
Adaptive Index Utilization in
Memory-Resident Structural Joins

Bingsheng He, Qiong Luo, and Byron Choi

Abstract—We consider adaptive index utilization as a fine-grained problem in autonomic databases in which an existing index is

dynamically determined to be used or not in query processing. As a special case, we study this problem for structural joins, the core

operator in XML query processing, in the main memory. We find that index utilization is beneficial for structural joins only under certain

join selectivity and distribution of matching elements. Therefore, we propose adaptive algorithms to decide whether to use an index

probe or a data scan for each step of matching during the processing of a structural join operator. Our adaptive algorithms are based

on the history, the look-ahead information, or both. We have developed a cost model to facilitate this adaptation and have conducted

experiments with both synthetic and real-world data sets. Our results show that adaptively utilizing indexes in a structural join improves

the performance by taking advantage of both sequential scans and index probes.

Index Terms—Adaptive query processing, memory-resident systems, structural joins, index utilization.

Ç

1 INTRODUCTION

ADAPTIVE query processing has long roots in the
relational world [5], [6], [7], [19], [21], [31] and is

important in improving the performance of autonomic
databases [17], [33], [34]. The essence of adaptation is to
gracefully adjust to the dynamic environment with some
self-learning mechanism. As a result, adaptive algorithms
may not always achieve the peak performance that can be
obtained through careful tuning. However, they are most
likely to maintain good performance in the presence of
unexpected changes with little a priori information or
manual tuning. In this paper, we consider adaptive index
utilization as a fine-grained problem in autonomic data-
bases which dynamically determines whether or not to use
an existing index during query processing.

Structural joins [2], [10], [12], [13], [15], [23], [24], [27] or
containment joins [37], have been a core operator in XML
query processing. For example, a query “find all SECTION
elements that contain FIGURE elements” involves a
structural join between the SECTION elements and the
FIGURE elements, which produces element pairs that
satisfy the element nesting relationship in an XML docu-
ment. Although previous work [2], [12], [15] deals with
disk-resident structural joins, an increasing number of
applications manipulate XML data in the main memory
[18], [32]. In these applications, main-memory indexes can
be built or loaded together with the data on the fly.
However, it is questionable whether utilizing these indexes
always has performance benefits.

The state-of-the-art structural join algorithms include
nonholistic algorithms [2], [15], [23], [37] and holistic
algorithms [10], [12], [13], [24], [27]. Holistic algorithms
treat a query as a whole for processing, whereas nonholistic
algorithms decompose a query into binary subqueries and
evaluate the subqueries one by one [2], [15], [23], [37]. Since
the basic idea of index utilization in binary join algorithms
is similar to that in holistic join algorithms, we start with the
algorithms of adaptive index utilization on binary joins and
extend our algorithms to holistic joins.

A binary structural join compares two lists of XML
elements and finds out the ancestor-descendant relation-
ship in an XML document between the elements in the two
lists. Moreover, the XML elements are represented in some
encoding scheme. One basic encoding scheme is to use the
start and the end positions of elements in a document. This
is often referred to as the region encoding [2], [12], [13], [15],
[23], [37]. With this encoding, the ancestor-descendant
relationship checking becomes range predicates on the start
and the end positions of the elements in the two lists. As
both input lists are sorted on the (start, end) positions of the
elements, tree indexes (for example, the B+-tree [15] and the
XR-tree [23], [24]) can be built on both lists to facilitate range
search and to skip some elements unnecessary for match-
ing. In addition, an in-memory stack [2] is often used to
store elements from the ancestor list to be compared with
the current element in the descendant list so that no
backtrack on either list is needed.

Examining the operations on the lists in a structural join,
we define two execution modes for it: scan and probe. In the
scan mode, the elements in one list are sequentially read
one by one to compare with the elements in the other list. In
the probe mode, indexes are used to locate the next-to-be-
processed element in either list so that a number of
elements may be skipped. By this definition, existing
algorithms are all static—either always in the scan mode,
for example, the Stack-Tree [2], or always in the probe mode,
for example, the Anc_Des_B+ [15] with B+-tree indexes [16].

772 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

. B. He and Q. Luo are with the Computer Science and Engineering
Department, Hong Kong University of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. E-mail: {saven, luo}@cse.ust.hk.

. B. Choi is with the School of Computer Engineering, Nanyang
Technological University, Block N4, Nanyang Avenue, Singapore
639798. E-mail: kkchoi@ntu.edu.sg.

Manuscript received 4 May 2006; revised 28 Sept. 2006; accepted 22 Jan.
2007; published online 30 Jan, 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0231-0506.
Digital Object Identifier no. 10.1109/TKDE.2007.1024.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

To study the performance of memory-resident structural
joins, we implemented these two representative structural
join algorithms. The Stack-Tree algorithm uses no index and
our modified Anc_Des_B+ algorithm uses the Cache-
Sensitive B+-Tree (CSB+-Tree) [30] instead of the B+-tree
for the main-memory performance.

To determine whether to use indexes for a structural join,
common wisdom holds that indexes should be used for low
join selectivities and scans otherwise. However, the
boundary between low and high selectivities is a variable
for different platforms. Moreover, given a fixed join
selectivity, it is possible that using indexes improves the
performance in some cases and degrades the performance
in others, as shown in our study (Fig. 1). The detailed
experimental setup of Fig. 1 is described in Section 4.
Differently from the relational join selectivity, we use the
ancestor join selectivity (the percentage of distinct matching
elements in the ancestor list) and the descendant join
selectivity (the percentage of distinct matching elements in
the descendant list) as in recent studies on structural joins
[23]. At this point, it is sufficient to know that both queries,
DQ2 and XQ2 have a low descendant join selectivity of
around 8 percent and that both DQ3 and XQ3 have a
relatively high descendant join selectivity of around
22 percent. All four of these queries have an ancestor join
selectivity of 100 percent.

Since neither of the static algorithms are a guaranteed
winner, we propose improving the performance of memory-
resident structural joins by adaptively determining whether
to use indexes for each step of matching during join
processing. On one hand, this adaptation should respond
to the environment well; on the other hand, the overhead of
the adaptation should be low.

First, we develop a cost model to compare index probes
with data scans. Intuitively, an index probe may skip
elements but have the overhead of going down the index
tree to reach the data leaves. The cost-based decision of
index utilization boils down to the number of elements
skipped in an index probe. Additionally, our cost model can
serve as the basis for comparing the relative performance of
different structural join algorithms.

Next, we design our adaptive schemes for index
utilization. They are based on the history, the look-ahead
information, or a mix of the two. Since our model can tell if
the previous or the upcoming index probes are cost
efficient, the decision on the adaptation for the next move
is made in a cost-based manner. The history-based adapta-
tion is analogous to the processor branch prediction [22] in
that it uses one or two bits to record the correctness of
previous decisions on whether to choose an index probe or
a data scan. The look-ahead-based adaptation checks if the

next index probe can skip a sufficient number of elements to
compensate for its cost. Finally, the hybrid adaptation
scheme makes decisions considering both the history and
the look-ahead information.

