COMP538: Introduction to Bayesian Networks Lecture 7: Parameter Learning with Incomplete Data

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Fall 2008

- Objective: Parameter learning with incomplete data.
- Reading: Zhang and Guo (2007), Chapter 7
- Reference: Heckerman (1996) (first half), Cowell *et al* (1999, Chapter 9)

Introduction

Outline

1 Introduction

- 2 MLE from Incomplete Data
 - The basic idea of EM
 - An Example
 - Formalizing the Idea
 - The EM-Algorithm
 - Convergence
- 3 Bayesian Estimation from Incomplete Data An Example

Missing Data

- Real-world data usually contains missing entries.
- We need to deal with **incomplete data sets** that looks like the following:

X_1	X_2	<i>X</i> ₃	X_1	X_2	<i>X</i> ₃
1	1	1	2	1	1
?	1	2	2	1	2
1	?	?	2	?	1
2	1	1	?	2	?

where ? indicates missing values.

Missing at Random

- To deal with missing values, we need to make the missing at random (MAR) assumption:
 - Actual value of X and the event X-is-missing are conditionally independent given other observed variables.

P(X|X-is-mising, other observed variables) = P(X|other observed variables)

■ Given all the observed variables, the fact that X's value is missing gives us no additional information about the value.

Missing at Random

■ The assumption is sometimes not true.

- A patient record contains no value for "chest X-ray result" suggests that the doctor did not think chest X-ray test is necessary;
- The result would be negative even if performed.
- However, it can be made true by introducing, when necessary, an auxiliary binary variable *Observed*-X.
 - *Observed*-X is always observed, taking value "yes" when X is observed and "no" otherwise.
 - We now have

 $P(X|X\text{-is-mising}, Observed - x, other observed variables})$

= P(X|Observed - X, other observed variables)

Outline

1 Introduction

- 2 MLE from Incomplete Data
 - The basic idea of EM
 - An Example
 - Formalizing the Idea
 - The EM-Algorithm
 - Convergence
- Bayesian Estimation from Incomplete DataAn Example

Basic Idea of EM

- One algorithm for finding MLE: The expectation-maximization (EM) algorithm.
- Developed in the Statistics community (Dempster *et al.* 1977). Adapted for Bayesian networks by Lauritzen (1994).
- It is an iterative algorithm.
 - Starts with an initial estimation θ^0 .
 - At each iteration t,
 - **Expectation**: Complete the data set based on θ^t .
 - Maximization: Re-estimate parameters using the completed data set, obtaining θ^{t+1}.

The expectation step

How to complete data?

- θ^t is given. So, there is a joint distribution $P(.|\theta^t)$ over all variables.
- Consider an incomplete data case $D_3 = (1,?,?)$.
 - EM computes $P(X_2, X_3 | X_1 = 1, \theta^t)$. • Suppose

$$P(X_2 = 1, X_3 = 1 | X_1 = 1, \theta^t) = 1/4, P(X_2 = 1, X_3 = 2 | X_1 = 1, \theta^t) = 1/4$$

$$P(X_2 = 2, X_3 = 1 | X_1 = 1, \theta^t) = 1/4, P(X_2 = 2, X_3 = 2 | X_1 = 1, \theta^t) = 1/4$$

■ EM splits *D*₃ into the following four **partial** data cases:

 $(1,?,?) \Rightarrow (1,1,1)[1/4], (1,1,2)[1/4], (1,2,1)[1/4], (1,2,2)[1/4]$

Each of them is counted as one fourth of a data case.

■ Note: The MAR assumption is implicitly used.

The maximization step

- After data completion, we get a data set with complete data cases.
 - Some of the data cases are partial data cases.
- EM re-estimates the parameters using the complete data set.
 - Partial data cases are counted according to their associated weights.

