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Objectives

Discuss how to learn Bayesian network structures.

Problem statement:

Given:

A set of random variables X1, X2, . . . , Xn.
A data set on those variables.

Find: A Bayesian network (structure + parameters) that is “optimal”
or “good” in some sense.

Reading: Zhang and Guo (2007), Chapter 8.

Reference: Geiger et al. (1996), Chickering and Heckerman (1997),
Lanternman (2001), Friedman (1997)
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Model Selection (I)

The Problem of Model Selection

Notations:

S — a candidate BN structure,
θS — vector of parameters for S .

A BN structure encapsulates assumptions about how variables are
related.Hence sometimes called a model.

Model selection problem :

Given data D, what structure S should we choose?
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Model Selection (I) Maximized Likelihood

Motivating the Principle

Maximum likelihood principle for parameter estimation:

Choose parameters to maximize the loglikelihood l(θ|D) = logP(D|θ).

Loglikelihood of (S , θS) given data D:

l(S , θS |D) = logP(D|S , θS)

Choose structure and parameters to maximize the loglikelihood:
Find (S∗, θ∗S) such that

l(S∗, θ∗S |D) = sup
S,θS

l(S , θS |D) = max
S

sup
θS

l(S , θS |D)
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Model Selection (I) Maximized Likelihood

Motivating the Principle

Given S , we know how to find θ∗S that maximizes l(S , θS |D). (MLE of
parameters)

The maximized loglikelihood of S given D is

l∗(S |D) = sup
θS

l(S , θS |D) = l(S , θ∗S |D)

Model selection: Choose structure (model) to maximize the maximized
loglikelihood.

Note: The word “maximize” applies to structure while the word
“maximized” applies to parameters.
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Model Selection (I) Maximized Likelihood

Property of Maximized likelihood

Assume complete data.

What structure would maximize the maximized likelihood?

From Lecture 6, we know

l(S , θS |D) =
∑

i ,k

∑

j

mijk logθijk ,

where mijk is the number of data cases where Xi = j and paS(Xi ) = k .

We also know that

θ∗ijk =
mijk

∑

j mijk

Hence

l∗(S |D) = l(S , θ∗S |D) =
∑

i ,k

∑

j

mijk log
mijk

∑

j mijk
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Model Selection (I) Maximized Likelihood

Property of Maximized likelihood

Let P̂(X) be the empirical distribution:

P̂(X=x) = fraction of cases in D where X=x

Let N be the sample size.

P̂(Xi=j , paS(Xi ) = k) =
mijk

N

So
mijk = NP̂(Xi=j , paS(Xi ) = k)

mijk
∑

j mijk

= P̂(Xi=j |paS(Xi ) = k)
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Model Selection (I) Maximized Likelihood

Property of Maximized likelihood

Hence

l∗(S |D) =
∑

i ,k

∑

j

mijk log
mijk

∑

j mijk

=
∑

i

∑

j,k

NP̂(Xi=j , paS(Xi ) = k)log P̂(Xi=j |paS(Xi ) = k)

= −N
∑

i

∑

j,k

P̂(Xi=j , paS(Xi ) = k)log
1

P̂(Xi=j |paS(Xi ) = k)

= −N
∑

i

H
P̂
(Xi |paS (Xi ))
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Model Selection (I) Maximized Likelihood

Property of Maximized likelihood

Let S ′ be the same as S except that certain Xi has one more parent, say, Y .

From Theorem 1.5, we know that

H
P̂
(Xi |paS′(Xi )) = H

P̂
(Xi |paS (Xi ), Y ) ≤ H

P̂
(Xi |paS (Xi ))

where the equality holds iff Xi ⊥P̂
Y |paS(Xi ).

Because of randomness in the empirical distribution,Xi ⊥P̂
Y |paS(Xi ) is

false with probability 1.

Hence with probability 1:

l∗(S ′|D) > l∗(S |D)
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Model Selection (I) Maximized Likelihood

Property of Maximized likelihood

In general, more complex a model is, the better the maximized score.

Maximized likelihood leads to over-fitting.