We have tested these adaptive algorithms in comparison
with static algorithms on synthetic data sets, as well as on
real-world data sets. Taking advantage of both the scan and
the probe, our adaptive algorithms consistently outperform
the static algorithms and the hybrid scheme performs the
best among the three adaptive schemes.

The remainder of this paper is organized as follows:
Section 2 introduces the preliminaries of this work and
discusses the related work. We present our proposed
adaptive algorithms for binary and holistic structural joins
in Section 3. In Section 4, we experimentally evaluate the
performance of our approaches. Finally, we conclude in
Section 5.

2 PRELIMINARIES AND RELATED WORK

In this section, we introduce the preliminaries of this work
and discuss the related work. We first review the region
encoding scheme and structural join algorithms. We then
illustrate the two execution modes of a generic structural
join algorithm. Finally, we review existing techniques on
autonomic databases and adaptive query processing.

2.1 Region Encoding and Structural Joins

The structural relationship of two elements in an XML
document can be efficiently determined using a region
encoding scheme [2], [12], [13], [15], [23], [24], [37].
This scheme encodes each element with a 4-ary tuple:
< docID; start : end; level > , where docID is the document
identifier, start and end are the start and the end positions
(or the preorder and the postorder ranks) of the element,
and level is the depth of the element in the document tree.
The region encoding of a sample XML document is shown
in Fig. 2, with docID and level omitted. Using this
encoding scheme, the structural relationship of elements
a and d is determined as follows: 1) a is an ancestor of d if
and only if a:docID ¼ d:docID, a:start < d:start, and
d:end < a:end and 2) a is the parent of d if and only if a
is an ancestor of d and a:level ¼ d:level� 1.

With this region encoding, XML documents are repre-
sented as label indexes, which are lists of encoded elements
sorted by ðdocID; startÞ. Fig. 2b shows the label indexes of
the sample document. We refer to these label indexes as lists
of elements (or element lists) to distinguish them from the
tree indexes built on top. For simplicity of presentation, we
omit the docID and level and use a tuple < start : end > to
represent an element in the remainder of the paper.

HE ET AL.: ADAPTIVE INDEX UTILIZATION IN MEMORY-RESIDENT STRUCTURAL JOINS 773

Fig. 1. Execution time of Stack-Tree (SCAN) and Anc_Des_B+ (INX).
Fig. 2. (a) Region encoding. (b) Label indexes.

With two lists of elements as input, a binary structural join
outputs all pairs of elements that satisfy the structural
relationship. In this paper, we focus on the ancestor-
descendant relationship. We call an element in the resulting
pairs a matching element. If a matching element is from the
ancestor list, it is an AYElement; otherwise, it is a DYElement.
Similarly, an unmatching element, which has no matching
element in the other list, is either an ANElement from the
ancestor list or a DNElement from the descendant list. We
call a block of consecutive matching elements in either list a
matching block and a block of consecutive unmatching
elements an unmatching block.

Table 1 shows a few representatives of the existing
structural join algorithms. We categorize them along two
dimensions: nonholistic versus holistic processing and
using indexes on the lists or not. All algorithms except
Twig2Stack [12] evaluate the query through accessing the
documents from the top down, whereas Twig2Stack utilizes
a hybrid approach combining both top-down and bottom-
up evaluations. PathStack [10] is based on a novel stack
encoding and is optimal for evaluating linear path queries
and Twig2Stack outperforms existing holistic algorithms for
twig queries (i.e., [10], [27]). All of these algorithms except
the staircase join [18] are designed for processing disk-
resident data. In comparison, we focus on memory-resident
data. With the same focus on memory-resident data, the
staircase join utilizes the consecutiveness of an XML
encoding scheme and can skip the unmatching elements
without indexes. In contrast, we focus on the adaptive
utilization of index probes for documents with a common,
possibly nonconsecutive region encoding scheme.

A number of cache-optimized tree index structures have
been proposed for main-memory databases, such as
CSB+-trees [30], CR-trees (Cache-conscious R-Trees) [25],
and T-trees [26]. Rao and Ross showed that the search
performance of CSB+-trees is better than that of T-trees [30].
We have implemented CR-trees and tested them in the
structural join. Similarly to the previous study on structural
joins for disk-based data [15], our experimental results

showed that structural joins with CR-trees in the main
memory were slower than those with CSB+-trees. There-
fore, we choose the CSB+-tree as our index structure in the
main memory and develop a model to estimate the access
cost of CSB+-trees. Note that some compression schemes,
such as the partial key technique [9], can be applied to
CSB+-trees to improve their search performance. For
simplicity, we used CSB+-trees without compression in
our model and experiments. Nevertheless, our model can
be extended to consider CSB+-trees with compression.

2.2 The Two Execution Modes of Structural Joins

Our adaptive techniques work around the scan and probe
modes of a structural join in the presence of tree indexes.
Let us illustrate these two modes with a generic static
binary structural join algorithm in the presence of B+-trees
(Algorithm 1), which is slightly modified from the original
Anc_Des_B+ algorithm [15] by adding the mode definition.
The variables used in the join algorithms throughout this
paper are shown in Table 2. We will describe the variables
in the last four rows in more detail when we present our
adaptive algorithms in Section 3.

Algorithm 1. Anc_Des_B+ðAList;DListÞ [Modified]

Procedure: Anc_Des_B+()

1: a ¼ AList:first, d ¼ DList:first
2: while a 6¼ AList:end and d 6¼ DList:end do

3: if a is an ancestor of d then

4: stack:pushðaiÞ, 8ai 2 AList and ai is an ancestor of d;

5: a is set to be the last element pushed;

6: Output ðai; dÞ, 8ai 2 stack;

7: d ¼ DList:nextðÞ;
8: else

9: if a:end < d:start then

10: while stack:topEndðÞ < d:start do

11: stack.pop();

12: NextAnc(); /*Locate the next ancestor*/

13: else

14: Output ðai; dÞ, 8ai 2 stack;

774 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

TABLE 1
Representatives of State-of-the-Art Structural Join Algorithms

TABLE 2
Terminology Used throughout This Paper

15: NextDes(); /*Locate the next descendant*/

#IFDEF PROBE_MODE

Procedure: NextAnc()

1: l is set to be the last element popped;

2: a ¼ IA:SearchLargerðl:endÞ;
Procedure: NextDes()

1: if stack:emptyðÞ then

2: d ¼ ID:SearchLargerða:startÞ;
3: else

4: d ¼ DList:nextðÞ;
#ELSE

Procedure: NextAnc()

1: a ¼ AList:nextðÞ;
Procedure: NextDes()

1: d ¼ DList:nextðÞ;
#ENDIF

There are three procedures in Algorithm 1, namely,
Anc_Des_B+, NextAnc, and NextDes. The main procedure
Anc_Des_B+ performs the matching of elements between
the two lists. It maintains one cursor on each list and calls
NextAnc and NextDes to advance the cursor on the
corresponding list. The algorithm maintains an in-memory
stack, which keeps all ancestors of the element d for
processing. The operations over the stack are empty, pop,
push, and topEnd. The first three operations are standard
stack operations and the last one returns the end value of the
element on the top of the stack.

