to
randomness.

Case 2: (mh, mt) = (30, 000, 70, 000). MLE: θ = 0.3.
Reasonable.
Data suggest that the coin is after all biased, overshadowing our prior.

MLE does not differentiate between those two cases. It doe not take
prior information into account.
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Principles of Parameter Learning Bayesian estimation

Two Views on Parameter Estimation

MLE:

Assumes that θ is unknown but fixed parameter.

Estimates it using θ∗, the value that maximizes the likelihood function

Makes prediction based on the estimation: P(Dm+1 = H |D) = θ∗

Bayesian Estimation:

Treats θ as a random variable.

Assumes a prior probability of θ: p(θ)

Uses data to get posterior probability of θ: p(θ|D)
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Principles of Parameter Learning Bayesian estimation

Two Views on Parameter Estimation

Bayesian Estimation:

Predicting Dm+1

P(Dm+1 = H |D) =

∫

P(Dm+1 = H , θ|D)dθ

=

∫

P(Dm+1 = H |θ,D)p(θ|D)dθ

=

∫

P(Dm+1 = H |θ)p(θ|D)dθ

=

∫

θp(θ|D)dθ.

Full Bayesian: Take expectation over θ.

Bayesian MAP:

P(Dm+1 = H |D) = θ∗ = arg max p(θ|D)
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Principles of Parameter Learning Bayesian estimation

Calculating Bayesian Estimation

Posterior distribution:

p(θ|D) ∝ p(θ)L(θ|D)

= θmh(1 − θ)mt p(θ)

where the equation follows from (1)

To facilitate analysis, assume prior has Beta distribution B(αh, αt)

p(θ) ∝ θαh−1(1 − θ)αt−1

Then

p(θ|D) ∝ θmh+αh−1(1 − θ)mt+αt−1 (2)
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Principles of Parameter Learning Bayesian estimation

Beta Distribution

The normalization constant for
the Beta distribution B(αh, αt)

Γ(αt + αh)

Γ(αt)Γ(αh)

where Γ(.) is the Gamma
function. For any integer α,

Γ(α) = (α − 1)!. It is also defined
for non-integers.

Density function of prior Beta
distribution B(αh, αt),

p(θ) =
Γ(αt + αh)

Γ(αt)Γ(αh)
θαh−1(1 − θ)αt−1

The hyperparameters αh and αt

can be thought of as ”imaginary”
counts from our prior experiences.

Their sum α = αh+αt is called
equivalent sample size.

The larger the equivalent sample
size, the more confident we are in
our prior.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 20 / 58



Principles of Parameter Learning Bayesian estimation

Conjugate Families

Binomial Likelihood: θmh(1 − θ)mt

Beta Prior: θαh−1(1 − θ)αt−1

Beta Posterior: θmh+αh−1(1 − θ)mt+αt−1.

Beta distributions are hence called a conjugate family for Binomial
likelihood.

Conjugate families allow closed-form for posterior distribution of parameters
and closed-form solution for prediction.
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Principles of Parameter Learning Bayesian estimation

Calculating Prediction

We have

P(Dm+1 = H |D) =

∫

θp(θ|D)dθ

= c

∫

θθmh+αh−1(1 − θ)mt+αt−1dθ

=
mh + αh

m + α

where c is the normalization constant, m=mh+mt , α = αh+αt .

Consequently,

P(Dm+1 = T |D) =
mt + αt

m + α

After taking data D into consideration, now our updated belief on X=T is
mt+αt

m+α
.
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Principles of Parameter Learning Bayesian estimation

MLE and Bayesian estimation

As m goes to infinity, P(Dm+1 = H |D) approaches the MLE mh

mh+mt
,which

approaches the true value of θ with probability 1.

Coin tossing example revisited:

Suppose αh = αt = 100. Equivalent sample size: 200
In case 1,

P(Dm+1 = H |D) =
3 + 100

10 + 100 + 100
≈ 0.5

Our prior prevails.
In case 2,

P(Dm+1 = H |D) =
30, 000 + 100

100, 0000 + 100 + 100
≈ 0.3

Data prevail.
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Principles of Parameter Learning Variable with Multiple Values

Variable with Multiple Values

Bayesian networks with a single multi-valued variable.

