COMP538: Introduction to Bayesian Networks Lecture 8: Structure Learning

Nevin L. Zhang lzhang@cse.ust.hk

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Fall 2008

Objectives

- Discuss how to learn Bayesian network structures.
- Problem statement:
 - Given:
 - A set of random variables X_1, X_2, \ldots, X_n .
 - A data set on those variables.
 - Find: A Bayesian network (structure + parameters) that is "optimal" or "good" in some sense.
- Reading: Zhang and Guo (2007), Chapter 8.
- Reference: Geiger *et al.* (1996), Chickering and Heckerman (1997), Lanternman (2001), Friedman (1997)

Outline

- 1 Model Selection (I) Maximized Likelihood
- 2 Learning Trees
- 3 Model Selection (II)
 - Bayesian Model Selection
 - Asymptotic Model Selection
 - Other Model Selection Criteria
 - Consistency
- 4 Model Optimization
- 5 Structure Learning with Incomplete Data
 - The Model Evaluation Problem
 - Structural EM: The Idea
 - Structural EM: The Theory
 - Structure EM: The Algorithm

Model Selection (I)

The Problem of Model Selection

- Notations:
 - *S* a candidate BN structure,
 - θ_S vector of parameters for S.
- A BN structure encapsulates assumptions about how variables are related. Hence sometimes called a **model**.
- Model selection problem :
 - Given data **D**, what structure *S* should we choose?

Motivating the Principle

- Maximum likelihood principle for parameter estimation:
 - Choose parameters to maximize the loglikelihood $I(\theta|\mathbf{D}) = logP(\mathbf{D}|\theta)$.
- **L**oglikelihood of (S, θ_S) given data **D**:

$$l(S, \theta_S | \mathbf{D}) = log P(\mathbf{D} | S, \theta_S)$$

■ Choose structure and parameters to maximize the loglikelihood: Find (S*, θ^{*}_S) such that

$$I(S^*, \theta_S^* | \mathbf{D}) = \sup_{S, \theta_S} I(S, \theta_S | \mathbf{D}) = \max_S \sup_{\theta_S} I(S, \theta_S | \mathbf{D})$$

Motivating the Principle

- Given S, we know how to find θ_S^* that maximizes $I(S, \theta_S | \mathbf{D})$. (MLE of parameters)
- The maximized loglikelihood of S given D is

$$I^*(S|D) = \sup_{\theta_S} I(S, \theta_S | \mathbf{D}) = I(S, \theta_S^* | \mathbf{D})$$

- Model selection: Choose structure (model) to maximize the maximized loglikelihood.
- Note: The word "maximize" applies to structure while the word "maximized" applies to parameters.

- Assume complete data.
- What structure would maximize the maximized likelihood?
- From Lecture 6, we know

$$l(S, \theta_S | \mathbf{D}) = \sum_{i,k} \sum_j m_{ijk} \log \theta_{ijk},$$

where m_{ijk} is the number of data cases where $X_i = j$ and $pa_S(X_i) = k$. • We also know that

$$heta_{ijk}^* = rac{m_{ijk}}{\sum_j m_{ijk}}$$

Hence

$$l^*(S|\mathbf{D}) = l(S, \theta^*_S|\mathbf{D}) = \sum_{i,k} \sum_j m_{ijk} \log \frac{m_{ijk}}{\sum_j m_{ijk}}$$

• Let $\hat{P}(\mathbf{X})$ be the empirical distribution:

$$\hat{P}(\mathbf{X}=\mathbf{x}) =$$
 fraction of cases in **D** where $\mathbf{X}=\mathbf{x}$

• Let N be the sample size.

$$\hat{P}(X_i=j, pa_S(X_i)=k)=rac{m_{ijk}}{N}$$

So

$$m_{ijk} = N\hat{P}(X_i=j, pa_S(X_i)=k)$$

$$\frac{m_{ijk}}{\sum_j m_{ijk}} = \hat{P}(X_i = j | pa_S(X_i) = k)$$

Hence

ľ

$${}^{*}(S|\mathbf{D}) = \sum_{i,k} \sum_{j} m_{ijk} \log \frac{m_{ijk}}{\sum_{j} m_{ijk}}$$

$$= \sum_{i} \sum_{j,k} N\hat{P}(X_{i}=j, pa_{S}(X_{i})=k) \log \hat{P}(X_{i}=j|pa_{S}(X_{i})=k)$$

$$= -N \sum_{i} \sum_{j,k} \hat{P}(X_{i}=j, pa_{S}(X_{i})=k) \log \frac{1}{\hat{P}(X_{i}=j|pa_{S}(X_{i})=k)}$$

$$= -N \sum_{i} H_{\hat{P}}(X_{i}|pa_{S}(X_{i}))$$

- Let S' be the same as S except that certain X_i has one more parent, say, Y.
- From Theorem 1.5, we know that

 $H_{\hat{P}}(X_i|pa_{\mathcal{S}'}(X_i)) = H_{\hat{P}}(X_i|pa_{\mathcal{S}}(X_i), Y) \le H_{\hat{P}}(X_i|pa_{\mathcal{S}}(X_i))$

where the equality holds iff $X_i \perp_{\hat{P}} Y | pa_S(X_i)$.