The flag PROBE_MODE indicates the execution mode of
the join, which determines if a scan (sequentially advancing
the cursor to the next element) or an index probe (using the
index to advance the cursor to the next element, which
might have skipped several unmatching elements in the
list) is used in NextAnc and NextDes. If the flag is set to
probe, it is the original Anc_Des_B+ algorithm [15]; if the flag
is set to scan, it is similar to the Stack-Tree algorithm [2] with
minor differences in the elements pushed into the stack. In
our experiments, we found that there was no significant
performance difference between Stack-Tree and the scan
mode Anc_Des_B+.

Let us illustrate the differences between the two
modes with an example. Given AList ¼ ½a0; a1; . . . ; a9�
and DList ¼ ½d0; d1�, their positions in a document are
shown in Fig. 3a. The cursor movement and the stack

content during the join processing in two execution
modes are shown in Figs. 3b and 3c, respectively. In the
probe mode, the elements a2, a3, and a4 are skipped,
whereas, in the scan mode, no element is skipped. Even
though the probe mode may skip some unmatching
elements, the overhead of the index access may offset the
performance gain from skipping.

The idea of skipping unmatching elements using the
B+-tree index has been exploited in Zigzag skips [3], [4],
[14]. Cheng et al. proposed applying an ascending traversal
from the current tree node through its parent pointer and,
then, a descending traversal to locate the next matching
element [14]. It needs extra space to store an auxiliary
parent pointer in each tree node. Antoshenkov proposed
scanning the index leaf node where the last matching
element was found, prior to executing an index probe [3].
However, in our study, the node size of the CSB+-Tree is
small and the benefit of scanning the remainder of the
current leaf node is limited. Closely related to our work, an
adaptive algorithm was proposed to switch between the
skip mode and the no skip mode [4]. It switches to the no skip
mode when the number of skip attempts without actual
skipping exceeds some small threshold and switches to the
skip mode at the end of scanning the current leaf node in
the index. In comparison, we develop a cost model to
quantify the switching conditions and the frequency of our
adaptation is per tuple.

2.3 Autonomic Databases and Adaptive Query
Processing

The database community has already made many signifi-
cant contributions to autonomic query processing [17], [33],
[34]. The index advisor [33] recommends the best index
among multiple candidate indexes. In comparison, we
assume that the tree index has been built on top of each
element list and we consider adaptive utilization for these
indexes. The LEO (Learning Optimizer) [34] learns from
prior executions and uses actual cardinalities for later
executions of queries with similar predicates. Similarly, our
history-based algorithm predicts the next execution mode
based on the correctness of the previous one or two
decisions.

Adaptive query processing is self-optimizing and pro-
vides good performance for autonomic databases with little
manual tuning [17]. The state-of-the-art adaptive query
processing techniques [5], [6], [19], [31] are compared and
categorized in two surveys [7], [21]. Under their categoriza-
tion, our work belongs to intraoperator and per-tuple
adaptation. Early work on intraoperator adaptation used
either competition [5] or sampling [31] techniques. In
contrast, our look-ahead-based algorithm compares the cost
of the upcoming index probe with a threshold value at each
step of matching without competition and our history-
based algorithm is based on a short most recent observa-
tion, not sampling. Compared with the per-tuple adaptive
eddies [6], our work deals with the CPU cost of tuple
matching as opposed to routing tuples through a pool of
pipelined operators.

Our focus in this work has been to study the in-memory
cost of data scans versus index probes for tuple matching
and to propose lightweight high-frequency adaptation

HE ET AL.: ADAPTIVE INDEX UTILIZATION IN MEMORY-RESIDENT STRUCTURAL JOINS 775

Fig. 3. An example of the probe and scan modes. (a) AList and DList.

(b) Probe mode. (c) Scan mode.

schemes for a structural join in the main memory. To the
best of our knowledge, this work is the first on applying
adaptive schemes to the index utilization in the memory-
resident structural join.

3 ADAPTIVE STRUCTURAL JOINS

In this section, we first discuss the challenges in adaptively
choosing the correct execution mode for each step of
matching. Next, we present the adaptive algorithms for
binary structural joins, including the history-based, the
look-ahead-based, and the hybrid ones. We then describe
our cost model for the adaptation. We also apply our
adaptive schemes to two holistic algorithms, PathStack [10]
and Twig2Stack [12]. Finally, we discuss a few issues about
our adaptive algorithms.

3.1 Challenges

As shown in Fig. 1, it is hard to predict the best static
algorithm even when the join selectivity is known. There-
fore, we consider choosing a correct execution mode for
each step of matching during the join processing. The first
challenge is to define the correctness of an execution mode.
As we deal with memory-resident structural joins in the
presence of indexes, we need a model to estimate the access
cost of the main-memory hierarchy for both data scans and
index probes.

One observation on the index probes in a structural join
is that their search-key values are ascending. Due to data
reuse, this sortedness of index probes has a significant
performance impact on in-memory indexed structural joins,
as we observed in our experiments. To the best of our
knowledge, there is no existing model to estimate the access
cost for these kinds of index probes in the main memory.
Specifically, the existing cost models for in-memory
databases [20], [28] considered the cost of random probes
on a tree index structure.

Having the cost model in hand, the next challenge is to
apply the correct execution modes. A static approach
containing precomputed execution modes for each step of
matching is undesirable due to the space overhead or may
even be infeasible in many situations. Furthermore, evalu-
ating joins on different element lists may need different
plans. Thus, we consider applying the execution modes
adaptively at runtime. As this adaptation happens at a high
frequency and the structural join is memory resident, our
adaptive schemes must be lightweight.

3.2 Algorithms for Binary Joins

We develop our adaptive algorithms by modifying the
generic Anc_Des_B+ algorithm (shown in Section 2.2). The
modifications include removing the static execution mode
and changing NextAnc and NextDes to adaptively choose
the execution mode according to our adaptive schemes.

3.2.1 The History-Based Algorithm

A natural way of adaptation is through observations on
the history. Our history-based algorithm belongs to this
category. Inspired by the correspondence between branch
prediction [22] and the selection of execution modes, we
develop a history-based adaptive algorithm using the

n-bit scheme. The n-bit scheme uses n bits to record the
correctness of the previous n decisions and makes the next
decision based on the n-bit history. Considering the trade-
off between the overhead of maintaining the history and
the potential gain from adaptivity, we tested the 1-bit and
the 2-bit schemes that have been known to be practical
[22]. Since the performance of the 2-bit scheme was similar
to that of the 1-bit scheme in our experiments, we focus on
the 1-bit scheme.