ΩX = {x1, x2, . . . , xr}.

Let θi = P(X = xi ) and θ = (θ1, θ2, . . . , θr ).

Note that θi ≥ 0 and
∑

i θi = 1.

Suppose in a data set D, there are mi data cases where X takes value xi .

Then

L(θ|D) = P(D|θ) =

N
∏

j=1

P(Dj |θ) =

r
∏

i=1

θmi

i

Multinomial likelihood.
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Principles of Parameter Learning Variable with Multiple Values

Dirichlet distributions

Conjugate family for multinomial likelihood: Dirichlet distributions.

A Dirichlet distribution is parameterized by r parameters α1, α2, . . . ,
αr .
Density function given by

Γ(α)
∏r

i=1 Γ(αi )

k
∏

i=1

θαi−1
i

where α = α1 + α2 + . . . + αr .
Same as Beta distribution when r=2.
Fact: For any i :

∫

θi

Γ(α)
∏r

i=1 Γ(αi )

k
∏

i=1

θαi−1
i dθ1dθ2. . .dθr =

αi

α
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Principles of Parameter Learning Variable with Multiple Values

Calculating Parameter Estimations

If the prior probability is a Dirichlet distribution Dir(α1, α2, . . . , αr ), then
the posterior probability p(θ|D) is a given by

p(θ|D) ∝
r

∏

i=1

θmi+αi−1
i

So it is Dirichlet distribution Dir(α1 + m1, α2 + m2, . . . , αr + mr ),

Bayesian estimation has the following closed-form:

P(Dm+1=xi |D) =

∫

θip(θ|D)dθ =
αi + mi

α + m

MLE: θ∗i = mi

m
. (Exercise: Prove this.)
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Parameter Estimation in General Bayesian Networks
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Parameter Estimation in General Bayesian Networks The Parameters

The Parameters

n variables: X1, X2, . . . , Xn.

Number of states of Xi : 1, 2, . . . , ri=|ΩXi
|.

Number of configurations of parents of Xi : 1, 2, . . . , qi=|Ωpa(Xi )|.

Parameters to be estimated:

θijk = P(Xi = j |pa(Xi ) = k), i = 1, . . . , n; j = 1, . . . , ri ; k = 1, . . . , qi

Parameter vector: θ = {θijk |i = 1, . . . , n; j = 1, . . . , ri ; k = 1, . . . , qi}.
Note that

∑

j θijk = 1∀i , k

θi ..: Vector of parameters for P(Xi |pa(Xi ))

θi .. = {θijk |j = 1, . . . , ri ; k = 1, . . . , qi}

θi .k : Vector of parameters for P(Xi |pa(Xi )=k)

θi .k = {θijk |j = 1, . . . , ri}
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Parameter Estimation in General Bayesian Networks The Parameters

The Parameters

Example: Consider the Bayesian network shown below. Assume all variables
are binary, taking values 1 and 2.

3X

2X1
X

θ111 = P(X1=1), θ121 = P(X1=2)

θ211 = P(X2=1), θ221 = P(X2=2)

pa(X3) = 1 : θ311 = P(X3=1|X1 = 1, X2 = 1), θ321 = P(X3=2|X1 = 1, X2 = 1)

pa(X3) = 2 : θ312 = P(X3=1|X1 = 1, X2 = 2), θ322 = P(X3=2|X1 = 1, X2 = 2)

pa(X3) = 3 : θ313 = P(X3=1|X1 = 2, X2 = 1), θ323 = P(X3=2|X1 = 2, X2 = 1)

pa(X3) = 4 : θ314 = P(X3=1|X1 = 2, X2 = 2), θ324 = P(X3=2|X1 = 2, X2 = 2)
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Parameter Estimation in General Bayesian Networks The Parameters

Data

A complete case Dl : a vector of values, one for each variable.