	X_1	X_2	<i>X</i> ₃
D_1	1	1	1
D_2	2	2	2
D_3	1	-	1
D_4	2	-	2

• Choose θ^0 :

$P(X_1)$	$P(X_2 X_1)$			$P(X_3 X_2)$		
X ₁ 1 2	X_2 X_1	1	2	X_3 X_2	1	2
1/2 1/2	1	2/3	1/3	1	2/3	1/3
	2	1/3	2/3	2	1/3	2/3

Because

$$P(X_2=1|\mathbf{D}_3,\theta^0) = 4/5$$
 $P(X_2=2|\mathbf{D}_3,\theta^0) = 1/5$

- **D**₃ is split into: $D_{3.1} = (1, 1, 1)[4/5]D_{3.2} = (1, 2, 1)[1/5].$
- Similarly, **D**₄ is also split into two partial data cases.
- The completed data:

	X_1	X_2	<i>X</i> ₃	weights
D_1	1	1	1	1
D_2	2	2	2	1
D _{3.1}	1	1	1	4/5
D _{3.2}	1	2	1	1/5
$D_{4.1}$	2	1	1	1/5
D _{4.2}	2	2	2	4/5

■ The completed data:

	X_1	X_2	X_3	weights
D_1	1	1	1	1
D_2	2	2	2	1
D _{3.1}	1	1	1	4/5
D _{3.2}	1	2	1	1/5
$D_{4.1}$	2	1	1	1/5
D _{4.2}	2	2	2	4/5

• Calculate θ^1 :

$P(X_1)$		Р(.	$(X_2 X_1)$			$P(X_3 X_2)$				
<i>X</i> ₁	1	2		X_2 X_1	1	2		X ₃ X ₂	1	2
	1/2	1/2		1	9/10	1/10		1	9/10	1/10
				2	1/10	9/10		2	1/10	9/10

Exercise: Repeat the process for two more steps.

Nevin L. Zhang (HKUST)

Review of the Complete-Data Case

- In MLE, we maximize the loglikelihood $I(\theta|\mathbf{D})$.
- In the case of complete data,
 - We have

$$l(heta | \mathbf{D}) = \sum_{l} log P(D_{l} | heta)$$

Estimation is done in two steps:

1 Compute the loglikelihood

$$I(heta | \mathbf{D}) = \sum_{i,k} \sum_{j} m_{ijk} \log heta_{ijk}$$

Or equivalently, the sufficient statistics $m_{ijk} = \sum_{l} \chi(i, j, k : D_l)$ 2 Calculate estimate:

$$\theta_{ijk}^* = \frac{m_{ijk}}{\sum_j m_{ijk}}$$

Expected Loglikelihood

- Now consider the case incomplete data:
 - Suppose value of a variable X_I is missing from D_I .
 - In the expectation step, the case is completed and split into several partial cases:

$$(X_l=1, D_l)[P(X_1=1|D_l, \theta^t)],$$
 $(X_l=2, D_l)[P(X_1=2|D_l, \theta^t)]$

• Correspondingly, in the loglikelihood function, we have $P(X_l=1|D_l, \theta^t) log P(X_l=1, D_l|\theta) + P(X_l=2|D_l, \theta^t) log P(X_l=2, D_l|\theta)$

■ In general, we have the so-called **expected loglikelihood**:

$$I(\theta|\mathbf{D}, \theta^{t}) = \sum_{l} \sum_{\mathbf{x}_{l} \in \Omega_{\mathbf{x}_{l}}} P(\mathbf{X}_{l} = \mathbf{x}_{l}|D_{l}, \theta^{t}) log P(D_{l}, \mathbf{X}_{l} = \mathbf{x}_{l}|\theta)$$

where \mathbf{X}_{I} is in both face because there could be more that one missing values.

Nevin L. Zhang (HKUST)

EM in terms Expected Loglikelihood

Formally, the next estimate θ^{t+1} is obtained from the current one θ^t in two steps:

1 The E-step computes the current expected loglikelihood function, now denoted by $Q(\theta|\theta^t)$ for simplicity, of θ given data **D**, i.e.

$$Q(\theta|\theta^{t}) = \sum_{l} \sum_{\mathbf{x}_{l} \in \Omega_{\mathbf{x}_{l}}} P(\mathbf{X}_{l} = \mathbf{x}_{l}|D_{l}, \theta^{t}) log P(D_{l}, \mathbf{X}_{l} = \mathbf{x}_{l}|\theta),$$

where X_I is the set of variables whose values a7re missing from data case D_I .

