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Objective

Objective: Parameter learning with incomplete data.

Reading: Zhang and Guo (2007), Chapter 7

Reference: Heckerman (1996) (first half), Cowell et al (1999, Chapter 9)
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Introduction

Missing Data

Real-world data usually contains missing entries.

We need to deal with incomplete data sets that looks like the following:

X1 X2 X3 X1 X2 X3

1 1 1 2 1 1
? 1 2 2 1 2
1 ? ? 2 ? 1
2 1 1 ? 2 ?

where ? indicates missing values.

3X

2X1
X
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Introduction

Missing at Random

To deal with missing values, we need to make the missing at random
(MAR) assumption:

Actual value of X and the event X -is-missing are conditionally
independent given other observed variables.

P(X |X -is-mising, other observed variables) = P(X |other observed variables)

Given all the observed variables, the fact that X ’s value is missing gives
us no additional information about the value.
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Introduction

Missing at Random

The assumption is sometimes not true.

A patient record contains no value for “chest X-ray result” suggests
that the doctor did not think chest X-ray test is necessary;
The result would be negative even if performed.

However, it can be made true by introducing, when necessary, an auxiliary
binary variable Observed−X .

Observed−X is always observed, taking value ”yes” when X is
observed and ”no” otherwise.
We now have

P(X |X -is-mising, Observed−x , other observed variables)

= P(X |Observed−X , other observed variables)
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MLE from Incomplete Data The basic idea of EM

Basic Idea of EM

One algorithm for finding MLE: The expectation-maximization (EM)
algorithm.

Developed in the Statistics community (Dempster et al. 1977). Adapted for
Bayesian networks by Lauritzen (1994).

It is an iterative algorithm.

Starts with an initial estimation θ0.
At each iteration t,

Expectation: Complete the data set based on θt .
Maximization: Re-estimate parameters using the completed data set,
obtaining θt+1.
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MLE from Incomplete Data The basic idea of EM

The expectation step

How to complete data?

θt is given. So, there is a joint distribution P(.|θt) over all variables.

Consider an incomplete data case D3 = (1, ?, ?).

EM computes P(X2, X3|X1 = 1, θt).
Suppose

P(X2 = 1, X3 = 1|X1 = 1, θt) = 1/4, P(X2 = 1, X3 = 2|X1 = 1, θt) = 1/4

P(X2 = 2, X3 = 1|X1 = 1, θt) = 1/4, P(X2 = 2, X3 = 2|X1 = 1, θt) = 1/4

EM splits D3 into the following four partial data cases:

(1, ?, ?) ⇒ (1, 1, 1)[1/4], (1, 1, 2)[1/4], (1, 2, 1)[1/4], (1, 2, 2)[1/4]

Each of them is counted as one fourth of a data case.
Note: The MAR assumption is implicitly used.
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MLE from Incomplete Data The basic idea of EM

The maximization step

After data completion, we get a data set with complete data cases.

Some of the data cases are partial data cases.

EM re-estimates the parameters using the complete data set.

Partial data cases are counted according to their associated weights.
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MLE from Incomplete Data An Example

An Example

X2 X3X1

X1 X2 X3

D1 1 1 1
D2 2 2 2
D3 1 - 1
D4 2 - 2

Choose θ0:

X1 1 2
1/2 1/2

P(X1) HHHHX1

X2 1 2

1 2/3 1/3
2 1/3 2/3

P(X2|X1) HHHHX2

X3 1 2

1 2/3 1/3
2 1/3 2/3

P(X3|X2)
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MLE from Incomplete Data An Example

An Example

Because

P(X2=1|D3, θ
0) = 4/5 P(X2=2|D3, θ

0) = 1/5

D3 is split into: D3.1=(1, 1, 1)[4/5]D3.2=(1, 2, 1)[1/5].

Similarly, D4 is also split into two partial data cases.