Procedures NextAnc and NextDes in the 1-bit adaptive
structural join algorithm 1bit-Adaptive are shown in Algo-
rithm 2. Variables ACount and DCount are both initialized
with zero and AMode and DMode both with I, that is, the
algorithm starts with the probe mode. We present the
estimation of ASkip and DSkip in our cost model in
Section 3.3. At this point, it is sufficient to know that ASkip
and DSkip are constants.

Algorithm 2. Procedures NextAnc() and NextDes() of

1bit-Adaptive

Procedure: NextAnc()

1: if AMode ¼ N then

2: a ¼ AList:nextðÞ;
3: ACount ¼ ACountþ 1;
4: if ACount > ASkip then

5: AMode ¼ I;

6: l is set to be the last element popped;

7: a ¼ IA:SearchLargerðl:endÞ;
8: else

9: l is set to be the last element popped;

10: olda ¼ a;

11: a ¼ IA:SearchLargerðl:endÞ;
12: If ða� olda� 1Þ � ASkip, then AMode ¼ N; /*Skip

too little*/

13: DCount ¼ 0;

Procedure: NextDes()

1: if stack:emptyðÞ then

2: if DMode ¼ I then

3: oldd ¼ d;

4: d ¼ ID:SearchLargerða:startÞ;
5: If ðd� oldd� 1Þ � DSkip, then DMode ¼ N; /

Skip too little/

6: else

7: d ¼ DList:nextðÞ;
8: DCount ¼ DCountþ 1;

9: if DCount > DSkip then

10: DMode ¼ I;

11: d ¼ ID:SearchLargerða:startÞ;
12: else

13: d ¼ DList:nextðÞ;
14: ACount ¼ 0;

Let us describe the adaptive algorithm in more detail
using the NextDes procedure. Suppose the previous mode
was probe. If the number of unmatching elements skipped
was smaller than the threshold value ðDSkipÞ, the previous
mode was incorrect and the algorithm changes to the scan
mode (Line 5). Similarly, if the previous mode was scan and
the number of unmatching elements scanned since the
cursor of the ancestor list was last advanced was larger than

776 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

DSkip, the previous mode was incorrect and the algorithm
changes to the probe mode (Lines 9-11). This mode
switching is illustrated in Fig. 4a.

Since the history-based algorithm maintains only one or
two previous decisions, it has a low misprediction rate
when there are consecutive long unmatching blocks (the
length of each block is larger than the threshold value) or
consecutive short ones (the length of each block is smaller
than the threshold value). The 1-bit scheme used in the
history-based algorithm is lightweight as the bookkeeping
overhead is low. As shown in our experiments, the
1-bit scheme is a good trade-off between the efficiency
and the overhead of the adaptation.

3.2.2 The Look-Ahead-Based Algorithm

The history-based algorithm predicts the execution mode
based on the history and may make incorrect decisions. As
we assume the two lists are static during the join
processing, it is possible to make decisions based on the
look-ahead information.

The state diagram of the look-ahead-based scheme is
shown in Fig. 4b. It decides the execution mode using the
look-ahead operation. We discuss the look-ahead-based
algorithm with the NextDes procedure (Algorithm 3). The
main idea is to look ahead at the element offset by DSkip in
the descendant list and to examine whether the length of
the current unmatching block is larger than DSkip. If so, an
index probe is chosen to skip this unmatching block.
Otherwise, the execution mode should be scan, and the
block is scanned.

Algorithm 3. Procedure NextDes() of Look-ahead-Adaptive

1: if stack:emptyðÞ then

2: if ðdþDSkipÞ:start < a:start then

3: d ¼ ID:SearchLargerða:startÞ; /*DMode ¼ I*/
4: else

5: while d:start < a:start do

6: d ¼ DList:nextðÞ; /*DMode ¼ N*/

7: else

8: d ¼ DList:nextðÞ;
Differently from the history-based algorithm, the look-

ahead-based algorithm always makes a correct decision.
However, each look-ahead operation induces the possible
overhead of scanning one unmatching element. Since an
element in the region encoding uses 16 bytes and is smaller
than an L2 cache line in our experiments, this overhead can
be an L2 cache miss in the worst case. This overhead is
negligible when the total number of elements skipped is
large and can otherwise be considerable.

3.2.3 The Hybrid Algorithm

With the history-based and the look-ahead-based algo-
rithms, we consider if it is possible to decide the execution
mode based on both the history and the look-ahead
information. With the history information, some unneces-
sary look-ahead operations can be eliminated. With the
look-ahead information, some incorrect decisions that
would have been made based solely on the history may
be avoided.

We propose a hybrid algorithm utilizing the history and
the look-ahead information, namely, Hybrid-Adaptive. We
integrate the history-based and the look-ahead-based
adaptation components into the NextDes procedure, as
shown in Algorithm 4. Flag DLook indicates whether the
algorithm applies the look-ahead-based component (Lines 3-
11) or the history-based component (Lines 14-23). The
algorithm starts with a look-ahead operation, that is, DLook
is L, initially. When it finds the execution mode that needs
to be changed (Lines 18 and 23), it performs a look-ahead
operation and decides the next execution mode based on
the look-ahead information. Otherwise, the execution mode
is unchanged. The state diagram of the algorithm is
sketched in Fig. 4c.

Algorithm 4 Procedure NextDes() of Hybrid-Adaptive

1: if stack:emptyðÞ then

2: /*the look-ahead-based component*/

3: if DLook ¼ L then

4: DLook ¼ N;

5: if ðdþDSkipÞ:start < a:start then

6: d ¼ ID:SearchLargerða:startÞ;
7: DMode ¼ I;

8: else

9: while d:start < a:start do

10: d ¼ DList:nextðÞ;
11: DMode ¼ N;

12: else

13: /*the history-based component*/

14: if DMode ¼ I then

15: oldd ¼ d;

16: d ¼ ID:SearchLargerða:startÞ;
17: if ðd� oldd� 1Þ � DSkip then

18: DLook ¼ L, go to Line 3;

19: else

20: d ¼ DList:nextðÞ;
21: DCount ¼ DCountþ 1;

22: if DCount > DSkip then

HE ET AL.: ADAPTIVE INDEX UTILIZATION IN MEMORY-RESIDENT STRUCTURAL JOINS 777

Fig. 4. Execution mode switching in our adaptive schemes. #skip represents the number of unmatching elements that was skipped in the previous

probe and #La represents the number of unmatching elements that may be skipped in the current index probe (the comparison of #La and DSkip is

examined through a look-ahead operation). (a) One-bit history-based. (b) Look-ahead-based. (c) Hybrid.

23: DLook ¼ L, go to Line 3;

24: else

25: d ¼ DList:nextðÞ;
26: ACount ¼ 0;

3.3 The Cost Model

All of our adaptive structural join algorithms need a cost

model to determine the threshold values, ASkip and DSkip.