2 The M-step computes the next estimate θ^{t+1} by maximizing the current expected loglikelihood:

$$Q(\theta^{t+1}|\theta^t) \ge Q(\theta|\theta^t)$$
 for all θ .

Or

$$\theta^{t+1} = \arg \max_{\theta} Q(\theta | \theta^t)$$

Characteristic Function

• Consider a specific value \mathbf{x}_{l} for \mathbf{X}_{l} . Define

$$\chi(i,j,k:D_l,\mathbf{X}_l=\mathbf{x}_l) = \begin{cases} 1 & \text{if } X_i = j \text{ and } pa(X_i) = k \text{ are in } (D_l,\mathbf{X}_l=\mathbf{x}_l) \\ 0 & \text{otherwise} \end{cases}$$

Computation in the E-step

Then

$$Q(\theta|\theta^{t}) = \sum_{I} \sum_{\mathbf{x}_{l} \in \Omega_{\mathbf{x}_{l}}} P(\mathbf{X}_{l} = \mathbf{x}_{l} | D_{l}, \theta^{t}) \log P(D_{l}, \mathbf{X}_{l} = \mathbf{x}_{l} | \theta)$$

$$= \sum_{I} \sum_{\mathbf{x}_{l} \in \Omega_{\mathbf{x}_{l}}} P(\mathbf{X}_{l} = \mathbf{x}_{l} | D_{l}, \theta^{t}) \sum_{i,j,k} \chi(i,j,k:D_{l}, \mathbf{X}_{l} = \mathbf{x}_{l}) \log \theta_{ijk}$$

$$= \sum_{i,j,k} \sum_{I} \sum_{\mathbf{x}_{l} \in \Omega_{\mathbf{x}_{l}}} P(\mathbf{X}_{l} = \mathbf{x}_{l} | D_{l}, \theta^{t}) \chi(i,j,k:D_{l}, \mathbf{X}_{l} = \mathbf{x}_{l}) \log \theta_{ijk}$$

$$= \sum_{i,j,k} m_{ijk}^{t} \log \theta_{ijk}$$

$$= \sum_{i,k} \sum_{j} m_{ijk}^{t} \log \theta_{ijk}$$

where the sufficient statistics m_{ijk}^t are given by

$$m_{ijk}^{t} = \sum_{l} \sum_{\mathbf{x}_{l} \in \Omega_{\mathbf{x}_{l}}} P(\mathbf{X}_{l} = \mathbf{x}_{l} | D_{l}, \theta^{t}) \chi(i, j, k : D_{l}, X_{l} = \mathbf{x}_{l})$$

Nevin L. Zhang (HKUST)

Computation in the M-Step

• Maximizing θ (Corollary 1.1), we get

$$\theta_{ijk}^{t+1} = \frac{m_{ijk}^t}{\sum_j m_{ijk}^t}$$
 for all *i*, *j*, and *k*.

Interpretation:

•
$$m_{ijk}^t = \sum_l \sum_{\mathbf{x}_l \in \Omega_{\mathbf{X}_l}} P(\mathbf{X}_l = \mathbf{x}_l | D_l, \theta^t) \chi(i, j, k : D_l, \mathbf{X}_l = \mathbf{x}_l)$$
 is

■ The number of cases where X_i=j and pa(X_i)=k in the **completed** data set.