The completed data:

X1 X2 X3 weights
D1 1 1 1 1
D2 2 2 2 1
D3.1 1 1 1 4/5
D3.2 1 2 1 1/5
D4.1 2 1 1 1/5
D4.2 2 2 2 4/5
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MLE from Incomplete Data An Example

An Example

The completed data:

X1 X2 X3 weights
D1 1 1 1 1
D2 2 2 2 1
D3.1 1 1 1 4/5
D3.2 1 2 1 1/5
D4.1 2 1 1 1/5
D4.2 2 2 2 4/5

Calculate θ1:

X1 1 2
1/2 1/2

P(X1) HHHHX1

X2 1 2

1 9/10 1/10
2 1/10 9/10

P(X2|X1) HHHHX2

X3 1 2

1 9/10 1/10
2 1/10 9/10

P(X3|X2)

Exercise: Repeat the process for two more steps.
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MLE from Incomplete Data Formalizing the Idea

Review of the Complete-Data Case

In MLE, we maximize the loglikelihood l(θ|D).

In the case of complete data,

We have
l(θ|D) =

∑

l

logP(Dl |θ)

Estimation is done in two steps:

1 Compute the loglikelihood

l(θ|D) =
∑

i,k

∑

j

mijk logθijk

Or equivalently, the sufficient statistics mijk =
∑

l χ(i , j , k : Dl)
2 Calculate estimate:

θ
∗

ijk =
mijk

∑

j
mijk
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MLE from Incomplete Data Formalizing the Idea

Expected Loglikelihood

Now consider the case incomplete data:

Suppose value of a variable Xl is missing from Dl .
In the expectation step, the case is completed and split into several
partial cases:

(Xl=1, Dl)[P(X1=1|Dl , θ
t)], (Xl=2, Dl)[P(X1=2|Dl , θ

t)]

Correspondingly, in the loglikelihood function, we have

P(Xl=1|Dl , θ
t)logP(Xl=1, Dl |θ) + P(Xl=2|Dl , θ

t)logP(Xl=2, Dl |θ)

In general, we have the so-called expected loglikelihood:

l(θ|D, θt) =
∑

l

∑

xl∈ΩXl

P(Xl=xl |Dl , θ
t)logP(Dl ,Xl=xl |θ)

where Xl is in both face because there could be more that one missing
values.
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MLE from Incomplete Data Formalizing the Idea

EM in terms Expected Loglikelihood

Formally, the next estimate θt+1 is obtained from the current one θt in two steps:

1 The E-step computes the current expected loglikelihood function, now
denoted by Q(θ|θt) for simplicity, of θ given data D, i.e.

Q(θ|θt) =
∑

l

∑

xl∈ΩXl

P(Xl=xl |Dl , θ
t)logP(Dl ,Xl=xl |θ),

where Xl is the set of variables whose values a7re missing from data case Dl .

2 The M-step computes the next estimate θt+1 by maximizing the current
expected loglikelihood:

Q(θt+1|θt) ≥ Q(θ|θt) for all θ.

Or
θt+1 = arg max

θ
Q(θ|θt)
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MLE from Incomplete Data Formalizing the Idea

Characteristic Function

Consider a specific value xl for Xl . Define

χ(i , j , k : Dl ,Xl=xl) =

{

1 if Xi = j and pa(Xi) = k are in (Dl ,Xl=xl)
0 otherwise
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MLE from Incomplete Data Formalizing the Idea

Computation in the E-step

Then

Q(θ|θt) =
∑

l

∑

xl∈ΩXl

P(Xl=xl |Dl , θ
t)logP(Dl ,Xl=xl |θ)

=
∑

l

∑

xl∈ΩXl

P(Xl=xl |Dl , θ
t)

∑

i ,j,k

χ(i , j , k : Dl ,Xl=xl)logθijk

=
∑

i ,j,k

∑

l

∑

xl∈ΩXl

P(Xl=xl |Dl , θ
t)χ(i , j , k : Dl ,Xl=xl)logθijk

=
∑

i ,j,k

mt
ijk logθijk

=
∑

i ,k

∑

j

mt
ijk logθijk

where the sufficient statistics mt
ijk are given by

mt
ijk =

∑

l

∑

xl∈ΩXl

P(Xl=xl |Dl , θ
t)χ(i , j , k : Dl , Xl=xl)
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MLE from Incomplete Data Formalizing the Idea

Computation in the M-Step

Maximizing θ (Corollary 1.1), we get

θt+1
ijk =

mt
ijk

∑

j mt
ijk

for all i , j , and k.