Furthermore, it is desirable to quantitatively compare the

relative performance of the algorithms without running

them on target machines. Therefore, we developed a cost

model for performance estimation, part of which estimates

ASkip and DSkip.
Let us go through the cost model from the top down. The

total cost of a structural join includes three components: the

cost of scanning the matching elements, the cost of scanning

the unmatching elements, and the cost of index probes. Our

cost metric is the execution time. For a given workload (a

structural join on two element lists), the cost of scanning the

matching elements is fixed among the stack-based algo-

rithms (either the static ones or the adaptive ones), because

their numbers of stack operations and matching elements

scanned are fixed. To compare the relative performance of

these algorithms, we can exclude the fixed cost of scanning

the matching elements and only compare the costs of

scanning the unmatching elements and index probes.
We define variable cost V C to be the total cost of scanning

the unmatching elements and index probes for a given

workload. Define SCAN and SCDN to be the total cost of

scanning the ANElements and DNElements, respectively.

Also, define SCAI and SCDI to be the total cost of index

probes on indexes IA and ID, respectively. Then, the top-

level equation for the variable cost is the following:

V C ¼ SCAN þ SCDN þ SCAI þ SCDI: ð1Þ

The larger V C an algorithm has, the less efficient it is.
To estimate SCAN , SCDN , SCAI , and SCDI , we need

the parameters listed in Table 3. Each cost component in

(1) is computed as the unit cost of an operation

multiplying the number of operations. That is, SCAN ,

SCDN , SCAI , and SCDI are estimated to be ðCAN �NANÞ,
ðCDN �NDNÞ, ðCAI �NAIÞ, and ðCDI �NDIÞ, respectively.

In addition, we can estimate ASkip and DSkip in (2) and

(3), respectively.

ASkip ¼ CAI
CAN

� �
; ð2Þ

DSkip ¼ CDI
CDN

� �
: ð3Þ

We obtain the values of CAN and CDN through calibra-
tion on target machines. The values of CAI and CDI are
estimated using the values of CR and CNR, which are also
obtained through calibration on target machines. The
detailed experimental setup of the calibration is described
in Section 4. In our experiments, the values obtained
through calibration were stable and sufficiently accurate
for our cost model. This accuracy contributes to the
improved performance of our adaptive algorithms.

We now focus on the estimation of CAI and CDI using CR
and CNR. One critical factor for estimating CAI and CDI is
cache reuse among index probes. Note that the index search
keys in a structural join are in ascending order. We describe
cache reuse among the probes with ascending search keys
using a proposition and a corollary. We make an observation
about the proposition, the corollary, and our estimations: If
an index node does not reside in the cache, its descendant
nodes are not likely to reside in the cache either. In addition,
let Pk and Pk0 be the paths accessed by two probes with
search-key values k and k0, respectively; we denote
LP ðPk; Pk0 Þ to be the longest common prefix of Pk and Pk0 .

Proposition 1. Let Pk, Pk0 , and Pk00 be the paths accessed by three
index probes with search-key values k, k0, and k00, respectively.
If k � k0 � k00, then LP ðPk00 ; PkÞ is a prefix of LP ðPk00 ; Pk0 Þ.

Proof. Suppose n1n2 . . .nh are the index nodes contained in
Pk from the top down, where k is the search-key value
and h is the height of the index tree. We define a key
sequence, a1a2 . . . ah�1, for each probe so that ai ð1 � i <
hÞ is the maximum of the key values that are less than k
in the nonleaf node ni.

Given any two probes with search-key values kx and ky,
where ky � kx and their key sequences are a1a2 . . . ah�1

and b1b2 . . . bh�1, respectively, if ai ¼ bi ð1 � i < m;m �
ðh� 1ÞÞ and ai 6¼ bi ði � mÞ, we have LP ðPkx ; PkyÞ ¼
n1n2 . . .nm and vice versa. As a special case, when
m ¼ 1, LP ðPkx ; PkyÞ ¼ n1, that is, Pkx and Pky only have
the root node in common.

778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

TABLE 3
Input Parameters for the Cost Model

Let Pk, Pk0 , and Pk00 be n1n2 . . .nh, n01n
0
2 . . .n0h, and

n001n
00
2 . . .n00h, respectively. Suppose

a1a2 . . . ah�1; a
0
1a
0
2 . . . a0h�1; and a001a

00
2 . . . a00h�1

are the key sequences of the probes with search-key
values k, k0, and k00, respectively. Since k � k0 � k00, we
have ai � a0i � a00i ð1 � i < hÞ.

We give the relationship ofLP ðPk00 ; PkÞandLP ðPk00 ; Pk0 Þ
according to the differences among the key sequences:

1. ai ¼ a0i ð1 � i < hÞ indicates Pk ¼ Pk0 . We have
LP ðPk00 ; PkÞ ¼ LP ðPk00 ; Pk0 Þ.

2. ai ¼ a0i ð1 � i < m;m � ðh� 1ÞÞ and

ai 6¼ a0i ði � mÞ:

We have two cases based on the differences of the
key sequences of the probes with search-key
values k0 and k00:

a. a0i ¼ a00i ð1 � i < hÞ indicates Pk0 ¼ Pk00 . We
have LP ðPk00 ; Pk0 Þ ¼ Pk00 . Hence, LP ðPk00 ; PkÞ
is a prefix of LP ðPk00 ; Pk0 Þ.

b. a0i ¼ a00i ð1 � i < m0;m0 � ðh� 1ÞÞ and

a0i 6¼ a00i ði � m0Þ:

We have LP ðPk0 ; Pk00 Þ ¼ n001 . . .n00m0 . Similarly,
we have ai ¼ a00i ð1 � i < m00;m00 � ðh� 1ÞÞ
and ai 6¼ a00i ði � m00Þ and obtain

LP ðPk; Pk00 Þ ¼ n001 . . .n00m00 :

Since

ai � a0i � a00i ð1 � i < hÞ;

we have m00 � m0 and LP ðPk00 ; PkÞ is a prefix
of LP ðPk00 ; Pk0 Þ.

In all cases, we have that LP ðPk00 ; PkÞ is a prefix of
LP ðPk00 ; Pk0 Þ. tu

Corollary 1. Let Pki ð1 � i � n; n � 3Þ be the path accessed by a
probe with search-key value ki. If k1 � k2 . . . � kn, then
LP ðPkn ; PkjÞ is a prefix of LP ðPkn ; Pkn�1

Þ, 1 � j � n� 2.

Proof. Since kj � kn�1 � kn ð1 � j � n� 2Þ, LP ðPkn ; PkjÞ is a
prefix of LP ðPkn ; Pkn�1

Þ according to Proposition 1. tu

According to Corollary 1, we only need to consider the
cache reuse between two consecutive probes in a structural
join. Given two consecutive index probes pi and piþ1 in a
structural join, piþ1 may access an index node in the path of
pi (the node is likely to reside in the cache) or may access an
index node that is not in the path of pi (the node does not
reside in the cache). For simplicity, we assume that the
probability of accessing an index node in the path of pi is
equal to that of accessing an index node that is not in the
path of pi, that is, the probability is 1

2 .
The estimation of the unit cost of one probe on a

CSB+-Tree index with a height of h is shown in (4). CIðhÞ is
either CAI or CDI in Table 3. Since the root node is likely to
reside in the cache, we estimate CIðhÞ to be the total cost of
accessing the root node CR and accessing the lower levels
CLðh� 1Þ. The partial cost CLðhÞ is estimated using (5). If a
node at height h resides in the cache, the cost of accessing

this node is CR and we recursively estimate the cost of
accessing the lower levels of the index. Otherwise, this node
and the nodes at its lower levels accessed by the probe do
not reside in the cache and the cost of accessing these nodes
is hCNR.