- Because of randomness in the empirical distribution, $X_i \perp_{\hat{P}} Y | pa_S(X_i)$ is false with probability 1.
- Hence with probability 1:

$$l^*(S'|\mathbf{D}) > l^*(S|\mathbf{D})$$

- In general, more complex a model is, the better the maximized score.
- Maximized likelihood leads to over-fitting.
 - Under this criterion, the best model is the complete BN where each node is the parent of all its non-parents.

Outline

1 Model Selection (I) Maximized Likelihood

2 Learning Trees

- 3 Model Selection (II)
 - Bayesian Model Selection
 - Asymptotic Model Selection
 - Other Model Selection Criteria
 - Consistency
- 4 Model Optimization
- 5 Structure Learning with Incomplete Data
 - The Model Evaluation Problem
 - Structural EM: The Idea
 - Structural EM: The Theory
 - Structure EM: The Algorithm

- A Bayesian network is **tree structured** if each variable has no more than one parent.
- For simplicity, call such Bayesian nets **trees**.
- Don't confuse trees with **polytrees**

DAGs whose underlying undirected graphs contain no loop.

- V: a set of variables.
- **D**: a collection of complete data cases on the variables.
- \blacksquare Let ${\mathcal T}$ be the set of all possible trees of the variables.
- Consider the following problem:

Find a tree $T^* \in \mathcal{T}$ that maximizes the maximized loglikelihood score, i.e.

$$I^*(T^*|\mathbf{D}) = \max_{T \in \mathcal{T}} I^*(T|\mathbf{D})$$

Notes:

- Overfitting is not a problem here because we restrict to \mathcal{T} .
- Used quite often.

We have already learned that

$$H^*(T|\mathbf{D}) = -N\sum_i H_{\hat{P}}(X_i|pa_T(X_i))$$

where N is the sample size and \hat{P} is the empirical distribution based on **D**.

■ Using basic facts of Information Theory (Lecture 1), we have

$$I^{*}(T|\mathbf{D}) = -N \sum_{i,pa_{T}(X_{i})\neq\emptyset} (H_{\hat{P}}(X_{i}) - I_{\hat{P}}(X_{i}:pa_{T}(X_{i})) - N \sum_{i,pa_{T}(X_{i})=\emptyset} H_{\hat{P}}(X_{i})$$

= $N \sum_{i,pa_{T}(X_{i})\neq\emptyset} I_{\hat{P}}(X_{i}:pa_{T}(X_{i})) - N \sum_{i} H_{\hat{P}}(X_{i})$

• Let $G = (\mathbf{X}, E)$ be the undirected graph underlying T. Then

$$I^{*}(\mathcal{T}|\mathbf{D}) = N \sum_{(X,Y) \in E} I_{\hat{P}}(X:Y) - N \sum_{X \in \mathbf{X}} H_{\hat{P}}(X)$$

 Trees with the same underlying undirected graphs have the same maximized loglikelihood score.

They are hence **equivalent** and we cannot distinguish between them based on data.

- Our task becomes:
 - Find the undirected tree $G = (\mathbf{X}, E)$ that maximizes

$$I^*(G|\mathbf{D}) =_{\mathsf{def}} N \sum_{(X,Y) \in E} I_{\hat{P}}(X:Y) - N \sum_{X \in \mathbf{X}} H_{\hat{P}}(X)$$

Note:

 $I_{\hat{P}}(X : Y)$ is almost never zero. Hence, the optimal tree is connected tree.

■ Note the second term in *I*^{*}(*G*|**D**) does not depend on the graph. So our task is really to find an undirected graph *G* to maximize:

$$N\sum_{(X,Y)\in E}I_{\hat{P}}(X:Y)$$

- This equivalent to the task of find the maximum spanning tree for the following weighted and undirected graph over X:
 - There is an edge between each pair X and Y of variables in **X**.
 - The weight on the edge is $I_{\hat{P}}(X : Y)$.
- There are two commonly used algorithms to find maximum spanning trees (Rosen, K. H. (1995). *Discrete Mathematics and Its Applications*. McGraw-Hill, Inc., New York, NY, third edition, 1995.)

Kruskal's Algorithm.

- Start with the empty graph and add edges one by one.
- As the next edge to add, choose one that
 - Is not in graph yet.
 - Does not introduce a cycle.
 - Has the maximum weight.

Prim's algorithm

- Start with a graph containing one node and add edges and vertices one by one.
- To figure out what to add next,
 - Go through edges that involve one vertex already in graph and one not in graph.
 - Add the edges (and hence a vertex) with the maximum weight.

The materials described above are credited to

Chow, C. K. and Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, *IT-14(3)*, 462-467.

■ So, the results are called Chow-Liu trees.