Under this criterion, the best model is the complete BN where each
node is the parent of all its non-parents.
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Learning Trees

Learning trees

A Bayesian network is tree structured if each variable has no more than
one parent.

For simplicity, call such Bayesian nets trees.

Don’t confuse trees with polytrees

DAGs whose underlying undirected graphs contain no loop.
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Learning Trees

Learning trees

V: a set of variables.

D: a collection of complete data cases on the variables.

Let T be the set of all possible trees of the variables.

Consider the following problem:

Find a tree T ∗ ∈ T that maximizes the maximized loglikelihood
score, i.e.

l∗(T ∗|D) = max
T∈T

l∗(T |D)

Notes:

Overfitting is not a problem here because we restrict to T .
Used quite often.
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Learning Trees

Learning trees

We have already learned that

l∗(T |D) = −N
∑

i

H
P̂
(Xi |paT (Xi ))

where N is the sample size and P̂ is the empirical distribution based on D.

Using basic facts of Information Theory (Lecture 1), we have

l∗(T |D) = −N
∑

i ,paT (Xi )6=∅

(H
P̂
(Xi ) − I

P̂
(Xi : paT (Xi )) − N

∑

i ,paT (Xi )=∅

H
P̂
(Xi )

= N
∑

i ,paT (Xi )6=∅

I
P̂
(Xi : paT (Xi )) − N

∑

i

H
P̂
(Xi )

Let G = (X, E ) be the undirected graph underlying T . Then

l∗(T |D) = N
∑

(X ,Y )∈E

I
P̂
(X : Y ) − N

∑

X∈X

H
P̂
(X )
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Learning Trees

Learning trees

Trees with the same underlying undirected graphs have the same maximized
loglikelihood score.
They are hence equivalent and we cannot distinguish between them based
on data.

Our task becomes:

Find the undirected tree G = (X, E ) that maximizes

l∗(G |D) =def N
∑

(X ,Y )∈E

I
P̂
(X : Y ) − N

∑

X∈X

H
P̂
(X )

Note:

I
P̂
(X : Y ) is almost never zero. Hence, the optimal tree is

connected tree.
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Learning Trees

Learning trees

Note the second term in l∗(G |D) does not depend on the graph.
So our task is really to find an undirected graph G to maximize:

N
∑

(X ,Y )∈E

I
P̂
(X : Y )

This equivalent to the task of find the maximum spanning tree for the
following weighted and undirected graph over X:

There is an edge between each pair X and Y of variables in X.
The weight on the edge is I

P̂
(X : Y ).

There are two commonly used algorithms to find maximum spanning trees
( Rosen, K. H. (1995). Discrete Mathematics and Its Applications.
McGraw-Hill, Inc., New York, NY, third edition, 1995. )
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Learning Trees

Learning trees

Kruskal’s Algorithm.

Start with the empty graph and add edges one by one.
As the next edge to add, choose one that

Is not in graph yet.
Does not introduce a cycle.
Has the maximum weight.

Prim’s algorithm

Start with a graph containing one node and add edges and vertices one
by one.
To figure out what to add next,

Go through edges that involve one vertex already in graph and one not
in graph.
Add the edges (and hence a vertex) with the maximum weight.
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Learning Trees

Learning trees

The materials described above are credited to

Chow, C. K. and Liu, C. N. (1968). Approximating discrete
probability distributions with dependence trees. IEEE
Transactions on Information Theory, IT-14(3), 462-467.

So, the results are called Chow-Liu trees.
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Model Selection (II) Bayesian Model Selection

The Principle

View S and θS as random variables.

Assume prior P(S , θS ). This is the same as

Assume structural prior: P(S), and
Assume parameter prior: P(θS |S)

P(S , θS ) = P(θS |S)P(S)

Compute posterior:

P(S , θS |D) ∝ P(D|S , θS)P(θS |S)P(S)
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Model Selection (II) Bayesian Model Selection

Model Averaging

Predicting the next case Dm+1:

P(Dm+1|D) =
∑

S

∫

P(Dm+1|S , θS )P(S , θS |D)dθS

=
∑

S

∫

P(Dm+1|S , θS )P(S |D)P(θS |S ,D)dθS

=
∑

S

P(S |D)

∫

P(Dm+1|S , θS )P(θS |D, S)dθS (1)

Note that we know how to compute the following from Bayesian parameter
estimation:

∫

P(Dm+1|S , θS )P(θS |D, S)dθS

Equation (1) averages predictions by different models. The operation hence
called model averaging.