CIðhÞ ¼ CR þ CLðh� 1Þ; ð4Þ

CLðhÞ ¼
1
2 ðCLðh� 1Þ þ CRÞ þ 1

2hCNR; h � 1
0; h ¼ 0:

�
ð5Þ

In summary, our cost model estimates the cost of index
probes with sorted keys considering the cache reuse among
these probes. This consideration improves the accuracy of
our estimation. Specifically, without this consideration, the
threshold values obtained by the random probe model [20]
are larger than those by our model. These larger threshold
values may result in missing the opportunities of skipping
some unmatching blocks and, in turn, reduce the perfor-
mance improvement of our adaptive algorithms, as we
observed in our experiments.

3.4 Algorithms for Holistic Joins

After presenting the adaptive schemes on binary joins, we
apply our adaptive schemes to two holistic joins, PathStack
[10] and Twig2Stack [12]. Since Twig2Stack subsumes
TwigStack [10], we focus our discussion on Twig2Stack.
PathStack is optimal for path queries and Twig2Stack is the
state-of-the-art holistic algorithm for twig queries. Since both
algorithms originally scan all involved element lists and do
not utilize tree indexes, we first need to study how to use an
index in these algorithms and then design adaptive index
utilization schemes for them. We only present the adaptive
algorithms with the look-ahead-based scheme. Similarly, we
can apply the other two adaptive schemes to these join
algorithms.

3.4.1 Adaptive Pathstack

PathStack is an efficient holistic algorithm for the evaluation
of a path query. In the presence of tree indexes on element
lists, we can skip the unmatching elements. The basic idea
of the skipping process is illustrated in Fig. 5a. We denote Q
as the set of element lists involved in the query. Given a
path query q1==q2 . . . ==qn, Q consists of n element lists
qi ð1 � i � nÞ. If the stack of the element list qk ðk 6¼ nÞ is
empty, unmatching elements in the descendant element
lists of qk (that is, qkþ1; qkþ2; . . . ; qn) can be skipped.

HE ET AL.: ADAPTIVE INDEX UTILIZATION IN MEMORY-RESIDENT STRUCTURAL JOINS 779

Fig. 5. Skipping in PathStack and Twig2Stack. The top-down stack of qk
is empty. Unmatching elements in the element lists qkþ1; qkþ2; . . . , and qn
can be skipped. (a) PathStack. (b) Twig2Stack.

Algorithm 5 describes the modified PathStack algorithm
with the look-ahead-based scheme. It maintains an
in-memory stack Sqi for each element list qi which stores
potential results for the join. Differently from the stack entry
of the binary structural join algorithm, an entry in Sqi
consists of a tuple < e; p > , where e is an element from qi
and p is the pointer to an entry in Sqi�1

(p ¼ nil if i ¼ 0).

Algorithm 5. LA_PathStack: the modified PathStack [10] with

the look-ahead-based scheme

1: while :endðQÞ do

2: qmin ¼ getMinSourceðQÞ; /*the element list with the

minimum start value*/

3: oldc ¼ cqmin ;

4: key ¼ �1;

5: for i ¼ 1; i � n; iþþ do

6: while :Sqi :emptyðÞ and Sqi :topEndðÞ < cqmin :start

do

7: Sqi :popðÞ;
8: if Sqi :emptyðÞ and i < min then

9: key ¼ cqi :start; /*key 6¼ �1 indicates some

unmatching elements can be skipped.*/

10: if key 6¼ �1 and i 6¼ n then

11: if ðcqiþ1
þDSkipqiþ1

Þ:start < key then

12: cqiþ1
¼ Iqiþ1

:SearchLargerðkeyÞ; /*Probe

mode on qiþ1*/

13: else

14: while cqiþ1
:start < key do

15: cqiþ1
¼ qiþ1:nextðÞ; /*Scan mode on qiþ1*/

16: if key ¼ �1 then

17: Sqmin :pushðcqmin ; pointer to Sqmin�1
:topðÞÞ;

18: if min ¼ n then

19: showSolutionsðSqmin ; 1Þ;
20: Sqmin :popðÞ;
21: if oldc ¼ cqmin then

22: cqmin ¼ qmin:nextðÞ;
Procedure: endðQÞ
1: cq 6¼ q:end, 8q 2 Q;

Procedure: getMinSourceðQÞ
1: return qmin so that cqmin :start is minimal among cq,
8q 2 Q;

For each iteration (Lines 2-22), the algorithm starts with
the element list whose cursor has the minimum start value
among the n element lists. Suppose this element list is qmin.
If there exists an element list, qk, in the path from q1 to qmin
whose stack becomes empty, we may skip the unmatching
elements in qk’s descendant lists. The decision on the
execution mode of each element list is according to our
look-ahead-based algorithm (Lines 11-15). Note that the
threshold value DSkipqi is the threshold value for qi, which
is estimated using our model. When min ¼ n, the algorithm
outputs the join result using Procedure showSolutions [10].

3.4.2 Adaptive Twig2Stack

Twig2Stack [12] utilizes a hybrid approach combining both
top-down and bottom-up evaluation processes. Since both
processes use stacks, we call these stacks top-down stacks and
bottom-up stacks, correspondingly. The top-down evaluation
is similar to PathStack except that its evaluation is
performed on a subtree of element lists as opposed to a
single path in PathStack. In the bottom-up evaluation,

Twig2Stack pushes the partial results into bottom-up stacks
and enumerates the final results on these stacks. This
bottom-up process ensures that the partial results in
bottom-up stacks match part of the twig query.

We apply our adaptive schemes to the top-down
evaluation of Twig2Stack. The basic idea of skipping the
unmatching elements is illustrated in Fig. 5b. For each
label l in the twig query and its element list ql, we refer the
element lists of l’s child and the parent labels in the twig
query as ql’s child and parent element lists, respectively. If
the top-down stack of the element list qk is empty,
unmatching elements in the descendant element lists of qk
can be skipped in the depth-first order.