Outline

- 1 Model Selection (I) Maximized Likelihood
- 2 Learning Trees
- 3 Model Selection (II)
 - Bayesian Model Selection
 - Asymptotic Model Selection
 - Other Model Selection Criteria
 - Consistency
- 4 Model Optimization
- 5 Structure Learning with Incomplete Data
 - The Model Evaluation Problem
 - Structural EM: The Idea
 - Structural EM: The Theory
 - Structure EM: The Algorithm

The Principle

- View S and θ_S as random variables.
- Assume prior $P(S, \theta_S)$. This is the same as
 - Assume structural prior: P(S), and
 - Assume parameter prior: $P(\theta_S|S)$

$$P(S,\theta_S) = P(\theta_S|S)P(S)$$

Compute posterior:

$$P(S, \theta_S | \mathbf{D}) \propto P(\mathbf{D} | S, \theta_S) P(\theta_S | S) P(S)$$

Model Averaging

• Predicting the next case D_{m+1} :

$$P(D_{m+1}|\mathbf{D}) = \sum_{S} \int P(D_{m+1}|S,\theta_{S})P(S,\theta_{S}|\mathbf{D})d\theta_{S}$$

$$= \sum_{S} \int P(D_{m+1}|S,\theta_{S})P(S|\mathbf{D})P(\theta_{S}|S,\mathbf{D})d\theta_{S}$$

$$= \sum_{S} P(S|\mathbf{D}) \int P(D_{m+1}|S,\theta_{S})P(\theta_{S}|\mathbf{D},S)d\theta_{S} \quad (1)$$

Note that we know how to compute the following from Bayesian parameter estimation:

$$\int P(D_{m+1}|S,\theta_S)P(\theta_S|\mathbf{D},S)d\theta_S$$

- Equation (1) averages predictions by different models. The operation hence called model averaging.
- Many possible models. Average over only top, say, 10 models.

Bayesian Score

- Model averaging typically is computationally difficult.
- So, prediction usually is based only on one model, the best model,
 - The one that maximizes $P(S|\mathbf{D})$.
- Note that

$$P(S|\mathbf{D}) = \frac{P(\mathbf{D},S)}{P(\mathbf{D})} = \frac{P(\mathbf{D}|S)P(S)}{P(\mathbf{D})}$$

• P(D) does not help with model selection. So we can select models using:

$$logP(\mathbf{D}, S) = logP(\mathbf{D}|S) + logP(S)$$

■ This is the **Bayesian score** of *S*.

Marginal Likelihood

In the Bayesian score,

$$logP(\mathbf{D}, S) = logP(\mathbf{D}|S) + logP(S)$$

• P(S) is the structural prior.

And

$$P(\mathbf{D}|S) = \int P(\mathbf{D}|S, \theta_S) P(\theta_S|S) d\theta_S$$
$$= \int L(S, \theta_S|\mathbf{D}) P(\theta_S|S) d\theta_S$$

Hence it is called the **marginal likelihood** of *S* and is denoted as $L(S|\mathbf{D})$. $logL(S|\mathbf{D})$ is denoted as $I(S|\mathbf{D})$.

Notes:

- 1 $P(\theta_S|S)$ is the parameter prior.
- 2 The marginal loglikelihood *l*(*S*|**D**) is NOT the same as the maximized loglikelihood *l**(*S*|**D**).

Marginal Likelihood

Marginal likelihood has closed-form under the following assumptions:

- **1** Data **D** are random i.i.d samples from some (unknown) BN.
- 2 All cases in **D** are complete.
- 3 For each structure S, the parameter prior $p(\theta_S|S)$
 - 1 Satisfies the parameter (global and local) independence assumption.
 - 2 Is the product Dirichlet distribution:

$$p(heta_{S}|S) \propto \prod_{i,k} \prod_{j} heta_{ijk}^{lpha_{ijk}-1}$$

We call these assumptions **Cooper and Herskovits (CH)** assumptions.

Marginal Likelihood

Theorem (8.1)

(Cooper and Herskovits (1992)) Under the CH assumptions,

$$logP(\mathbf{D}|S) = \sum_{i,k} [log \frac{\Gamma(\alpha_{i*k})}{\Gamma(\alpha_{i*k} + m_{i*k})} + \sum_{j} log \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}]$$

where

• m_{ijk} : number of data cases where $X_i = j$ and $pa_S(X_i) = k$.

This is sometimes called the **Cooper-Herskovits (CH) scoring function**, or the **Bayesian Dirichlet equivalence (BDe) score**.

Nevin L. Zhang (HKUST)

CH Scoring Function

- How to choose the α_{ijk} ?
- Not an easy task since we need to do this for all structures. There are lots of them!
- One solution:
 - \blacksquare Equivalent sample size: α
 - A BN \mathcal{N}_0 that represent prior joint probability $P_0(X_1, X_2, \dots, X_n)$.
 - Set $\alpha_{ijk} = \alpha * P_0(X_i = j | pa_S(X_i) = k).$
 - P₀(X_i=j|pa_S(X_i)=k) can be computed via standard BN inference (Clique tree propagation.)
- Note: Sometimes, it is natural for different models to have different equivalent sample sizes (Kayaalp an Cooper, UAI02).

Choice of structure prior

Choice of structure prior P(S)

- Can just be uniform for convenience.
- Exclude impossible structures (based on judgment of causal relationships) and impose a uniform prior on the set of remain structures.
 - Note that this could compromise the optimality of search. It might happen that the only way to the optimal model is through some impossible models.
- Or impose an order on the variables (structures are then limited) and then use uniform prior.

