
Parallelizing Big De Bruijn Graph
Traversal for Genome Assembly

on GPU Clusters

Shuang Qiu(B), Zonghao Feng, and Qiong Luo

The Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong

{sqiuac,zfengah,luo}@cse.ust.hk

Abstract. De Bruijn graph traversal is a critical step in de novo assem-
blers. It uses the graph structure to analyze genome sequences and is both
memory space intensive and time consuming. To improve the efficiency,
we develop ParaGraph, which parallelizes De Bruijn graph traversal on
a cluster of GPU-equipped computer nodes. With effective vertex parti-
tioning and fine-grained parallel algorithms, ParaGraph utilizes all cores
of each CPU and GPU, all CPUs and GPUs in a computer node, and all
computer nodes of a cluster. Our results show that ParaGraph is able
to traverse billion-node graphs within three minutes on a cluster of six
GPU-equipped computer nodes. It is an order of magnitude faster than
the state-of-the-art shared memory based assemblers, and more than five
times faster than the current distributed assemblers.

1 Introduction

In genomic analysis pipelines, de novo assembly constructs genome sequences
from short DNA fragments, without any reference sequence. Specifically, a De
novo assembler first constructs a De Bruijn graph from short DNA fragments.
Then it traverses the graph heuristically, searching local shortest paths. There-
after, it outputs long DNA sequences (called contigs), representing the skeleton
of the genome sequence. The performance issues in constructing big De Bruijn
graphs are well addressed in recent work [2,7], but traversing big graphs effi-
ciently with a limited number of machines remains an open problem.

Traversing a De Bruijn graph with hundreds of millions to billions of vertices
takes hours on a single CPU core, and the memory consumption is tens to hun-
dreds of gigabytes [4]. Parallelization is therefore commonly adopted in existing
assemblers to speed up the traversal. In shared memory based parallel assemblers,
the performance is limited by the memory size in a single machine [4] or the IO
bandwidth for the data transfer [2]. In comparison, scalable distributed assem-
blers are able to handle big graphs [5,8]. However, the De Bruijn graph partition-
ing in these assemblers is based on a random strategy, ignoring connections among
vertices. Consequently, the communication overhead is high in distributed assem-
blers. Additionally, all these assemblers are based on the CPU, whereas the GPUs,
commonly equipped in the computer nodes, are not utilized.
c© Springer Nature Switzerland AG 2019
G. Li et al. (Eds.): DASFAA 2019, LNCS 11448, pp. 466–470, 2019.
https://doi.org/10.1007/978-3-030-18590-9_68

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-18590-9_68&domain=pdf
https://doi.org/10.1007/978-3-030-18590-9_68


Parallelizing Big De Bruijn Graph Traversal 467

Fig. 1. De Bruijn graph traversal

The major difficulty that hinders the utilization of GPUs in De Bruijn graph
traversal is the high divergence and read-write contention among GPU threads.
To address this problem, we design algorithms in a vertex-centric manner, and
split the vertex merging step into vertex traversing and result gathering steps.
This way, graph traversal algorithms are converted into gather and scatter oper-
ations, and the costly write contention on many-core processors is resolved. Fur-
thermore, we find that the identifiers of adjacent vertices share a common min-
imum substring with a high probability, and that this feature can be utilized
to reduce the number of edge cuts between subgraphs. Therefore, we utilize a
vertex partitioning algorithm [3,7] to reduce the communication overhead in
ParaGraph.

2 ParaGraph

We design the workflow of ParaGraph as shown in Fig. 2. ParaGraph takes De
Bruijn subgraphs as input, which can be generated from a graph construction
tool [7]. In Step 1, we first filter invalid edges and their incident vertices, based
on edge weights (as illustrated in Fig. 1(A) and (B)). Since a vertex in the graph
is identified with two fixed-length strings, searching a vertex can be implemented
as hash table lookup or binary search on sorted vertices. On multiple processors
and computer nodes, our graph algorithms are designed with multiple iterations
of neighbor updates for vertices. Therefore, we build a new index for vertices and
update the index of neighbors of vertices. The efficiency in searching vertices is
improved in graph traversal, and the index building overhead is offset by the
performance gain. We finally split vertices into the set of linear vertices (vertices
of at most two adjacent vertices) and the set of junctions (non-linear vertices).