• Or expected number of cases where $X_i = j$ and $pa(X_i) = k$

Hence,

 $\theta_{ijk}^{t+1} = \frac{\text{number of cases where } X_i = j \text{ and } pa(X_i) = k \text{ in the completed data set}}{\text{number of cases where } pa(X_i) = k \text{ in the completed data set}}$ $= \frac{\text{expected number of cases where } X_i = j \text{ and } pa(X_i) = k}{\text{expected number of cases where } pa(X_i) = k}$

Sufficient Statistics Rewritten

Simplifying notation:

$$m_{ijk}^{t} = \sum_{I} \sum_{\mathbf{x}_{l} \in \Omega_{\mathbf{x}_{l}}} P(\mathbf{X}_{l} = \mathbf{x}_{l} | D_{l}, \theta^{t}) \chi(i, j, k : D_{l}, \mathbf{X}_{l} = \mathbf{x}_{l})$$
$$= \sum_{I} \sum_{\mathbf{x}_{l}} P(\mathbf{X}_{l} | D_{l}, \theta^{t}) \chi(i, j, k : D_{l}, \mathbf{X}_{l})$$

- Let \mathbf{Y}_{l} be the set of variables observed in D_{l} .
- We have: $P(\mathbf{X}_{I}|D_{I}, \theta^{t}) = \sum_{\mathbf{Y}_{I}} P(\mathbf{X}_{I}, \mathbf{Y}_{I}|D_{I}, \theta^{t})$

Hence

$$m_{ijk}^{t} = \sum_{I} \sum_{\mathbf{X}_{I}} \sum_{\mathbf{Y}_{I}} P(\mathbf{X}_{I}, \mathbf{Y}_{I} | D_{I}, \theta^{t}) \chi(i, j, k : D_{I}, \mathbf{X}_{I})$$

Sufficient Statistics Rewritten

$$m_{ijk}^{t} = \sum_{I} \sum_{\mathbf{X}_{I}} \sum_{\mathbf{Y}_{I}} P(\mathbf{X}_{I}, \mathbf{Y}_{I} | D_{I}, \theta^{t}) \chi(i, j, k : D_{I}, \mathbf{X}_{I})$$

$$= \sum_{I} \sum_{\mathbf{Y}_{I}, \mathbf{X}_{I} \text{ s.t. } X_{i}=j, pa(X_{i})=k \text{ in } (D_{I}, \mathbf{X}_{I})} P(\mathbf{X}_{I}, \mathbf{Y}_{I} | D_{I}, \theta^{t})$$

$$= \sum_{I} \sum_{I} \sum_{\mathbf{Y}_{I}, \mathbf{X}_{I} \text{ s.t. } X_{i}=j, pa(X_{i})=k \text{ in } (\mathbf{Y}_{I}, \mathbf{X}_{I})} P(\mathbf{X}_{I}, \mathbf{Y}_{I} | D_{I}, \theta^{t})$$

$$= \sum_{I} P(X_{i}=j, pa(X_{i})=k | D_{I}, \theta^{t})$$

$$= \sum_{I} P(X_{i}=j, pa(X_{i})=k | D_{I}, \theta^{t})$$

$$= analogy: \sum_{A,B,C:B=1} P(A, B, C) = P(B=1)$$

One EM-step

 $EM-Step(\mathbf{D}, \theta^t)$:

- E-step:
 - Compute $P(X_i, pa(X_i)|D_I, \theta^t)$ for all X_i and D_I .
 - Compute the sufficient statistics $m_{ijk}^t = \sum_l P(X_i=j, pa(X_i)=k|D_l, \theta^t)$ for all *i*, *j*, *k*.
- M-step: Compute

$$heta_{ijk}^{t+1} = rac{m_{ijk}^t}{\sum_j m_{ijk}^t}$$

for all i, j, and k.

• Return θ^{t+1} .

Questions:

- The first step of E-step is standard Bayesian network inference. Which inference algorithm to use, VE or CTP?
- What is the problem if we implement EM-step using the basic idea directly?

The EM algorithm

EM(D):

- **Randomly pick** θ^0 .
- For t = 0 to termination
 - $\bullet \ \theta^{t+1} = \texttt{EM}-\texttt{STEP}(\mathbf{D},\theta^t)$

When should we terminate?