Many possible models. Average over only top, say, 10 models.
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Model Selection (II) Bayesian Model Selection

Bayesian Score

Model averaging typically is computationally difficult.

So, prediction usually is based only on one model, the best model,

The one that maximizes P(S |D).

Note that

P(S |D) =
P(D, S)

P(D)
=

P(D|S)P(S)

P(D)

P(D) does not help with model selection. So we can select models using:

logP(D, S) = logP(D|S) + logP(S)

This is the Bayesian score of S .

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 25 / 81



Model Selection (II) Bayesian Model Selection

Marginal Likelihood

In the Bayesian score,

logP(D, S) = logP(D|S) + logP(S)

P(S) is the structural prior.

And

P(D|S) =

∫

P(D|S , θS )P(θS |S)dθS

=

∫

L(S , θS |D)P(θS |S)dθS

Hence it is called the marginal likelihood of S and is denoted as L(S |D).
logL(S |D) is denoted as l(S |D).

Notes:

1 P(θS |S) is the parameter prior.
2 The marginal loglikelihood l(S |D) is NOT the same as the maximized

loglikelihood l∗(S |D).
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Model Selection (II) Bayesian Model Selection

Marginal Likelihood

Marginal likelihood has closed-form under the following assumptions:

1 Data D are random i.i.d samples from some (unknown) BN.

2 All cases in D are complete.

3 For each structure S , the parameter prior p(θS |S)

1 Satisfies the parameter (global and local) independence assumption.
2 Is the product Dirichlet distribution:

p(θS |S) ∝
∏

i ,k

∏

j

θ
αijk−1
ijk

We call these assumptions Cooper and Herskovits (CH) assumptions.
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Model Selection (II) Bayesian Model Selection

Marginal Likelihood

Theorem (8.1)

(Cooper and Herskovits (1992)) Under the CH assumptions,

logP(D|S) =
∑

i ,k

[log
Γ(αi∗k)

Γ(αi∗k + mi∗k)
+

∑

j

log
Γ(αijk + mijk)

Γ(αijk)
]

where

mijk : number of data cases where Xi=j and paS(Xi ) = k.

mi∗k =
∑

j mijk : number of data cases where paS(Xi ) = k.

αi∗k =
∑

j αijk .

This is sometimes called the Cooper-Herskovits (CH) scoring function, or the
Bayesian Dirichlet equivalence (BDe) score.
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Model Selection (II) Bayesian Model Selection

CH Scoring Function

How to choose the αijk?

Not an easy task since we need to do this for all structures. There are lots of
them!

One solution:

Equivalent sample size: α
A BN N0 that represent prior joint probability P0(X1, X2, . . . , Xn).
Set αijk = α ∗ P0(Xi=j |paS(Xi )=k).
P0(Xi=j |paS (Xi )=k) can be computed via standard BN inference
(Clique tree propagation.)

Note: Sometimes, it is natural for different models to have different
equivalent sample sizes (Kayaalp an Cooper, UAI02).
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Model Selection (II) Bayesian Model Selection

Choice of structure prior

Choice of structure prior P(S)

Can just be uniform for convenience.

Exclude impossible structures (based on judgment of causal relationships)
and impose a uniform prior on the set of remain structures.

Note that this could compromise the optimality of search. It might
happen that the only way to the optimal model is through some
impossible models.

Or impose an order on the variables (structures are then limited) and then
use uniform prior.

. . .
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Model Selection (II) Asymptotic Model Selection

Introduction

We next derive asymptotic (large sample) approximation of the marginal
likelihood

Bayesian score is asymptotically the same as the marginal likelihood
provide parameter prior is positive everywhere.

Why interesting?

Leading to model selection criteria that can be used even when the CH
assumptions are not true.
Allowing us to study the asymptotic properties of the marginal
likelihood.
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Model Selection (II) Asymptotic Model Selection

Two Assumptions

Simplifying notation: change θS to θ. View it as a column vector.