Interpretation:

mt
ijk =

∑

l

∑

xl∈ΩXl

P(Xl=xl |Dl , θ
t)χ(i , j , k : Dl ,Xl=xl) is

The number of cases where Xi=j and pa(Xi )=k in the completed data
set.
Or expected number of cases where Xi=j and pa(Xi)=k

Hence,

θt+1
ijk

=
number of cases where Xi = j and pa(Xi )=k in the completed data set

number of cases where pa(Xi )=k in the completed data set

=
expected number of cases where Xi=j and pa(Xi )=k

expected number of cases where pa(Xi )=k
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MLE from Incomplete Data The EM-Algorithm

Sufficient Statistics Rewritten

Simplifying notation:

mt
ijk =

∑

l

∑

xl∈ΩXl

P(Xl=xl |Dl , θ
t)χ(i , j , k : Dl ,Xl=xl)

=
∑

l

∑

Xl

P(Xl |Dl , θ
t)χ(i , j , k : Dl ,Xl)

Let Yl be the set of variables observed in Dl .

We have: P(Xl |Dl , θ
t) =

∑

Yl
P(Xl ,Yl |Dl , θ

t)

Hence

mt
ijk =

∑

l

∑

Xl

∑

Yl

P(Xl ,Yl |Dl , θ
t)χ(i , j , k : Dl ,Xl)
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MLE from Incomplete Data The EM-Algorithm

Sufficient Statistics Rewritten

mt
ijk =

∑

l

∑

Xl

∑

Yl

P(Xl ,Yl |Dl , θ
t)χ(i , j , k : Dl ,Xl)

=
∑

l

∑

Yl ,Xl s.t. Xi=j,pa(Xi )=k in (Dl ,Xl )

P(Xl ,Yl |Dl , θ
t)

=
∑

l

∑

Yl ,Xl s.t. Xi=j,pa(Xi )=k in (Yl ,Xl )

P(Xl ,Yl |Dl , θ
t)

because P(Xl ,Yl |Dl , θ
t) = 0 if Yl 6= Dl

=
∑

l

P(Xi=j , pa(Xi)=k |Dl , θ
t)

analogy:
∑

A,B,C :B=1 P(A, B, C) = P(B=1)
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MLE from Incomplete Data The EM-Algorithm

One EM-step

EM−Step(D, θt):

E-step:

Compute P(Xi , pa(Xi)|Dl , θ
t) for all Xi and Dl .

Compute the sufficient statistics mt
ijk =

∑

l P(Xi=j , pa(Xi )=k |Dl , θ
t)

for all i , j , k .

M-step: Compute

θt+1
ijk =

mt
ijk

∑

j mt
ijk

for all i , j , and k .

Return θt+1.

Questions:

The first step of E-step is standard Bayesian network inference. Which
inference algorithm to use, VE or CTP?

What is the problem if we implement EM-step using the basic idea directly?
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MLE from Incomplete Data The EM-Algorithm

The EM algorithm

EM(D):

Randomly pick θ0.

For t = 0 to termination

θt+1 = EM−STEP(D, θt)

When should we terminate?
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MLE from Incomplete Data Convergence

Loglikelihood and Expected Loglikelihood

l(θ|D) =
∑

l

logP(Dl |θ)

=
∑

l

∑

Xl

P(Xl |Dl , θ
t)logP(Dl |θ)

=
∑

l

∑

Xl

P(Xl |Dl , θ
t)log

P(Dl ,Xl |θ)

P(Xl |Dl , θ)

=
∑

l

∑

Xl

P(Xl |Dl , θ
t)logP(Dl ,Xl |θ) −

∑

l

∑

Xl

P(Xl |Dl , θ
t)logP(Xl |Dl , θ)

= Q(θ|θt) −
∑

l

∑

Xl

P(Xl |Dl , θ
t)logP(Xl |Dl , θ).
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MLE from Incomplete Data Convergence

EM and Loglikelihood

Hence we have

l(θt |D) = Q(θt |θt) −
∑

l

∑

Xl

P(Xl |Dl , θ
t)logP(Xl |Dl , θ

t)

≤ Q(θt+1|θt) −
∑

l

∑

Xl

P(Xl |Dl , θ
t)logP(Xl |Dl , θ

t)

≤ Q(θt+1|θt) −
∑

l

∑

Xl

P(Xl |Dl , θ
t)logP(Xl |Dl , θ

t+1)

= l(θt+1|D)

where

the first inequality is due to the definition of θt+1, and
the second inequality is due to Corollary 1.1.