Based on the results in Step 1, Step 2 traverses the De Bruijn graph and
merges linear vertices (as illustrated in Fig. 1(B) and (C)). Specifically, we first

Fig. 2. Processing flow in ParaGraph



468 S. Qiu et al.

modify the graph structure to undirected graphs, which reduces the number
of message transfers. To resolve data contention and reduce divergence across
threads, we split vertex merging into two steps. First, we traverse linear vertices,
and for each vertex v, we record the number of hops to traverse from v to the
nearest junction or the nearest leaf (i.e., an end point of connected vertices). If
v is in a cycle, we use the smallest vertex ID to identify the cycle and record the
distance from v to the smallest vertex. Then we gather the linear vertices based
on the recorded distances to the end points, and output contigs.

We design distributed graph processing algorithms, following the push based
BSP (Bulk Synchronous Parallel) model [1], in which active vertices send mes-
sages to their neighbors, and the neighbors update the associated values based
on the received messages. Specifically, we break down a graph algorithm as itera-
tions of compute, communicate, and update operations, and define the compute
operators and update operators on vertices. With this abstraction, traversing
linear vertices takes O(logD) number of iterations of compute, communicate
and update operations, where D is the diameter of the graph.

In distributed graph algorithms, the graph partitioning method is critical in
determining the number of messages across computers. We find that utilizing
character distribution in vertex identifiers (two fixed-length strings) can reduce
the number of edge cuts in partitioning the De Brujin graph. As such, we adopt
the P-minimum-substring partitioning [3,7] and prove the following property
with uniform and independent distribution assumptions on the start positions
of P-minimum-substrings.

With the P-minimum-substring partitioning, the probability that a vertex v

and its neighbor u are distributed to the same partition equals
(

K−P−1
K−P

)2

, where
K is the string length of the vertex and P is the P-minimum-substring length.

When (K − P − 1) is close to (K − P ), the majority of adjacent vertices are
partitioned into the same subgraph. For example, given K = 27, P = 11, this
property indicates that more than 85 percent adjacent vertices are located in
the same partition.

3 Performance Evaluation

We use two datasets in the evaluation. The dataset Human Chr14 [4] contains
450 million valid vertices in the De Bruijn graph. The dataset 7 Humans [6],
consisting of seven individual human genomes, contains 2.3 billion valid vertices.
Experiments were conducted with one to six computer nodes. Each computer
node contains two 2.3 GHz Intel Xeon E5-2670 12-core CPUs, and two Nvidia
K80 GPUs. Each K80 consists of two GPUs, each with 12 GB memory. The main
memory on each computer node is 128 GB. Each computer node uses Infiniband
for network connection.

Overall Performance. We show the overall performance of ParaGraph in
Fig. 3. On Human Chr14, the overall time of ParaGraph with all CPUs and
GPUs is reduced to less than 1/3 of the time with only the CPUs. Moreover,



Parallelizing Big De Bruijn Graph Traversal 469

the running time is reduced to 1/8 of the time with CPUs on a single machine,
when ParaGraph runs on six computer nodes. Due to the limit of memory size
on a single machine, we run ParaGraph on 7 Humans on six computer nodes.
The running time with both CPUs and GPUs is reduced to 1/3 of the time using
only CPUs.