Example: Dl = (X1 = 1, X2 = 2, X3 = 2)

Given: A set of complete cases: D = {D1, D2, . . . , Dm}.

Example:

X1 X2 X3 X1 X2 X3

1 1 1 2 1 1
1 1 2 2 1 2
1 1 2 2 2 1
1 2 2 2 2 1
1 2 2 2 2 2
1 2 2 2 2 2
2 1 1 2 2 2
2 1 1 2 2 2

Find: The ML estimates of the parameters θ.
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

The Loglikelihood Function

Loglikelihood:

l(θ|D) = logL(θ|D) = logP(D|θ) = log
∏

l

P(Dl |θ) =
∑

l

logP(Dl |θ).

The term logP(Dl |θ):

D4 = (1, 2, 2),

logP(D4|θ) = logP(X1 = 1, X2 = 2, X3 = 2)

= logP(X1=1|θ)P(X2=2|θ)P(X3=2|X1=1, X2=2, θ)

= logθ111 + logθ221 + logθ322.

Recall:
θ = {θ111, θ121; θ211, θ221; θ311, θ312, θ313, θ314, θ321, θ322, θ323, θ324}
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

The Loglikelihood Function

Define the characteristic function of case Dl :

χ(i , j , k : Dl) =

{

1 if Xi = j , pa(Xi) = k in Dl

0 otherwise

When l=4, D4 = (1, 2, 2).

χ(1, 1, 1 : D4) = χ(2, 2, 1 : D4) = χ(3, 2, 2 : D4) = 1

χ(i , j , k : D4) = 0 for all other i, j, k

So, logP(D4|θ) =
∑

ijk χ(i , j , k ; D4)logθijk

In general,

logP(Dl |θ) =
∑

ijk

χ(i , j , k : Dl )logθijk
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

The Loglikelihood Function

Define
mijk =

∑

l

χ(i , j , k : Dl ).

It is the number of data cases where Xi = j and pa(Xi ) = k .

Then

l(θ|D) =
∑

l

logP(Dl |θ)

=
∑

l

∑

i ,j,k

χ(i , j , k : Dl )logθijk

=
∑

i ,j,k

∑

l

χ(i , j , k : Dl )logθijk

=
∑

ijk

mijk logθijk

=
∑

i ,k

∑

j

mijk logθijk . (4)
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

MLE

Want:
arg max

θ
l(θ|D) = arg max

θijk

∑

i ,k

∑

j

mijk logθijk

Note that θijk = P(Xi=j |pa(Xi)=k) and θi ′j′k′ = P(Xi ′=j ′|pa(Xi ′)=k ′) are
not related if either i 6=i ′ or k 6=k ′.

Consequently, we can separately maximize each term in the summation
∑

i ,k [. . .]

arg max
θijk

∑

j

mijk logθijk
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

MLE

By Corollary 1.1 , we get

θ∗ijk =
mijk

∑

j mijk

In words, the MLE estimate for θijk = P(Xi=j |pa(Xi )=k) is:

θ∗ijk =
number of cases where Xi=j and pa(Xi )=k

number of cases where pa(Xi )=k
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Parameter Estimation in General Bayesian Networks Maximum likelihood estimation

Example

Example:

3X

2X1
X X1 X2 X3 X1 X2 X3

1 1 1 2 1 1
1 1 2 2 1 2
1 1 2 2 2 1
1 2 2 2 2 1
1 2 2 2 2 2
1 2 2 2 2 2
2 1 1 2 2 2
2 1 1 2 2 2

MLE for P(X1=1) is: 6/16

MLE for P(X2=1) is: 7/16

MLE for P(X3=1|X1=2, X2=2) is: 2/6

. . .
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Parameter Estimation in General Bayesian Networks Properties of MLE

A Question

Start from a joint distribution P(X) (Generative Distribution)

D: collection of data sampled from P(X).

Let S be a BN structrue (DAG) over variables X.

Learn parameters θ∗ for BN structure S from D.