So, l(θt |D) monotonically increases with t.

On the other hand, l(θt |D) is upper bounded by 0.

Hence EM converges.
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MLE from Incomplete Data Convergence

Complete Statement of the EM algorithm

EM(D):

Randomly pick θ0.

For t = 0 to ∞

θt+1 = EM−STEP(D, θt)
If l(θt+1|D) ≤ l(θt |D) + ε, return θt+1
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MLE from Incomplete Data Convergence

What does EM converge to?

(Mclachlan and Krishnan 1997) 1 If

θt+1 = arg max
θ

Q(θ|θt) = θt

then
∂l(θ|D)

∂θ
|θ=θt = 0

EM converges to

global maxima, local maxima, or saddle points.

1McLachlan, G.J. and Krishnan, T. (1997). The EM algorithm and extensions. Wiley
Interscience.
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MLE from Incomplete Data Convergence

Empirical Experience with EM

Usually fast ,especially at first few iterations.
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Rate of convergence: The more missing data, the slower the convergence.
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MLE from Incomplete Data Convergence

Local Maxima

There is no guarantee that EM converge to the global optimum.

It might be stacked at local maxima.

finish start
parameter space

loglikelihood

Solution:

Multiple random restart.
Simulated annealing.
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Bayesian Estimation from Incomplete Data

The Case of Complete Data

θ: random variable.

Prior p(θ): product Dirichlet distribution

p(θ) =
∏

i ,k

p(θi .k) ∝
∏

i ,k

∏

j

θ
αijk−1
ijk

Posterior p(θ|D): also product Dirichlet distribution

p(θ|D) ∝
∏

i ,k

∏

j

θ
mijk+αijk−1
ijk

Prediction:

P(Dm+1|D) = P(X1, X2, . . . , Xn|D) =
∏

i

P(Xi |pa(Xi),D)

where

P(Xi=j |pa(Xi )=k ,D) =
mijk+αijk

mi∗k+αi∗k
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Bayesian Estimation from Incomplete Data

Absorbing one Data Case

Product Dirichlet density:

p(θ) =
∏

i ,k

p(θi .k) ∝
∏

i ,k

∏

j

θ
αijk−1
ijk

Denote it by κ(θ|α),where α stands for the vector of all αijk .

Consider one incomplete case D1 . Let X1 be the set of variables unobserved
in D1.

We have

p(θ|D1) ∝ p(θ)P(D1|θ)

= p(θ)
∑

x1∈ΩX1

P(D1,X1 = x1|θ)

=
∑

x1∈ΩX1

p(θ)P(D1,X1 = x1|θ) (1)
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Bayesian Estimation from Incomplete Data

Absorbing one Data Case

Because (D1,X1=x1) is a complete case, each term p(θ)P(D1,X1 = x1|θ)
corresponds to a product Dirichlet density κ(θ|αx1).

So the posterior distribution P(θ|D1) is a mixture of product Dirichlet
densities:

p(θ|D1) =
∑

x1∈ΩX1

wx1κ(θ|αx1).

This does not factorize.
Parameter independence (both global and local independence) no
longer true for posterior p(θ|D1).
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Bayesian Estimation from Incomplete Data

Absorbing one Data Case

Now if the prior were a mixture of N product Dirichlet densities

p(θ) =

N
∑

n=1

wnκ(θ|αn)

Then posterior would be a mixture of N ∗ |ΩX1 | product Dirichlet densities.

The number of product Dirichlet density increases quickly as we absorb more
and more cases.

If we start with a product Dirichelet prior, after absorbing n cases we
get a mixture of this many product Dirichelet densities:

|ΩX1 | ∗ |ΩX2 | ∗ . . . ∗ |ΩXn
|

Conclusion: Approximation is necessary.
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Bayesian Estimation from Incomplete Data

Fractional Updating

Assume that

We have absorbed D1,D2, · · · ,Dl .
We have obtained an approximation of p(θ|D1,D2, · · · ,Dl),
which is a product Dirichlet distribution with hyperparameters:

αl={αl
ijk |i=1, · · · , n; j=1, · · · , qi ; k=1, · · · , ri}
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Bayesian Estimation from Incomplete Data

Fractional Updating

Now consider absorbing the next data case Dl+1 and approximating
p(θ|D1,D2, · · · ,Dl ,Dl+1)

Based on the above approximation, compute P(Dl+1|D1,D2, · · · ,Dl).