Comparison with Other Assemblers. We compare ParaGraph with the
state-of-the-art parallel assemblers. All these CPU-based assemblers use all
CPUs on each computer in experiments. Time measurement for each assem-
bler begins at the time the input data is ready in memory and ends at the time
the output results are generated in memory. As shown in Table 1, on Human
Chr14, ParaGraph with CPUs and GPUs is 20 times faster than SOAPdenovo
[4] and bcalm2 [2] on a single machine. It is about eight times faster than SWAP2
[5], and six times faster than PPA [8]. On 7 Humans, only Bcalm2 and Para-
Graph are able to run with the available amount of memory. ParaGraph on six
computer nodes is 40 times faster than bcalm2 on a single computer.

Fig. 3. Overall running time (sec) of Para-
Graph

Table 1. Running time (sec)
comparison

Software
Dataset Human Chr14 7 Humans

Single1 Multi2 Single1Multi2

SOAPdenovo 582 OM OM OM
bcalm2 485 OM 2341 OM
PPA OM 59 OM OM

SWAP2 209 68 OM OM
ParaGraph-CPU 71 22 OM 144

ParaGraph-CPU-GPU 24 9 OM 52

1 Single computer node, 2 Six computer nodes
OM: Out of memory
SOAPdenovo: from tip removing to edge con-
struction. bcalm2: graph compaction within and
across buckets, with IO time excluded. SWAP2:
graph simplification. PPA: listranking and contig
merging, with load and dump time excluded.

4 Conclusion

We propose ParaGraph to parallelize the De Bruijn graph traversal on GPU-
equipped clusters. We implement multi-threaded algorithms on each GPU and
CPU, use threads to manage message transfers and synchronizations among
CPUs and GPUs in a computer node, and finally run concurrent processes on
multiple computer nodes. To reduce the overhead in distributed graph traversal,
we utilize the identifier distribution features in vertices, such that the majority
of messages are within each processor. As a result, ParaGraph is efficient on
multiple processors and multiple computer nodes. Source code of ParaGraph
is available at https://github.com/ShuangQiuac/UNIPAR, integrated with our

https://github.com/ShuangQiuac/UNIPAR


470 S. Qiu et al.

previous work ParaHash [7] to execute the entire workflow of De Bruijn graph
construction and traversal.

References

1. Avery, C.: Giraph: large-scale graph processing infrastructure on Hadoop. In: Pro-
ceedings of the Hadoop Summit. Santa Clara, vol. 11, pp. 5–9 (2011)

2. Chikhi, R., Limasset, A., Medvedev, P.: Compacting de bruijn graphs from sequenc-
ing data quickly and in low memory. Bioinformatics 32(12), i201–i208 (2016)

3. Li, Y., Kamousi, P., Han, F., Yang, S., Yan, X., Suri, S.: Memory efficient minimum
substring partitioning. In: Proceedings of the VLDB Endowment, vol. 6, pp. 169–
180. VLDB Endowment (2013)

4. Luo, R., et al.: Soapdenovo2: an empirically improved memory-efficient short-read
de novo assembler. Gigascience 1(1), 18 (2012)

5. Meng, J., Seo, S., Balaji, P., Wei, Y., Wang, B., Feng, S.: Swap-assembler 2: opti-
mization of de novo genome assembler at extreme scale. In: 2016 45th International
Conference on Parallel Processing (ICPP), pp. 195–204. IEEE (2016)

6. Minkin, I., Pham, S., Medvedev, P.: Twopaco: an efficient algorithm to build the
compacted de bruijn graph from many complete genomes. Bioinformatics 33(24),
4024–4032 (2016)

7. Qiu, S., Luo, Q.: Parallelizing big de bruijn graph construction on heterogeneous
processors. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), pp. 1431–1441. IEEE (2017)

8. Yan, D., Chen, H., Cheng, J., Cai, Z., Shao, B.: Scalable de novo genome assembly
using pregel. arXiv preprint arXiv:1801.04453 (2018)

http://arxiv.org/abs/1801.04453

	Parallelizing Big De Bruijn Graph Traversal for Genome Assembly on GPU Clusters
	1 Introduction
	2 ParaGraph
	3 Performance Evaluation
	4 Conclusion
	References