. . .

Introduction

- We next derive asymptotic (large sample) approximation of the marginal likelihood
 - Bayesian score is asymptotically the same as the marginal likelihood provide parameter prior is positive everywhere.
- Why interesting?
 - Leading to model selection criteria that can be used even when the CH assumptions are not true.
 - Allowing us to study the asymptotic properties of the marginal likelihood.

Two Assumptions

- Simplifying notation: change θ_S to θ . View it as a column vector.
- Let θ^* be the ML estimate of θ :

$$\theta_{ijk}^* = \frac{m_{ijk}}{m_{i*k}}$$

Assumption 1: $P(\mathbf{D}|S, \theta)$ has a unique maximum point θ^* . In other words, for any $\theta \neq \theta^*$,

 $P(\mathbf{D}|S,\theta) < P(\mathbf{D}|S,\theta^*)$

- Assumption 2: The ML estimation θ^* is an interior point in the parameter space. In other words, $\theta_{iik}^* > 0$ for all *i*, *j*, and *k*.
- In additional, assume complete data (although result is used also in the case of incomplete data).

A Property of Loglikelihood Function

Consider the loglikelihood function

1

$$(S, \theta | \mathbf{D}) = \sum_{i,k} \sum_{j} m_{ijk} \log \theta_{ijk}$$

$$= \sum_{i,k} m_{i*k} \sum_{j} \theta^*_{ijk} \log \theta_{ijk}$$

$$= \sum_{i,k} m_{i*k} [\sum_{j} \theta^*_{ijk} \log \frac{\theta_{ijk}}{\theta^*_{ijk}} + \sum_{j} \theta^*_{ijk} \log \theta^*_{ijk}]$$

$$P(\mathbf{D}|S,\theta) = \exp\{I(S,\theta|\mathbf{D})\} = \prod_{i,k} (\exp\{\sum_{j} \theta_{ijk}^* \log \frac{\theta_{ijk}}{\theta_{ijk}^*} + \sum_{j} \theta_{ijk}^* \log \theta_{ijk}^*\})^{m_{i*k}}$$

A Property of Loglikelihood Function

$$P(\mathbf{D}|S,\theta) = \prod_{i,k} (exp\{\sum_{j} \theta^*_{ijk} \log \frac{\theta_{ijk}}{\theta^*_{ijk}} + \sum_{j} \theta^*_{ijk} \log \theta^*_{ijk}\})^{m_{i*k}}$$

- As a function of θ , $P(\mathbf{D}|S, \theta)$ reaches the maximum at θ^* .
- When the sample size is large, m_{i*k} is also large.
- Hence, as θ moves away from θ^* , $P(\mathbf{D}|S, \theta)$ decreases quickly.
- Now consider, $P(\mathbf{D}|S) = \int P(\mathbf{D}|S,\theta)P(\theta|S)d\theta$.
- It can approximated by performing the integration in a small neighborhood of θ^* .
- This leads to the Laplace approximation.

- For simplicity, denote $I(S, \theta | \mathbf{D})$ as $I(\theta)$.
- Since θ^* maximizes $I(\theta)$,

$$l'(\theta^*) = \mathbf{0}$$

■ Use Taylor serious expansion of $l(\theta)$ around θ^* , we get that, in a small neighborhood of θ^* ,

$$I(\theta) \approx I(\theta^*) + \frac{1}{2}(\theta - \theta^*)^T I''(\theta^*)(\theta - \theta^*)$$

where $I''(\theta^*)$ is the Hessian matrix of I evaluated at θ^* :

$$I''(\theta^*) = \left[\frac{\partial^2 I(\theta)}{\partial \theta_{ijk} \partial \theta_{abc}}\right]_{\theta = \theta^*}$$

• Let $A = -I''(\theta^*)$. In a small neighborhood of θ^* ,

$$I(\theta) \approx I(\theta^*) - \frac{1}{2}(\theta - \theta^*)^T A'(\theta - \theta^*)$$

$$\blacksquare P(\mathbf{D}|S,\theta) = \exp\{I(\theta)\}:$$

- $\approx \exp\{I(\theta^*) \frac{1}{2}(\theta \theta^*)^T A(\theta \theta^*)\}$ in a small neighborhood around θ^* .
- $\blacksquare~\approx 0$ outside the neighborhood.

- Since $I(\theta^*) > I(\theta)$ for any $\theta \neq \theta^*$, $A = -I''(\theta^*)$ is positive-definite.
- Let d be the number of free parameters in S.
- It is known that

|A| = O(dlogN)

Hence

■ $exp\{l(\theta^*) - \frac{1}{2}(\theta - \theta^*)^T A(\theta - \theta^*)\}$ is close to 0 except in a small neighborhood of θ^*

■ Therefore, $P(\mathbf{D}|S, \theta) \approx exp\{I(\theta^*) - \frac{1}{2}(\theta - \theta^*)^T A(\theta - \theta^*)\}$ everywhere.