Let P∗(X) be the joint probability of the BN (S , θ∗).

Note: θ∗ijk = P∗(Xi=j |paS(Xi )=k)

How is P∗ related to P?
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Parameter Estimation in General Bayesian Networks Properties of MLE

MLE in General Bayesian Networks with Complete Data

.

to S

factorize according 

Distributions that

*P

P

*

P∗ factorizes according to S .

P does not necessarily factorize
according to S .

We will show that, with
probability 1, P∗ converges to the
distribution that

Factorizes according to S ,

Is closest to P under KL
divergence among all
distributions that factorize
according to S .

If P factorizes according to S , P∗

converges to P with probability 1.
(MLE is consistent.)
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Parameter Estimation in General Bayesian Networks Properties of MLE

The Target Distribution

Define
θS
ijk = P(Xi=j |paS(Xi ) = k))

Let PS (X) be the joint distribution of the BN (S , θS )

PS factorizes according to S and for any X ∈ X,

PS(X |pa(X )) = P(X |pa(X ))

If P factorizes according to S , then P and PS are identical.

If P does not factorize according to S , then P and PS are different.
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Parameter Estimation in General Bayesian Networks Properties of MLE

First Theorem

Theorem (6.1)

Among all distributions Q that factorizes according to S, the KL divergence

KL(P , Q) is minimized by Q=PS .

PS is the closest to P among all those that factorize according to S.

Proof:

Since

KL(P , Q) =
∑

X

P(X)log
P(X)

Q(X)

It suffices to show that

Proposition: Q=PS maximizes
∑

X P(X)logQ(X)

We show the claim by induction on the number of nodes.

When there is only one node, the proposition follows from property of KL
divergence (Corollary 1.1).
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Parameter Estimation in General Bayesian Networks Properties of MLE

First Theorem

Suppose the proposition is true for the case of n nodes. Consider the case of
n+1 nodes.

Let X be a leaf node and X′=X \ {X}. S ′ be the obtained from S by
removing X .

Then
∑

X

P(X)logQ(X) =
∑

X′

P(X′)logQ(X′) +
∑

pa(X )

P(pa(X ))
∑

X

P(X |pa(X ))logQ(X |pa(X ))

By the induction hypothesis, the first term is maximized by PS′

.

By Corollary 1.1, the second term is maximized if
Q(X |pa(X )) = P(X |pa(X )).

Hence the sum is maximized by PS .
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Parameter Estimation in General Bayesian Networks Properties of MLE

Second Theorem

Theorem (6.2)

lim
N→∞

P∗(X=x) = PS(X=x) with probability 1

where N is the sample size, i.e. number of cases in D.

Proof:

Let P̂(X) be the empirical distribution:

P̂(X=x) = fraction of cases in D where X=x

It is clear that

P∗(Xi=j |paS (Xi )=k) = θ∗ijk = P̂(Xi=j |paS(Xi )=k)

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 46 / 58



Parameter Estimation in General Bayesian Networks Properties of MLE

Second Theorem

On the other hand, by the law of large numbers, we have

lim
N→∞

P̂(X=x) = P(X=x) with probability 1

Hence

lim
N→∞

P∗(Xi=j |paS(Xi )=k) = lim
N→∞

P̂(Xi=j |paS(Xi )=k)

= P(Xi=j |paS (Xi )=k) with probability 1

= PS(Xi=j |paS(Xi )=k)

Because both P∗ and PS factorizes according to S , the theorem follows.
Q.E.D.
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Parameter Estimation in General Bayesian Networks Properties of MLE

A Corollary

Corollary

If P factorizes according to S, then

lim
N→∞

P∗(X=x) = P(X=x) with probability 1
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Parameter Estimation in General Bayesian Networks Bayesian estimation

Bayesian Estimation

View θ as a vector of random variables with prior distribution p(θ).

Posterior:

p(θ|D) ∝ p(θ)L(θ|D)

= p(θ)
∏

i ,k

∏

j

θ
mijk

ijk

where the equation follows from (4).