Let θ∗ be the ML estimate of θ:

θ∗ijk =
mijk

mi∗k

Assumption 1:P(D|S , θ) has a unique maximum point θ∗. In other words,
for any θ 6= θ∗,

P(D|S , θ) < P(D|S , θ∗)

Assumption 2: The ML estimation θ∗ is an interior point in the parameter
space. In other words, θ∗ijk > 0 for all i , j , and k .

In additional, assume complete data (although result is used also in the case
of incomplete data).
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Model Selection (II) Asymptotic Model Selection

A Property of Loglikelihood Function

Consider the loglikelihood function

l(S , θ|D) =
∑

i ,k

∑

j

mijk logθijk

=
∑

i ,k

mi∗k

∑

j

θ∗ijk logθijk

=
∑

i ,k

mi∗k [
∑

j

θ∗ijk log
θijk

θ∗ijk
+

∑

j

θ∗ijk logθ∗ijk ]

Hence

P(D|S , θ) = exp{l(S , θ|D)} =
∏

i ,k

(exp{
∑

j

θ∗ijk log
θijk

θ∗ijk
+

∑

j

θ∗ijk logθ∗ijk})mi∗k
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Model Selection (II) Asymptotic Model Selection

A Property of Loglikelihood Function

P(D|S , θ) =
∏

i ,k

(exp{
∑

j

θ∗ijk log
θijk

θ∗ijk
+

∑

j

θ∗ijk logθ∗ijk})mi∗k

As a function of θ, P(D|S , θ) reaches the maximum at θ∗.

When the sample size is large, mi∗k is also large.

Hence, as θ moves away from θ∗, P(D|S , θ) decreases quickly.

Now consider, P(D|S) =
∫

P(D|S , θ)P(θ|S)dθ.

It can approximated by performing the integration in a small neighborhood
of θ∗.

This leads to the Laplace approximation.
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Model Selection (II) Asymptotic Model Selection

Deriving the Laplace Approximation

For simplicity, denote l(S , θ|D) as l(θ).

Since θ∗ maximizes l(θ),
l ′(θ∗) = 0

Use Taylor serious expansion of l(θ) around θ∗, we get that, in a small
neighborhood of θ∗,

l(θ) ≈ l(θ∗) +
1

2
(θ − θ∗)T l ′′(θ∗)(θ − θ∗)

where l ′′(θ∗) is the Hessian matrix of l evaluated at θ∗:

l ′′(θ∗) = [
∂2l(θ)

∂θijk∂θabc

]θ=θ∗
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Model Selection (II) Asymptotic Model Selection

Deriving the Laplace Approximation

Let A = −l ′′(θ∗). In a small neighborhood of θ∗,

l(θ) ≈ l(θ∗) − 1

2
(θ − θ∗)TA‘(θ − θ∗)

P(D|S , θ) = exp{l(θ)}:
≈ exp{l(θ∗) − 1

2 (θ − θ∗)T A(θ − θ∗)} in a small neighborhood around
θ∗.
≈ 0 outside the neighborhood.
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Model Selection (II) Asymptotic Model Selection

Deriving the Laplace Approximation

Since l(θ∗) > l(θ) for any θ 6=θ∗, A = −l ′′(θ∗) is positive-definite.

Let d be the number of free parameters in S .

It is known that
|A| = O(dlogN)

Hence

exp{l(θ∗) − 1
2(θ − θ∗)TA(θ − θ∗)} is close to 0 except in a small

neighborhood of θ∗

Therefore, P(D|S , θ) ≈ exp{l(θ∗) − 1
2 (θ − θ∗)T A(θ − θ∗)} everywhere.
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Model Selection (II) Asymptotic Model Selection

Deriving the Laplace Approximation

Now consider the marginal likelihood:

P(D|S) =

∫

P(D|S , θ)P(θ|S)dθ

≈
∫

exp{l(θ∗) − 1

2
(θ − θ∗)TA(θ − θ∗)}P(θ|S)dθ

= exp{l(θ∗)}
∫

exp{−1

2
(θ − θ∗)TA(θ − θ∗)}P(θ|S)dθ

≈ P(D|S , θ∗)P(θ∗|S)

∫

exp{−1

2
(θ − θ∗)T A(θ − θ∗)}dθ

The last step is due to the fact that the integrand is small except in a small
neighborhood of θ∗.
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Model Selection (II) Asymptotic Model Selection

Deriving the Laplace Approximation

Note that 1√
(2π)d |A|−1

exp{ 1
2 (θ − θ∗)TA(θ − θ∗)} is the Gaussian distribution

with covariance matrix A.