The modified top-down evaluation of Twig2Stack with
the look-ahead-based scheme is shown in Algorithm 6. In
each iteration, we call Procedure getMinSourceðQÞ to
determine the element list qmin with the smallest start
value. Based on this start value, we start to remove
elements from the top-down stacks. The removed elements
are pushed into the bottom-up stacks for further processing
[12]. This removal is performed in two phases. In Phase 1
(Lines 6-12), the algorithm handles the path from the root
element list (the element list corresponding to the root label
of the twig query) to qmin. Meanwhile, it determines the
element list with an empty top-down stack. If multiple
empty top-down stacks are found, it uses the one which is
nearest to the root element list. In Phase 2 (Lines 14-21), if an
element list with an empty top-down stack is found in
Phase 1 (denoted as emptyList), it calls Procedure
skipSubtree to skip the unmatching elements in the
descendant element lists of emptyList according to the
look-ahead-based scheme. Otherwise, it performs a depth-
first search (DFS) traversal on the subtree rooted at qmin.
During the traversal, elements in the top-down stack are
removed.

Algorithm 6. LA Twig2Stack: the modified top-down

evaluation of Twig2Stack [12] with the look-ahead-based

scheme
1: while :endðQÞ do

2: qmin ¼ getMinSourceðQÞ; /*Procedures endðQÞ and

getMinSourceðQÞ are shown in Algorithm 5.*/

3: oldc ¼ cqmin ;

4: key ¼ �1, emptyList ¼ nil;
5: /*Phase 1*/

6: q ¼ qmin;

7: while q 6¼ nil do

8: while :Sq:emptyðÞ and Sq:topEndðÞ < cqmin :start

do

9: Sq:popðÞ; /*The popped elements are pushed

into the bottom-up stacks for further

processing.*/

10: if Sq:emptyðÞ then

11: emptyList ¼ q;
12: q ¼ q:parent;
13: /*Phase 2*/

14: if emptyList ¼ nil then

15: for each descendant element list of qmin, q,

accessed in the DFS traversal on the subtree

rooted at qmin do

780 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

16: while :Sq:emptyðÞ and

Sq:topEndðÞ < cqmin :start do

17: Sq:popðÞ;
18: else

19: skipSubtreeðemptyListÞ;
20: if oldc ¼ cqmin then

21: cqmin ¼ qmin:nextðÞ;
Procedure: skipSubtreeðemptyListÞ
1: for each descendant element list of emptyList, q,

accessed in the DFS traversal on the subtree rooted at
emptyList do

2: while :Sq:emptyðÞ and Sq:topEndðÞ < cqmin :start do

3: Sq:popðÞ;
4: key ¼ cq:parent:start;
5: if ðcq þDSkipqÞ:start < key then

6: cq ¼ Iq:SearchLargerðkeyÞ; /*Probe mode on q*/

7: else

8: while cq:start < key do

9: cq ¼ q:nextðÞ; /*Scan mode on q*/

3.5 Discussion

Our adaptive structural joins are proposed to improve the
performance of memory-resident XML query processing.
The strengths of our approach lie in its simplicity and its
capability of deciding the execution modes as the join
proceeds. This adaptive approach does not assume a priori
information of join selectivity or data distribution. In
addition, adding these adaptation mechanisms to existing
static algorithms requires little modification.

Following the discussion by Babu and Bizarro on the
performance issues of adaptive query processing [7], we
discuss the following performance issues regarding our
adaptations.

Quality of adaptation. All three adaptive algorithms can
quickly detect the changes in the length of unmatching
blocks and efficiently switch to the other execution mode.
Compared on their ability to find a correct execution mode,
the look-ahead-based algorithm is the best, the hybrid
algorithm is the second, and the history-based algorithm is
the last.

Runtime overhead. Our adaptive algorithms are light-
weight. That is, the cost of switching between the
execution modes is low and our algorithms do not need
to reexecute an operation on a misprediction. Additionally,
the overhead for the bookkeeping information in our
adaptive schemes is low.

Thrashing. Thrashing in the execution modes (that is,
frequently switching between scans and probes) is incurred
with a high rate of changes in the lengths of unmatching

blocks. The look-ahead-based algorithm can always detect
the changes in the length of unmatching blocks through the
look-ahead operation and is insensitive to thrashing. In
contrast, thrashing makes the misprediction rate of the
history-based algorithm high since it knows nothing about
the future. The hybrid algorithm eases the thrashing effect
on the history-based algorithm by utilizing the look-ahead
information when detecting the need for changing the
execution mode.

Finally, we note that the misprediction rate in our
adaptive algorithms cannot fully determine the perfor-
mance of our algorithms due to the different performance
gains (respectively, penalties) of correct (respectively,
incorrect) decisions. That is, a low misprediction rate does
not mean a high performance of our adaptive algorithm.
Therefore, we choose the variable cost as an indicator for
the quality of our adaptation. The lower the variable cost,
the better the quality of our adaptation.

4 EXPERIMENTAL EVALUATION

In this section, we present a set of evaluation results for our
proposed adaptive algorithms on binary and holistic
structural joins. The measurement results on synthetic and
real-world data sets are to demonstrate the end-to-end
performance of our algorithms.

To compare the measurement results of adaptive algo-
rithms with static algorithms, we use the elapsed time as the
performance metric and also examine the speedup (the ratio
of elapsed time) between two algorithms. In addition, we
have compared the measurement results with the variable
costs from our model. To make this comparison clearer, we
normalize the performance result (either the elapsed time or
the variable cost) of an algorithm by dividing it by the
performance result of the corresponding static SCAN
algorithm. This normalization is fair because the variable
costs for a static SCAN algorithm are the same for a given
join selectivity on a fixed hardware platform and the
measurement results for a static SCAN algorithm are also
nearly constant.

4.1 Experimental Setup

All experiments were run on two machines, P3 and P4.
Some features of these machines are listed in Table 4. We
define the cache configuration as a three-element tuple
< C;B;A > , where C is the cache capacity in bytes, B is
the cache line size in bytes, and A is the set associativity.
Both the L1 and L2 caches are nonblocking and the L2 cache
is unified.

HE ET AL.: ADAPTIVE INDEX UTILIZATION IN MEMORY-RESIDENT STRUCTURAL JOINS 781

TABLE 4
Machine Characteristics

In our experiments, we first parsed the XML documents
into a number of element lists using a Simple API for XML
(SAX) parser [29]. Next, we constructed a CSB+-Tree index
for each element list. The join algorithms were then
executed on these element lists and CSB+-Tree indexes
and output the number of join results. The cost of
materializing join results was not included in our measure-
ments as it was the same among all join algorithms.

We have implemented the static algorithms, including the
ones with scan and index modes (denoted as SCAN and INX,
respectively), and our adaptive algorithms, including 1bit-
Adaptive (1bit), Look-ahead-Adaptive (LA), and Hybrid-Adaptive
(H). These algorithms were implemented in C++ and were
compiled using g++ 3.2.2 with optimization flags (O3,
foptimize-sibling-calls, and finline-functions). As we studied
memory-resident structural joins, the element lists and the
CSB+-Tree indexes in all experiments were always memory-
resident and the memory usage never exceeded 80 percent.