■ Now consider the marginal likelihood:

$$P(\mathbf{D}|S) = \int P(\mathbf{D}|S,\theta)P(\theta|S)d\theta$$

$$\approx \int \exp\{I(\theta^*) - \frac{1}{2}(\theta - \theta^*)^T A(\theta - \theta^*)\}P(\theta|S)d\theta$$

$$= \exp\{I(\theta^*)\} \int \exp\{-\frac{1}{2}(\theta - \theta^*)^T A(\theta - \theta^*)\}P(\theta|S)d\theta$$

$$\approx P(\mathbf{D}|S,\theta^*)P(\theta^*|S) \int \exp\{-\frac{1}{2}(\theta - \theta^*)^T A(\theta - \theta^*)\}d\theta$$

The last step is due to the fact that the integrand is small except in a small neighborhood of θ^* .
Deriving the Laplace Approximation

■ Note that $\frac{1}{\sqrt{(2\pi)^d|A|^{-1}}} \exp\{\frac{1}{2}(\theta - \theta^*)^T A(\theta - \theta^*)\}$ is the Gaussian distribution with covariance matrix A.

Hence

$$P(\mathbf{D}|S) pprox P(\mathbf{D}|S, heta^*) P(heta^*|S) \sqrt{(2\pi)^d |A|^{-1}}$$

where *d* is the number of free parameters *S* or in the vector θ .

■ The log marginal likelihood:

$$log P(\mathbf{D}|S) \approx log P(\mathbf{D}|S, \theta^*) + log P(\theta^*|S) + \frac{d}{2}log(2\pi) - \frac{1}{2}log|A|$$

Note that the first term is the maximized loglikelihood.

■ This is known as the Laplace approximation.

Laplace Approximation

 Kass et al (1988) showed that, under certain conditions (two of which given as assumptions above),

$$\frac{P(\mathbf{D}|S) - P(\mathbf{D}|S)_{\text{Laplace}}}{P(\mathbf{D}|S)} = O(1/N)$$

where probability 1. Hence it is extremely accurate.

The BIC Score

- In the Laplace approximation, the two terms in the middle do not increase with *N*.
- If we ignore those two terms and approximate *log* |*A*| using *dlogN*, we get the **Bayesian information criterion (BIC)**:

$$log P(\mathbf{D}|S) \approx log P(\mathbf{D}|S, \theta^*) - \frac{d}{2} log N$$

■ Quality of approximation: *O*(1) (Schwarz 1978, Haughton 1988, Kass and Wasserman 1995, Raftery 1995).

The BIC Score

$$log P(\mathbf{D}|S) ~pprox ~log P(\mathbf{D}|S, heta^*) - rac{d}{2} log N$$

- The first term of the BIC score is the maximized loglikelihood. It measures model fit.
- The second term penalizes model complexity.
- This avoids overfitting.
 - The Bayesian score does not lead to overfitting.
- BIC is one example of **penalized likelihood** (Lanternman 2001).
- Maximized loglikelihood increases linearly with sample size, while the penalty term increase logarithmically.
 - More and more emphasis is placed on model fit as sample size increases.

MDL

The **minimum description length (MDL)** score (Rissanen 1987):

- Machine learning is about finding regularities in data.
- Regularities should allow us to describe the data concisely.
- Find model to minimize

Description length of model + Description length of data

- It turns out to be the negation of the BIC score.
- Description length of data is related to likelihood as illustrated in Huffman's coding.

AIC

Akaike information criterion:

Idea:

- **D** sampled from $P(\mathbf{X})$.
- Based on **D**, find $\mathcal{N}^* = (S^*, \theta^*)$ such that

$$\textit{KL}(\textit{P},\textit{P}_{\mathcal{N}^*}) \leq \textit{KL}(\textit{P},\textit{P}_{\mathcal{N}}), \forall \mathcal{N}$$

(Note: the complete model does not necessarily minimize the KL due to overfitting.)

• Under certain conditions, S^* should maximize the AIC score:

$$AIC(S|\mathbf{D}) = \log P(\mathbf{D}|S, \theta^*) - d$$

 Models obtained using AIC typically are more complex than those obtained using BIC.

Holdout validation and cross validation

Holdout validation:

- Split data into training set and validation set.
- Parameter estimation based on training set.
- Model score: likelihood based on validation set.

Cross validation:

- Split data into *k* subsets
- Use each subset as validation set and the rest as training set, and obtains a score.
- Total model score: average of the scores for all the cases.
- Both are equivalent to AIC asymptotically.

Model Inclusion and Equivalence

- A model S includes a joint distribution $P(\mathbf{X})$
 - if there is a parameter vector θ such that (S, θ) represents $P(\mathbf{X})$.
- If S includes P and all other models that include $P(\mathbf{X})$ have the same number or more parameters than S, then S is said to be a **parsimonious** model (wrt P).
- One model S includes another model S', if it includes all the joint distributions that S' can represent.
- If S includes S', and vice versa, then S and S' are said to be distributionally equivalent.
- If two distributionally equivalent models have the same number of parameters, then they are **equivalent**.