Assumptions need to be made about prior distribution.
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Parameter Estimation in General Bayesian Networks Bayesian estimation

Assumptions

Global independence in prior distribution:

p(θ) =
∏

i

p(θi ..)

Local independence in prior distribution: For each i

p(θi ..) =
∏

k

p(θi .k)

Parameter independence = global independence + local independence:

p(θ) =
∏

i ,k

p(θi .k)
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Parameter Estimation in General Bayesian Networks Bayesian estimation

Assumptions

Further assume that p(θi .k) is Dirichlet distribution Dir(αi0k , αi1k , . . . , αirik):

p(θi .k) ∝
∏

j

θ
αijk−1
ijk

Then,
p(θ) =

∏

i ,k

∏

j

θ
αijk−1
ijk

product Dirichlet distribution.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 52 / 58



Parameter Estimation in General Bayesian Networks Bayesian estimation

Bayesian Estimation

Posterior:

p(θ|D) ∝ p(θ)
∏

i ,k

∏

j

θ
mijk

ijk

= [
∏

i ,k

∏

j

θ
αijk−1
ijk ]

∏

i ,k

∏

j

θ
mijk

ijk

=
∏

i ,k

∏

j

θ
mijk+αijk−1
ijk

It is also a product product Dirichlet distribution.(Think: What does this
mean?)

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 53 / 58



Parameter Estimation in General Bayesian Networks Bayesian estimation

Prediction

Predicting Dm+1 = {Xm+1
1 , Xm+1

2 , . . . , Xm+1
n }. Random variables.

For notational simplicity, simply write Dm+1 = {X1, X2, . . . , Xn}.

First, we have:

P(Dm+1|D) = P(X1, X2, . . . , Xn|D) =
∏

i

P(Xi |pa(Xi),D)
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Proof

P(Dm+1|D) =

∫

P(Dm+1|θ)p(θ|D)dθ

P(Dm+1|θ) = P(X1, X2, . . . , Xn|θ)

=
∏

i

P(Xi |pa(Xi ), θ)

=
∏

i

P(Xi |pa(Xi ), θi ..)

p(θi |D) =
∏

i

p(θi ..|D)

Hence
P(Dm+1|D) =

∏

i

∫

P(Xi |pa(Xi ), θi ..)p(θi ..|D)dθi ..

=
∏

i

P(Xi |pa(Xi ),D)
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Prediction

Further, we have

P(Xi=j |pa(Xi)=k ,D) =

∫

P(Xi=j |pa(Xi ) = k , θijk)p(θijk |D)dθijk

=

∫

θijkp(θijk |D)dθijk

Because
p(θi .k |D) ∝

∏

j

θ
mijk+αijk−1
ijk

We have
∫

θijkp(θijk |D)dθijk =
mijk+αijk

∑

j(mijk+αijk )
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Prediction

Conclusion:

P(X1, X2, . . . , Xn|D) =
∏

i

P(Xi |pa(Xi ),D)

where

P(Xi=j |pa(Xi )=k ,D) =
mijk+αijk

mi∗k+αi∗k

where mi∗k =
∑

j mijk and αi∗k =
∑

j αijk

Notes:

Conditional independence or structure preserved after absorbing D.
Important property for sequential learning where we process one case
at a time.
The final result is independent of the order by which cases are
processed.
Comparison with MLE estimation:

θ∗ijk =
mijk

∑

j mijk
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Summary

θ: random variable.

Prior p(θ): product Dirichlet distribution

p(θ) =
∏

i ,k

p(θi .k) ∝
∏

i ,k

∏

j

θ
αijk−1
ijk

Posterior p(θ|D): also product Dirichlet distribution

p(θ|D) ∝
∏

i ,k

∏

j

θ
mijk+αijk−1
ijk

Prediction:

P(Dm+1|D) = P(X1, X2, . . . , Xn|D) =
∏

i

P(Xi |pa(Xi),D)

where

P(Xi=j |pa(Xi )=k ,D) =
mijk+αijk

mi∗k+αi∗k
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