MLE from Incomplete Data Convergence

Loglikelihood and Expected Loglikelihood

$$\begin{aligned} l(\theta|\mathbf{D}) &= \sum_{l} log P(D_{l}|\theta) \\ &= \sum_{l} \sum_{\mathbf{X}_{l}} P(\mathbf{X}_{l}|D_{l},\theta^{t}) log P(D_{l}|\theta) \\ &= \sum_{l} \sum_{\mathbf{X}_{l}} P(\mathbf{X}_{l}|D_{l},\theta^{t}) log \frac{P(D_{l},\mathbf{X}_{l}|\theta)}{P(\mathbf{X}_{l}|D_{l},\theta)} \\ &= \sum_{l} \sum_{\mathbf{X}_{l}} P(\mathbf{X}_{l}|D_{l},\theta^{t}) log P(D_{l},\mathbf{X}_{l}|\theta) - \sum_{l} \sum_{\mathbf{X}_{l}} P(\mathbf{X}_{l}|D_{l},\theta^{t}) log P(\mathbf{X}_{l}|D_{l},\theta) \\ &= Q(\theta|\theta^{t}) - \sum_{l} \sum_{\mathbf{X}_{l}} P(\mathbf{X}_{l}|D_{l},\theta^{t}) log P(\mathbf{X}_{l}|D_{l},\theta). \end{aligned}$$

EM and Loglikelihood

Hence we have

$$\begin{aligned} l(\theta^{t}|\mathbf{D}) &= Q(\theta^{t}|\theta^{t}) - \sum_{l} \sum_{\mathbf{X}_{l}} P(\mathbf{X}_{l}|D_{l},\theta^{t}) log P(\mathbf{X}_{l}|D_{l},\theta^{t}) \\ &\leq Q(\theta^{t+1}|\theta^{t}) - \sum_{l} \sum_{\mathbf{X}_{l}} P(\mathbf{X}_{l}|D_{l},\theta^{t}) log P(\mathbf{X}_{l}|D_{l},\theta^{t}) \\ &\leq Q(\theta^{t+1}|\theta^{t}) - \sum_{l} \sum_{\mathbf{X}_{l}} P(\mathbf{X}_{l}|D_{l},\theta^{t}) log P(\mathbf{X}_{l}|D_{l},\theta^{t+1}) \\ &= l(\theta^{t+1}|\mathbf{D}) \end{aligned}$$

where

- the first inequality is due to the definition of θ^{t+1} , and
- the second inequality is due to Corollary 1.1.
- **So,** $I(\theta^t | \mathbf{D})$ monotonically increases with *t*.
- On the other hand, $I(\theta^t | \mathbf{D})$ is upper bounded by 0.
- Hence EM converges.

MLE from Incomplete Data Convergence

Complete Statement of the EM algorithm

EM(D):

- **•** Randomly pick θ^0 .
- $\blacksquare \ \text{For} \ t = 0 \ \text{to} \ \infty$

•
$$\theta^{t+1} = \text{EM-STEP}(\mathbf{D}, \theta^t)$$

• If $I(\theta^{t+1}|\mathbf{D}) \le I(\theta^t|\mathbf{D}) + \epsilon$, return θ^{t+1}

What does EM converge to?

■ (Mclachlan and Krishnan 1997) ¹ If

$$\theta^{t+1} = \arg \max_{\theta} Q(\theta | \theta^t) = \theta^t$$

then

$$\frac{\partial I(\theta | \mathbf{D})}{\partial \theta} |_{\theta = \theta^t} = 0$$

EM converges to

global maxima, local maxima, or saddle points.

¹McLachlan, G.J. and Krishnan, T. (1997). *The EM algorithm and extensions*. Wiley Interscience.

Nevin L. Zhang (HKUST)

Empirical Experience with EM

■ Usually fast ,especially at first few iterations.

■ Rate of convergence: The more missing data, the slower the convergence.

Local Maxima

- There is no guarantee that EM converge to the global optimum.
- It might be stacked at local maxima.

Solution:

- Multiple random restart.
- Simulated annealing.