Consistency

- **D** sample from $P(\mathbf{X})$.
- A scoring function *f* is **consistent** if, when the sample size goes to infinite, the following two conditions are satisfied:
 - 1 If S includes P and S' does not include P, then,

 $f(S|\mathbf{D}) > f(S'|\mathbf{D})$

2 If both S and S' includes P, and S has fewer parameters than S' then, $f(S|\mathbf{D}) > f(S'|\mathbf{D})$

Consistency

- Suppose D is sampled from P(X) represented by (S, θ) and S is parsimonious.
- Further suppose that there does not exist S' that includes P, has the same number of parameters as S, but is not equivalent to S.
- If f is consistent, then, when the sample size goes to infinite,

 $f(S|\mathbf{D}) > f(S'|\mathbf{D})$

for all other model S' that is not equivalent to S.

• Hence, we can in principle recover the generative model (S, θ) from data.

Consistency

- Consistent scoring functions:
 - Bayesian score, marginal likelihood, BDE, BIC, MDL
- Inconsistent scoring functions:
 - AIC, holdout validation, cross validation.

Model Optimization

Outline

- 1 Model Selection (I) Maximized Likelihood
- 2 Learning Trees
- 3 Model Selection (II)
 - Bayesian Model Selection
 - Asymptotic Model Selection
 - Other Model Selection Criteria
 - Consistency

4 Model Optimization

- 5 Structure Learning with Incomplete Data
 - The Model Evaluation Problem
 - Structural EM: The Idea
 - Structural EM: The Theory
 - Structure EM: The Algorithm

The Problem

- Model optimization: How to find the structure that maximizes a scoring function?
- A naive method: Exhaustive search
 - Compute the score of every structure
 - Pick the one with the highest score.

Model Optimization

Number of Possible Structures

- f(n): the number of unlabeled DAGs on n nodes.
- Robinson (1977) ¹ showed that

$$f(1) = 1$$

$$f(n) = \sum_{i=1}^{n} (-1)^{i+1} \frac{n!}{(n-i)!i!} 2^{i(n-i)} f(n-i)$$

- No closed form is known.
- $f(10) \approx 4.2 \times 10^{18}$
- BNs are labeled DAGs.
 The number of BN structures for n variables is larger than f(n).
- Exhaustive search is infeasible.

¹Robinson, R. W. (1977). Counting unlabelled acyclic digraphs. In *Lecture Notes in Mathematics: Combinatorial Mathematics V*, (ed. C. H. C. Little). Springer-Verlag, New York.

Nevin L. Zhang (HKUST)

Hill Climbing

- Start with an initial structure.
- Repeat until termination:
 - Generate a set of structures by modifying the current structure.
 - Compute their scores.
 - Pick the one with the highest score and use it as the current model in the next step.
 - Terminate when model score cannot is not improved.
- Return the best network.

Search Operators

Search operators for modifying a structure:

- Add an arc.
- Delete an arc.
- Reverse an arc.

Note:

 The add-arc and reverse-arc not permitted if results in directed cycles.

Evaluating Candidate Models

- Suppose there are *n* variables.
- The number of candidate models at each iteration: $O(n^2)$.
- We need to compute the score of each of the candidate models.
- This is the most time-consuming step.
- Structures of scoring functions can be exploited to simplify the computation.

Model Optimization

Decomposition of Scoring Functions

- Some coring functions decompose according to the variables and each component depends only on a variable and its parents.
- The CH score:

$$CH(S|\mathbf{D}) = \sum_{i} \sum_{k} \left[\log \frac{\Gamma(\alpha_{i*k})}{\Gamma(\alpha_{i*k} + m_{i*k})} + \sum_{j} \log \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})} \right]$$
$$= \sum_{i} CH(X_i, pa_S(X_i)|\mathbf{D})$$

where the family score

$$CH(X_i, pa_S(X_i)|\mathbf{D}) = \sum_k [log \frac{\Gamma(\alpha_{i*k})}{\Gamma(\alpha_{i*k} + m_{i*k})} + \sum_j log \frac{\Gamma(\alpha_{ijk} + m_{ijk})}{\Gamma(\alpha_{ijk})}]$$

depends only on X_i and its parents in S.

Nevin L. Zhang (HKUST)

Model Optimization

Decomposition of Scoring Functions

■ The BIC score:

$$BIC(S|\mathbf{D}) = logP(\mathbf{D}|S, \theta^*) - \frac{d}{2}logN$$

$$= \sum_{i} \sum_{k} \sum_{j} m_{ijk} log \frac{m_{ijk}}{\sum_{j} m_{ijk}} - \sum_{i} \frac{q_i(r_i - 1)}{2} logN$$

$$= \sum_{i} BIC(X_i, pa_S(X_i)|\mathbf{D})$$

where the family score

$$BIC(X_i, pa_{\mathcal{S}}(X_i)|\mathbf{D}) = \sum_k \sum_j m_{ijk} log rac{m_{ijk}}{\sum_j m_{ijk}} - rac{q_i(r_i-1)}{2} log N$$

where q_i is the number of states of the parents of X_i and r_i is the number of states of X_i .