Hence

P(D|S) ≈ P(D|S , θ∗)P(θ∗|S)
√

(2π)d |A|−1

where d is the number of free parameters S or in the vector θ.

The log marginal likelihood:

logP(D|S) ≈ logP(D|S , θ∗) + logP(θ∗|S) +
d

2
log(2π)− 1

2
log |A|

Note that the first term is the maximized loglikelihood.

This is known as the Laplace approximation.
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Model Selection (II) Asymptotic Model Selection

Laplace Approximation

Kass et al (1988) showed that, under certain conditions (two of which given
as assumptions above),

P(D|S) − P(D|S)Laplace

P(D|S)
= O(1/N)

where probability 1. Hence it is extremely accurate.
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Model Selection (II) Asymptotic Model Selection

The BIC Score

In the Laplace approximation, the two terms in the middle do not increase
with N .

If we ignore those two terms and approximate log |A| using dlogN , we get
the Bayesian information criterion (BIC):

logP(D|S) ≈ logP(D|S , θ∗) − d

2
logN

Quality of approximation: O(1) (Schwarz 1978, Haughton 1988, Kass and
Wasserman 1995, Raftery 1995).
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Model Selection (II) Asymptotic Model Selection

The BIC Score

logP(D|S) ≈ logP(D|S , θ∗) − d

2
logN

The first term of the BIC score is the maximized loglikelihood. It measures
model fit.

The second term penalizes model complexity.

This avoids overfitting.

The Bayesian score does not lead to overfitting.

BIC is one example of penalized likelihood (Lanternman 2001).

Maximized loglikelihood increases linearly with sample size, while the penalty
term increase logarithmically.

More and more emphasis is placed on model fit as sample size
increases.

Nevin L. Zhang (HKUST) Bayesian Networks Fall 2008 43 / 81



Model Selection (II) Other Model Selection Criteria

MDL

The minimum description length (MDL) score (Rissanen 1987):

Machine learning is about finding regularities in data.

Regularities should allow us to describe the data concisely.

Find model to minimize

Description length of model + Description length of data

It turns out to be the negation of the BIC score.

Description length of data is related to likelihood as illustrated in Huffman’s
coding.
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Model Selection (II) Other Model Selection Criteria

AIC

Akaike information criterion:

Idea:

D sampled from P(X).
Based on D, find N ∗ = (S∗, θ∗) such that

KL(P , PN∗) ≤ KL(P , PN ), ∀N

(Note: the complete model does not necessarily minimize the KL due
to overfitting.)
Under certain conditions, S∗ should maximize the AIC score:

AIC (S |D) = logP(D|S , θ∗) − d

Models obtained using AIC typically are more complex than those obtained
using BIC.
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Model Selection (II) Other Model Selection Criteria

Holdout validation and cross validation

Holdout validation:

Split data into training set and validation set.
Parameter estimation based on training set.
Model score: likelihood based on validation set.

Cross validation:

Split data into k subsets
Use each subset as validation set and the rest as training set, and
obtains a score.
Total model score: average of the scores for all the cases.

Both are equivalent to AIC asymptotically.
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Model Selection (II) Consistency

Model Inclusion and Equivalence

A model S includes a joint distribution P(X)

if there is a parameter vector θ such that (S , θ) represents P(X).

If S includes P and all other models that include P(X) have the same
number or more parameters than S , then S is said to be a parsimonious
model (wrt P).

One model S includes another model S ′, if it includes all the joint
distributions that S ′ can represent.

If S includes S ′, and vice versa, then S and S ′ are said to be
distributionally equivalent.