Outline

1 Introduction

- 2 MLE from Incomplete Data
 - The basic idea of EM
 - An Example
 - Formalizing the Idea
 - The EM-Algorithm
 - Convergence
- 3 Bayesian Estimation from Incomplete Data An Example

Bayesian Estimation from Incomplete Data

The Case of Complete Data

- θ : random variable.
- Prior $p(\theta)$: product Dirichlet distribution

$$p(\theta) = \prod_{i,k} p(\theta_{i.k}) \propto \prod_{i,k} \prod_{j} \theta_{ijk}^{\alpha_{ijk}-1}$$

• Posterior $p(\theta|\mathbf{D})$: also product Dirichlet distribution

$$p(heta | \mathbf{D}) \propto \prod_{i,k} \prod_j heta_{ijk}^{m_{ijk} + lpha_{ijk} - 1}$$

Prediction:

$$P(D_{m+1}|\mathbf{D}) = P(X_1, X_2, \dots, X_n|\mathbf{D}) = \prod_i P(X_i|pa(X_i), \mathbf{D})$$

where

$$P(X_i=j|pa(X_i)=k, \mathbf{D}) = rac{m_{ijk}+lpha_{ijk}}{m_{i*k}+lpha_{i*k}}$$

Nevin L. Zhang (HKUST)

Bayesian Estimation from Incomplete Data

Absorbing one Data Case

Product Dirichlet density:

$$m{p}(heta) = \prod_{i,k} m{p}(heta_{i.k}) \propto \prod_{i,k} \prod_j heta_{ijk}^{lpha_{ijk}-1}$$

Denote it by $\kappa(\theta|\alpha)$, where α stands for the vector of all α_{ijk} .

- Consider one incomplete case D_1 . Let X_1 be the set of variables unobserved in D_1 .
- We have

$$p(\theta|D_1) \propto p(\theta)P(D_1|\theta)$$

$$= p(\theta)\sum_{\mathbf{x}_1 \in \Omega_{\mathbf{x}_1}} P(D_1, \mathbf{X}_1 = \mathbf{x}_1|\theta)$$

$$= \sum_{\mathbf{x}_1 \in \Omega_{\mathbf{x}_1}} p(\theta)P(D_1, \mathbf{X}_1 = \mathbf{x}_1|\theta) \qquad (1)$$

Absorbing one Data Case

- Because (D₁, X₁=x₁) is a complete case, each term p(θ)P(D₁, X₁ = x₁|θ) corresponds to a product Dirichlet density κ(θ|α_{x1}).
- So the posterior distribution P(θ|D₁) is a mixture of product Dirichlet densities:

$$p(\theta|D_1) = \sum_{\mathbf{x}_1 \in \Omega \mathbf{x}_1} w_{\mathbf{x}_1} \kappa(\theta|\alpha_{\mathbf{x}_1}).$$

- This does not factorize.
- Parameter independence (both global and local independence) no longer true for posterior p(θ|D₁).

Absorbing one Data Case

• Now if the prior were a mixture of N product Dirichlet densities

$$p(\theta) = \sum_{n=1}^{N} w_n \kappa(\theta | \alpha_n)$$

- Then posterior would be a mixture of $N * |\Omega_{\mathbf{X}_1}|$ product Dirichlet densities.
- The number of product Dirichlet density increases quickly as we absorb more and more cases.
 - If we start with a product Dirichelet prior, after absorbing *n* cases we get a mixture of this many product Dirichelet densities:

$$|\Omega_{\mathbf{X}_1}| * |\Omega_{\mathbf{X}_2}| * \ldots * |\Omega_{\mathbf{X}_n}|$$

■ Conclusion: Approximation is necessary.