Evaluating Candidate Model

- Suppose S is the current model and we have computed $BIC(S|\mathbf{D})$.
- Suppose candidate model S' is obtained from S by adding an arc from some node to X_i.
- Then

$$BIC(S'|\mathbf{D}) - BIC(S|\mathbf{D}) = BIC(X_i, \pi'(X_i)|\mathbf{D}) - BIC(X_i, \pi(X_i)|\mathbf{D})$$

• Hence we can compute $BIC(S'|\mathbf{D})$ efficiently using:

 $BIC(S'|\mathbf{D}) = BIC(S|\mathbf{D}) + BIC(X_i, \pi'(X_i)|\mathbf{D}) - BIC(X_i, \pi(X_i)|bfD)$

Only local counting are involved.

Nevin L. Zhang (HKUST)

Initial Structure

- Empty network: Network with no arcs.
- Network built using heuristics.
- Random network.

Problems with Hill Climbing

- Local maxima: All one-edge changes reduced the score, but not optimal yet.
- Plateaus: Neighbors have the same score.

Solutions:

- Random restart.
- TABU-search:
 - Keep a list of K most recently visited structures and avoid them.
 - Avoid plateau.
- Simulated annealing.

Outline

- 1 Model Selection (I) Maximized Likelihood
- 2 Learning Trees
- 3 Model Selection (II)
 - Bayesian Model Selection
 - Asymptotic Model Selection
 - Other Model Selection Criteria
 - Consistency
- 4 Model Optimization
- 5 Structure Learning with Incomplete Data
 - The Model Evaluation Problem
 - Structural EM: The Idea
 - Structural EM: The Theory
 - Structure EM: The Algorithm

Model Selection with Incomplete Data

- The CH score is not applicable in the case of incomplete data.
- We will use the BIC score:

$$BIC(S|\mathbf{D}) = logP(\mathbf{D}|S, \theta^*) - \frac{d}{2}logN$$

■ No longer have:

$$logP(\mathbf{D}|S, \theta^*) - \frac{d}{2}logN = \sum_{i} \sum_{k} \sum_{j} m_{ijk} log \frac{m_{ijk}}{\sum_{j} m_{ijk}}$$

■ But we can compute $logP(\mathbf{D}|S, \theta^*)$ using EM.

Straightforward Model Evaluation

- At each step, we need to evaluate $O(n^2)$ candidate models.
- The BIC scores cannot be computed by simple counting.
- Iterative algorithms, mostly EM, are used.
- To compute the BIC score of EACH candidate model, we need to run EM to estimate θ^* .
- EM requires BN inference, once for EACH iteration.
- EM takes a large (hundreds) number of iterations to converge.
- Computationally prohibitive.

The Idea of Structural EM

The Idea:

- Find ML estimate θ^* of the parameters for the current model S.
- Complete data using the current model (S, θ^*) .
- Evaluate candidate models using the completed data.

Advantage:

Instead of running EM on all candidate structures, we run EM only on ONE structure, namely the current structure.

BIC Score of Structure and Parameters

- The BIC score $BIC(S|\mathbf{D})$ is a function of structures.
- For convenience, define

$$BIC(S, heta | \mathbf{D}) = log P(\mathbf{D} | S, heta) - rac{d(S)}{2} log N$$

Measures how good the model *S* is when its parameters are θ .

Then

$$BIC(S|\mathbf{D}) = BIC(S, \theta^*|\mathbf{D})$$

Best Structure and Parameters

• Want S^* and θ^* such that

```
BIC(S^*, \theta^* | \mathbf{D}) \geq BIC(S, \theta | \mathbf{D})
```

for any BN (S, θ) .

- Question:
 - Suppose $(\bar{S}, \bar{\theta})$ be the current BN.
 - How to find another BN (S, θ) that increases the BIC score?

 $BIC(S, \theta | \mathbf{D}) > BIC(\bar{S}, \bar{\theta} | \mathbf{D})$

- Problem solved if we know how to do this cheaply.
- This is what we want.

Expected BIC Score

- This is what we do:
- Let $\overline{\mathbf{D}}$ be the completion of \mathbf{D} by $(\overline{S}, \overline{\theta})$.

$$BIC(S,\theta|\bar{\mathbf{D}}) = \sum_{l} \sum_{\mathbf{X}_{l}} P(\mathbf{X}_{l}|D_{l},\bar{S},\bar{\theta}) log P(D_{l},\mathbf{X}_{l}|S,\theta) - \frac{d(S)}{2} log N,$$

■ It is the expected value of $BIC(S, \theta | \mathbf{D})$, where the expectation is takes w.r.t $(\bar{S}, \bar{\theta})$.