It can be represented using a Bayesian network N l=(S , θl), where

θl
ijk =

αl
ijk

∑ri
k=1 αl

ijk

(2)

Denote P(Dl+1|D1, · · · ,Dl) by P l
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Bayesian Estimation from Incomplete Data

Fractional Updating

Let Xl+1 be the set of variables whose values are missing from Dl+1.

The probability of Xl+1 taking a particular value xl+1 is

P l (Xl+1=xl+1)

Completing Dl+1, we get

(Dl+1,Xl+1=xl+1) [P l(Xl+1=xl+1)]

Updating the estimation using the completed data, we get a Dirichlet
distribution whose hyperparameters are as follows:

αl+1
ijk = αl

ijk + P(Xi=k , π(Xi)=j |D1, · · · ,Dl+1) (3)

This is the approximation of p(θ|D1,D2, · · · ,Dl ,Dl+1) given by fractional
updating.
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Bayesian Estimation from Incomplete Data An Example

An Example

X2 X3X1

X1 X2 X3

D1 1 1 1
D2 2 2 2
D3 1 - 1
D4 2 - 2

Prior p(θ): product Dirichlet density with hyperparameters α0 given byHHHHk

j
1 2

1 2 2

α0
1jk HHHHk

j
1 2

1 1 1
2 1 1

α0
2jk HHHHk

j
1 2

1 1 1
2 1 1

α0
3jk
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Bayesian Estimation from Incomplete Data An Example

An Example

D1 is complete.

p(θ|D1) is product Dirichlet density with hyperparameters α1 given byHHHHk

j
1 2

1 3 2

α1
1jk HHHHk

j
1 2

1 2 1
2 1 1

α1
2jk HHHHk

j
1 2

1 2 1
2 1 1

α1
3jk

D2 is also complete.

p(θ|D1, D2) is product Dirichlet density with hyperparameters α2 given byHHHHk

j
1 2

1 3 3

α2
1jk HHHHk

j
1 2

1 2 1
2 1 2

α2
2jk HHHHk

j
1 2

1 2 1
2 1 2

α2
3jk
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Bayesian Estimation from Incomplete Data An Example

An Example

D3 = (1,−, 1) is not complete.

We need to complete the data case. This is a prediction task, i.e. predicting
parts of D3.

Consider P(D3|D1, D2).

It can be presented by a Bayesian network with parameters given by:

X1 1 2
3/6 3/6

P(X1|θ
2) HHHHX1

X2 1 2

1 2
3

1
3

2 1
3

2
3

P(X2|X1, θ
2) HHHHX2

X3 1 2

1 2
3

1
3

2 1
3

2
3

P(X3|X2, θ
2)

In this network, we have

P(X2=1|D3, θ
2)=

4

5
P(X2=2|D3, θ

2)=
1

5
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Bayesian Estimation from Incomplete Data An Example

An Example

Hence, D3 is split into two fractional samples:

D3.1=(1, 1, 1)[
4

5
], D3.2=(1, 2, 1)[

1

5
]

Updating p(θ|D1, D2) using those two samples, we get p(θ|D1, D2, D3)

p(θ|D1, D2, D3) is product Dirichlet density with hyperparameters α3 given
by HHHHk

j
1 2

1 4 3

α3
1jk HHHHk

j
1 2

1 14
5

6
5

2 1 2

α3
2jk HHHHk

j
1 2

1 14
5

1

2 6
5

2

α3
3jk

Exercise: Complete the example by absorbing D4.
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Bayesian Estimation from Incomplete Data An Example

Notes

Complexity of fractional updating: exponential in the number of variables
whose values are missing.

Due to approximation, the order of absorbing cases influences the final result.

For more sophisticated approximations, see Spiegelhalter and Lauritzen
(1990) and Cowell et al (1999, Chapter 9).
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