Fractional Updating

- Assume that
 - We have absorbed $\mathbf{D}_1, \mathbf{D}_2, \cdots, \mathbf{D}_l$.
 - We have obtained an approximation of $p(\theta | \mathbf{D}_1, \mathbf{D}_2, \cdots, \mathbf{D}_l)$,
 - which is a product Dirichlet distribution with hyperparameters:

$$\alpha' = \{\alpha'_{ijk} | i=1, \cdots, n; j=1, \cdots, q_i; k=1, \cdots, r_i\}$$

Fractional Updating

- Now consider absorbing the next data case \mathbf{D}_{l+1} and approximating $p(\theta | \mathbf{D}_1, \mathbf{D}_2, \cdots, \mathbf{D}_l, \mathbf{D}_{l+1})$
- Based on the above approximation, compute $P(\mathbf{D}_{l+1}|\mathbf{D}_1,\mathbf{D}_2,\cdots,\mathbf{D}_l)$.
- It can be represented using a Bayesian network $\mathcal{N}^{l} = (S, \theta^{l})$, where

$$\theta_{ijk}^{\prime} = \frac{\alpha_{ijk}^{\prime}}{\sum_{k=1}^{r_i} \alpha_{ijk}^{\prime}} \tag{2}$$

• Denote $P(\mathbf{D}_{l+1}|\mathbf{D}_1,\cdots,\mathbf{D}_l)$ by P^l

Fractional Updating

- Let X_{l+1} be the set of variables whose values are missing from D_{l+1} .
- The probability of X_{l+1} taking a particular value x_{l+1} is

$$P'(\mathbf{X}_{l+1} = \mathbf{x}_{l+1})$$

• Completing \mathbf{D}_{l+1} , we get

$$(\mathbf{D}_{l+1}, \mathbf{X}_{l+1} = \mathbf{x}_{l+1}) [P^{l}(\mathbf{X}_{l+1} = \mathbf{x}_{l+1})]$$

Updating the estimation using the completed data, we get a Dirichlet distribution whose hyperparameters are as follows:

$$\alpha_{ijk}^{l+1} = \alpha_{ijk}^{l} + P(X_i = k, \pi(X_i) = j | \mathbf{D}_1, \cdots, \mathbf{D}_{l+1})$$
(3)

This is the approximation of $p(\theta | \mathbf{D}_1, \mathbf{D}_2, \dots, \mathbf{D}_l, \mathbf{D}_{l+1})$ given by fractional updating.

Nevin L. Zhang (HKUST)

	X_1	X_2	X_3
D_1	1	1	1
D_2	2	2	2
D_3	1	-	1
D_4	2	-	2

Prior $p(\theta)$: product Dirichlet density with hyperparameters α^0 given by

• D_1 is complete.

• $p(\theta|D_1)$ is product Dirichlet density with hyperparameters α^1 given by

■ D₂ is also complete.

• $p(\theta|D_1, D_2)$ is product Dirichlet density with hyperparameters α^2 given by

- $D_3 = (1, -, 1)$ is not complete.
- We need to complete the data case. This is a prediction task, i.e. predicting parts of D_3 .
- Consider $P(D_3|D_1, D_2)$.
 - It can be presented by a Bayesian network with parameters given by:

■ In this network, we have

$$P(X_2=1|\mathbf{D}_3,\theta^2)=\frac{4}{5}$$
 $P(X_2=2|\mathbf{D}_3,\theta^2)=\frac{1}{5}$

Hence, D_3 is split into two fractional samples:

$$\mathbf{D}_{3.1} = (1, 1, 1)[\frac{4}{5}], \quad \mathbf{D}_{3.2} = (1, 2, 1)[\frac{1}{5}]$$

• Updating $p(\theta|D_1, D_2)$ using those two samples, we get $p(\theta|D_1, D_2, D_3)$

• $p(\theta|D_1, D_2, D_3)$ is product Dirichlet density with hyperparameters α^3 given by

Exercise: Complete the example by absorbing D_4 .

Notes

- Complexity of fractional updating: exponential in the number of variables whose values are missing.
- Due to approximation, the order of absorbing cases influences the final result.
- For more sophisticated approximations, see Spiegelhalter and Lauritzen (1990) and Cowell et al (1999, Chapter 9).