If two distributionally equivalent models have the same number of
parameters, then they are equivalent.
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Model Selection (II) Consistency

Consistency

D sample from P(X).

A scoring function f is consistent if, when the sample size goes to infinite,
the following two conditions are satisfied:

1 If S includes P and S ′ does not include P , then,

f (S |D) > f (S ′|D)

2 If both S and S ′ includes P , and S has fewer parameters than S ′ then,

f (S |D) > f (S ′|D)
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Model Selection (II) Consistency

Consistency

Suppose D is sampled from P(X) represented by (S , θ) and S is
parsimonious.

Further suppose that there does not exist S ′ that includes P , has the same
number of parameters as S , but is not equivalent to S .

If f is consistent, then, when the sample size goes to infinite,

f (S |D) > f (S ′|D)

for all other model S ′ that is not equivalent to S .

Hence, we can in principle recover the generative model (S , θ) from data.
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Model Selection (II) Consistency

Consistency

Consistent scoring functions:

Bayesian score, marginal likelihood, BDE, BIC, MDL

Inconsistent scoring functions:

AIC, holdout validation, cross validation.
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Model Optimization

The Problem

Model optimization:How to find the structure that maximizes a scoring
function?

A naive method: Exhaustive search

Compute the score of every structure
Pick the one with the highest score.
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Model Optimization

Number of Possible Structures

f (n): the number of unlabeled DAGs on n nodes.

Robinson (1977) 1 showed that

f (1) = 1

f (n) =
n

∑

i=1

(−1)i+1 n!

(n − i)!i !
2i(n−i)f (n − i)

No closed form is known.
f (10) ≈ 4.2 × 1018

BNs are labeled DAGs.
The number of BN structures for n variables is larger than f (n).

Exhaustive search is infeasible.

1Robinson, R. W. (1977). Counting unlabelled acyclic digraphs. In Lecture Notes in

Mathematics: Combinatorial Mathematics V, (ed. C. H. C. Little). Springer-Verlag,
New York.
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Model Optimization

Hill Climbing

Start with an initial structure.

Repeat until termination:

Generate a set of structures by modifying the current structure.
Compute their scores.
Pick the one with the highest score and use it as the current model in
the next step.
Terminate when model score cannot is not improved.

Return the best network.
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Model Optimization

Search Operators

C

A B

D

C

A B

D

C

A B

D

C

A B

D

C

A B

D

Delete B->C Add B->D

Reverse B->CAdd D->B, illegal

Search operators for modifying a
structure:

Add an arc.

Delete an arc.

Reverse an arc.

Note:

The add-arc and reverse-arc not
permitted if results in directed
cycles.
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Model Optimization

Evaluating Candidate Models

Suppose there are n variables.

The number of candidate models at each iteration:O(n2).

We need to compute the score of each of the candidate models.

This is the most time-consuming step.

Structures of scoring functions can be exploited to simplify the computation.
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Model Optimization

Decomposition of Scoring Functions

Some coring functions decompose according to the variables and each
component depends only on a variable and its parents.

The CH score:

CH(S |D) =
∑

i

∑

k

[log
Γ(αi∗k)

Γ(αi∗k + mi∗k)
+

∑

j

log
Γ(αijk + mijk)

Γ(αijk )
]

=
∑

i

CH(Xi , paS (Xi )|D)

where the family score

CH(Xi , paS(Xi )|D) =
∑

k

[log
Γ(αi∗k)

Γ(αi∗k + mi∗k)
+

∑

j

log
Γ(αijk + mijk)

Γ(αijk)
]

depends only on Xi and its parents in S .
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Model Optimization

Decomposition of Scoring Functions

The BIC score:

BIC (S |D) = logP(D|S , θ∗) − d

2
logN

=
∑

i

∑

k

∑

j

mijk log
mijk

∑

j mijk

−
∑

i

qi (ri − 1)

2
logN

=
∑

i

BIC (Xi , paS(Xi )|D)

where the family score

BIC (Xi , paS(Xi )|D) =
∑

k

∑

j

mijk log
mijk

∑

j mijk

− qi(ri − 1)

2
logN

where qi is the number of states of the parents of Xi and ri is the number of
states of Xi .
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Model Optimization

Evaluating Candidate Model

Suppose S is the current model and we have computed BIC (S |D).