BIC and Expected BIC

• We will denote the expected BIC score $BIC(S, \theta | \bar{\mathbf{D}})$ by $Q(S, \theta | \bar{S}, \bar{\theta})$:

$$Q(S,\theta|\bar{S},\bar{\theta}) = \sum_{I} \sum_{\mathbf{X}_{I}} P(\mathbf{X}_{I}|D_{I},\bar{S},\bar{\theta}) log P(D_{I},\mathbf{X}_{I}|S,\theta) - \frac{d(S)}{2} log N,$$

■ Similar to Lecture 7, we have

$$BIC(S,\theta|\mathbf{D}) = logP(\mathbf{D}|S,\theta) - \frac{d(S)}{2}logN$$

= $\sum_{I}\sum_{\mathbf{X}_{I}} P(\mathbf{X}_{I}|D_{I},\bar{S},\bar{\theta})logP(D_{I},\mathbf{X}_{I}|S,\theta)$
- $\sum_{I}\sum_{\mathbf{X}_{I}} P(\mathbf{X}_{I}|D_{I},\bar{S},\bar{\theta})logP(\mathbf{X}_{I}|D_{I},S,\theta) - \frac{d(S)}{2}logN$
= $Q(S,\theta|\bar{S},\bar{\theta}) - \sum_{I}\sum_{\mathbf{X}_{I}} P(\mathbf{X}_{I}|D_{I},\bar{S},\bar{\theta})logP(\mathbf{X}_{I}|D_{I},S,\theta).$

BIC Score and Expected BIC Score

$$BIC(S,\theta|\mathbf{D}) = Q(S,\theta|\bar{S},\bar{\theta}) - \sum_{I} \sum_{\mathbf{X}_{I}} P(\mathbf{X}_{I}|D_{I},\bar{S},\bar{\theta}) log P(\mathbf{X}_{I}|D_{I},S,\theta)$$
$$BIC(\bar{S},\bar{\theta}|\mathbf{D}) = Q(\bar{S},\bar{\theta}|\bar{S},\bar{\theta}) - \sum_{I} \sum_{\mathbf{X}_{I}} P(\mathbf{X}_{I}|D_{I},\bar{S},\bar{\theta}) log P(\mathbf{X}_{I}|D_{I},\bar{S},\bar{\theta})$$

Theorem (8.2)

 $Q(S, heta | ar{S}, ar{ heta}) > Q(ar{S}, ar{ heta} | ar{S}, ar{ heta})$

then

■ If

$$BIC(S, \theta | \mathbf{D}) > BIC(\bar{S}, \bar{\theta} | \mathbf{D})$$

Improving Expected BIC Score

Problem becomes:

- How to find (S, θ) such that $Q(S, \theta | \bar{S}, \bar{\theta}) > Q(\bar{S}, \bar{\theta} | \bar{S}, \bar{\theta})$?
- Method 1:Improve the parameters

$$Q(\bar{S}, \theta | \bar{S}, \bar{\theta}) > Q(\bar{S}, \bar{\theta} | \bar{S}, \bar{\theta})$$

■ Parameter estimation in the case of complete data.Computationally cheap.

Improving Expected BIC Score

• Method 2: Improve the model structure (together with parameters):

$$Q(S, \theta | \bar{S}, \bar{\theta}) > Q(\bar{S}, \bar{\theta} | \bar{S}, \bar{\theta})$$

Structure learning in the case of complete data. Computationally cheap.

The Structural EM Algorithm

- Pick initial structure S^0 and initial parameters $\theta^{0,0}$.
- $\bullet \ \, {\rm For} \ t=0 \ {\rm to} \ \infty$
 - **1** Improve parameters: For r = 0, 1, 2, ... until convergence or some r_{max}
 - Standard parametric EM step:

$$\theta^{t,r+1} = \arg \max_{\theta} Q(S^t, \theta | S^t, \theta^{t,r})$$

- 2 Improve Structure:
 - Generate candidate structures by modifying *S*_t using the search operators.
 - Let S^{t+1} be the candidate structure that maximizes

$$\begin{split} \max_{\theta} Q(S^{t+1}, \theta | S^t, \theta^{t,r}), & \text{and} \\ \theta^{t+1,0} = \arg\max_{\theta} Q(S^{t+1}, \theta | S^t, \theta^{t,r}) \end{split}$$

■ If $BIC(S^{t+1}, \theta^{t+1,0}|\mathbf{D}) \leq BIC(S^t, \theta^{t,r}|\mathbf{D}) + \epsilon$, return BN $(S^t, \theta^{t,r})$.

Convergence

When improving parameters, we have

$$Q(S^t, \theta^{t,r+1}|S^t, \theta^{t,r}) > Q(S^t, \theta^{t,r}|S^t, \theta^{t,r})$$

By Theorem 8.2, this implies

$$BIC(S^t, \theta^{t,r+1}|\mathbf{D}) > Q(S^t, \theta^{t,r}|\mathbf{D})$$

When improving structure, we have

$$Q(S^{t+1}, \theta^{t+1,0}|S^t, \theta^{t,r}) > Q(S^t, \theta^{t,r}|S^t, \theta^{t,r})$$

By Theorem 8.2, this implies

$$BIC(S^{t+1}, \theta^{t+1,0}|\mathbf{D}) > Q(S^t, \theta^{t,r}|\mathbf{D})$$

So BIC(S^t, θ^{t,r}|D) increases monotonically with t and r.
 Hence structural EM converges.

Nevin L. Zhang (HKUST)

Converges to What?

- The parametric part converges to global or local parametric maxima or saddle points in the parameter space.
- Structure? No much to say.Converges to what?
- Empirical results indicates that structural EM finds good structures.