Suppose candidate model S ′ is obtained from S by adding an arc from some
node to Xi .

Then

BIC (S ′|D) − BIC (S |D) = BIC (Xi , π
′(Xi )|D) − BIC (Xi , π(Xi )|D)

Hence we can compute BIC (S ′|D) efficiently using:

BIC (S ′|D) = BIC (S |D) + BIC (Xi , π
′(Xi )|D) − BIC (Xi , π(Xi )|bfD)

Only local counting are involved.
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Model Optimization

Initial Structure

Empty network: Network with no arcs.

Network built using heuristics.

Random network.
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Model Optimization

Problems with Hill Climbing

Local maxima:
All one-edge changes reduced the score, but not optimal yet.

Plateaus:
Neighbors have the same score.

Solutions:

Random restart.

TABU-search:

Keep a list of K most recently visited structures and avoid them.
Avoid plateau.

Simulated annealing.
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Structure Learning with Incomplete Data

Outline

1 Model Selection (I)
Maximized Likelihood

2 Learning Trees
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5 Structure Learning with Incomplete Data
The Model Evaluation Problem
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Structural EM: The Theory
Structure EM: The Algorithm
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Structure Learning with Incomplete Data The Model Evaluation Problem

Model Selection with Incomplete Data

The CH score is not applicable in the case of incomplete data.

We will use the BIC score:

BIC (S |D) = logP(D|S , θ∗) − d

2
logN

No longer have:

logP(D|S , θ∗) − d

2
logN =

∑

i

∑

k

∑

j

mijk log
mijk

∑

j mijk

But we can compute logP(D|S , θ∗) using EM.
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Structure Learning with Incomplete Data The Model Evaluation Problem

Straightforward Model Evaluation

At each step, we need to evaluate O(n2) candidate models.

The BIC scores cannot be computed by simple counting.

Iterative algorithms, mostly EM, are used.

To compute the BIC score of EACH candidate model, we need to run EM to
estimate θ∗.

EM requires BN inference, once for EACH iteration.

EM takes a large (hundreds) number of iterations to converge.

Computationally prohibitive.
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Structure Learning with Incomplete Data Structural EM: The Idea

The Idea of Structural EM

The Idea:

Find ML estimate θ∗ of the parameters for the current model S .

Complete data using the current model (S , θ∗).

Evaluate candidate models using the completed data.

Advantage:

Instead of running EM on all candidate structures, we run EM only on ONE
structure, namely the current structure.
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Structure Learning with Incomplete Data Structural EM: The Theory

BIC Score of Structure and Parameters

The BIC score BIC (S |D) is a function of structures.

For convenience, define

BIC (S , θ|D) = logP(D|S , θ) − d(S)

2
logN

Measures how good the model S is when its parameters are θ.

Then
BIC (S |D) = BIC (S , θ∗|D)
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Structure Learning with Incomplete Data Structural EM: The Theory

Best Structure and Parameters

Want S∗ and θ∗ such that

BIC (S∗, θ∗|D) ≥ BIC (S , θ|D)

for any BN (S , θ).

Question:

Suppose (S̄ , θ̄) be the current BN.
How to find another BN (S , θ) that increases the BIC score?

BIC (S , θ|D) > BIC (S̄ , θ̄|D)

Problem solved if we know how to do this cheaply.

This is what we want.
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Structure Learning with Incomplete Data Structural EM: The Theory

Expected BIC Score

This is what we do:

Let D̄ be the completion of D by (S̄ , θ̄).

BIC (S , θ|D̄) =
∑

l

∑

Xl

P(Xl |Dl , S̄, θ̄)logP(Dl ,Xl |S , θ) − d(S)

2
logN ,

It is the expected value of BIC (S , θ|D), where the expectation is takes w.r.t
(S̄ , θ̄).
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Structure Learning with Incomplete Data Structural EM: The Theory

BIC and Expected BIC

We will denote the expected BIC score BIC (S , θ|D̄) by Q(S , θ|S̄ , θ̄):

Q(S , θ|S̄ , θ̄) =
∑

l

∑

Xl

P(Xl |Dl , S̄, θ̄)logP(Dl ,Xl |S , θ) − d(S)

2
logN ,

Similar to Lecture 7, we have

BIC (S , θ|D) = logP(D|S , θ)− d(S)

2
logN

=
∑

l

∑

Xl

P(Xl |Dl , S̄ , θ̄)logP(Dl ,Xl |S , θ)

−
∑

l

∑

Xl

P(Xl |Dl , S̄ , θ̄)logP(Xl |Dl , S , θ) − d(S)

2
logN

= Q(S , θ|S̄ , θ̄) −
∑

l

∑

Xl

P(Xl |Dl , S̄ , θ̄)logP(Xl |Dl , S , θ).
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Structure Learning with Incomplete Data Structural EM: The Theory

BIC Score and Expected BIC Score

BIC (S , θ|D) = Q(S , θ|S̄ , θ̄) −
∑

l

∑

Xl

P(Xl |Dl , S̄ , θ̄)logP(Xl |Dl , S , θ)

BIC (S̄ , θ̄|D) = Q(S̄ , θ̄|S̄ , θ̄) −
∑

l

∑

Xl

P(Xl |Dl , S̄ , θ̄)logP(Xl |Dl , S̄, θ̄)

Theorem (8.2)

If
Q(S , θ|S̄ , θ̄) > Q(S̄ , θ̄|S̄ , θ̄)

then
BIC (S , θ|D) > BIC (S̄ , θ̄|D)
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Structure Learning with Incomplete Data Structural EM: The Theory

Improving Expected BIC Score

Problem becomes:

How to find (S , θ) such that Q(S , θ|S̄ , θ̄) > Q(S̄ , θ̄|S̄ , θ̄)?

Method 1:Improve the parameters

Q(S̄ , θ|S̄ , θ̄) > Q(S̄ , θ̄|S̄, θ̄)

Parameter estimation in the case of complete data.Computationally cheap.
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Structure Learning with Incomplete Data Structural EM: The Theory

Improving Expected BIC Score

Method 2: Improve the model structure (together with parameters):

Q(S , θ|S̄ , θ̄) > Q(S̄ , θ̄|S̄, θ̄)

Structure learning in the case of complete data. Computationally cheap.
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Structure Learning with Incomplete Data Structure EM: The Algorithm

The Structural EM Algorithm

Pick initial structure S0 and initial parameters θ0,0.

For t = 0 to ∞
1 Improve parameters: For r = 0, 1, 2, . . . until convergence or some

rmax
Standard parametric EM step:

θ
t,r+1 = arg max

θ
Q(S t

, θ|S t
, θ

t,r )

2 Improve Structure:
Generate candidate structures by modifying St using the search
operators.
Let S

t+1 be the candidate structure that maximizes

max
θ

Q(S t+1
, θ|S t

, θ
t,r), and

θ
t+1,0 = arg max

θ
Q(S t+1

, θ|S t
, θ

t,r)

If BIC(S t+1, θt+1,0|D)≤BIC(S t , θt,r |D) + ε, return BN (S t , θt,r) .
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Structure Learning with Incomplete Data Structure EM: The Algorithm

Convergence

When improving parameters, we have

Q(S t , θt,r+1|S t , θt,r ) > Q(S t , θt,r |S t , θt,r )

.

By Theorem 8.2, this implies

BIC (S t , θt,r+1|D) > Q(S t , θt,r |D)

When improving structure, we have

Q(S t+1, θt+1,0|S t , θt,r ) > Q(S t , θt,r |S t , θt,r )

By Theorem 8.2, this implies

BIC (S t+1, θt+1,0|D) > Q(S t , θt,r |D)

So BIC (S t , θt,r |D) increases monotonically with t and r .

Hence structural EM converges.
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Structure Learning with Incomplete Data Structure EM: The Algorithm

Converges to What?

The parametric part converges to global or local parametric maxima or
saddle points in the parameter space.

Structure? No much to say.Converges to what?

Empirical results indicates that structural EM finds good structures.
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