Since we consider the main-memory performance of the
join algorithms, we investigate whether software prefetch-
ing can improve the overall performance. The Intel platform
provides two kinds of software prefetching instructions [1],
including 1) prefetchnta, the nontemporal instruction that
fetches the data into one way of the L2 cache to minimize
the cache pollution, and 2) prefetcht0/prefetcht1/prefetcht2, the
temporal instructions that fetch data into the L2 cache. Since
the element lists were scanned once in structural joins, we
used the nontemporal instruction prefetchnta. Additionally,
we applied the temporal instruction prefetcht2 to index
probes using an existing prefetching scheme [11]. Note that
hardware prefetching is enabled on P4. Since software
prefetching had little performance impact on P4, we do not
report the results of software prefetching on P4.

We used a hardware profiling tool, Performance
Counter Library (PCL) [8], to measure the unit costs in
our model. The unit costs calibrated from P3 and P4 are
shown in Table 5. The values of CAN and CDN were
obtained by running Algorithm 1 in the scan mode, that is,
the PROBE_MODE is off. The value of CR (respectively,
CNR) was measured by simulating index probes with
ascending search keys when their paths resided (respe-
cively, did not reside) in the cache. The values in the row
of P3_sp were calibrated on P3 with software prefetching.
The values of CR and CNR of P3_sp were larger than those
of P3. This is because the tree index with the prefetching
mechanism has a larger node size (the node size was eight
cache lines for P3_sp).

We have conducted experiments with both synthetic and
real-world data sets. We used two real-world data sets
obtained from the XML data repository [36] (Digital
Bibliography Library Project (DBLP) and the Protein
Sequence Database), a benchmark data set, namely, XMark

[35], and our own synthetic data sets. We mainly present
our results on the DBLP and XMark data sets as the results
on the Protein sequence database are very similar to those
on DBLP.

We first chose a query DQ0 on DBLP, inproceedings[@key
like “%year”]//author, to verify the effectiveness of our
adaptive algorithms when the join selectivity changed.
Table 6a shows the descendant join selectivity (denoted as
author sel.) when the year value in the predicate changes
from 88 to 03. Since the ancestor and the descendant join
selectivities have similar performance effects, we fixed the
ancestor join selectivity to be 100 percent and varied the
descendant join selectivity. Through carefully choosing the
disjunction of the predicates [@key like “%year”] from
Table 6a, we varied the descendant join selectivity into
two ranges: 1) low selectivity: 1 percent to 5 percent and
2) high selectivity: 10 percent to 50 percent. Table 6b shows
the number of elements in the ancestor list for these ranges
of join selectivity. The number of elements in the descen-
dant list of DQ0 is always 1,075,100.

We then chose four pairs of queries to examine the effect
of different distributions of matching elements on our
adaptive algorithms. Each pair of queries, one for DBLP
ðDQiÞ and the other for XMark ðXQiÞ, has a similar
descendant join selectivity. The statistics of these four pairs
of queries are shown in Table 7. The number in “()”
following the tag name is the number of elements in
thousands in the list. The performance comparison of the

782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

TABLE 5
Unit Costs in Our Model (Cycles)

TABLE 6
Characteristics of DQ0 on DBLP: (a) Descendant Join

Selectivity with Y ear Varied and (b) the Number of
Elements in the Ancestor List

TABLE 7
Queries on DBLP and XMark

Note: p1 ¼ @key like “%90”, p2 ¼ reserve � 500 and reserve < 1; 000,
p3 ¼ @key like “%88” or @key like “%03,” p4 ¼ reserve < 500, p5 ¼ @key
like “%88” or @key like “%93” or @key like “%94” or @key like “%95.”

static algorithms for DQ2 and DQ3 on DBLP and XQ2 and
XQ3 on XMark is shown in Fig. 1.

The path queries and twig queries on DBLP and XMark
are shown in Table 8. These queries are selected with
different combinations of total sizes of element lists and join
selectivities. The twig queries are the same as those used in
previous studies on twig joins [12].

In addition to these third-party data sets, we generated
our own synthetic data sets for better control on the join
selectivity and the distribution of the matching elements.
We generated the data set RANDOM, which consists of
random trees generated using three parameters: depth,
fanout, and the number of labels. For simplicity, we set the
maximum depth and fanout to be the number of labels. The
node labels in the trees were uniformly distributed. Since
we obtained similar results from data sets with different
numbers of labels and numbers of nodes, we present the
results for the data set with five million nodes and six
different labels: A0; A1; . . . ; A5. The queries used on the
synthetic data sets are shown in Table 9. Among twig
queries SYN-Ti (1 � i � 4), a query with a larger i has a
more complex twig structure (for example, more element
lists and more branches involved in the twig query). For
these queries, we randomly removed elements from the
element list to obtain a certain join selectivity. Since all of
these queries have a common join A0==A1, for simplicity,
we fixed the join selectivity on A0 to be 100 percent and
varied the join selectivity on A1.

We further evaluated our adaptive schemes with data
sets of different distributions. In particular, we generated
these data sets in two steps. First, we generated a
RANDOM data set. Second, we removed the elements
from A0 such that unmatching elements of A1 in the join
A0==A1 conform to a certain distribution. Figs. 6a, 6b, 6c,
and 6d show the four distributions used in our experi-
ments. Suppose the descendant list A1 has L unmatching

elements and these unmatching elements are distributed

into BLK blocks ðBLK � LÞ. Thus, we generated the

following four data sets:

. BEST. This data set evaluates the advantage of our
adaptive algorithms over the static algorithms. The
length of the first unmatching block is ðL�BLK � 1Þ
(INX is likely to be efficient on this unmatching block)
and the remaining blocks consist of one element each
(SCAN is efficient on these unmatching blocks). All
of our adaptive algorithms choose the probe mode
for the first or second unmatching block. The
remaining blocks are scanned.

. 1bit_WORST. This data set tests the thrashing in the
length of the unmatching blocks over our adaptive
algorithms. In particular, the history-based algo-
rithm makes a wrong decision on each unmatching
block. That is, it chooses a probe for an unmatching
block consisting of one element and chooses scans
for an unmatching block with a length ðDSkipþ 1Þ.

. LA_WORST. This data set tests the overhead of look-
ahead operations. Suppose CL is the average cost of
one cache miss. Thus, CL=CDN is the number of
unmatching elements whose total scanning cost
equals to one cache miss stall. In our experiments,
CL is set to the cache stall of one L2 cache miss. The
length of unmatching blocks is ðDSkipþ CL=CDNÞ
such that the look-ahead-based algorithm accesses
one extra unmatching element in each look-ahead
operation. This access incurs one cache miss in the
worst case.

. H_WORST. This data set tests the overhead of both
look-ahead operations and incorrect decisions made
based on history (due to thrashing in the length of
the unmatching blocks). In particular, the hybrid
algorithm chooses a probe through a look-ahead
operation for unmatching block with a length
ðDSkipþ CL=CDNÞ and chooses a probe on an
unmatching block consisting of one element.

In our experiments, we varied both L and BLK. Specifi-

cally, for each L value, we varied the BLK value to evaluate

the effect of BLK. The queries on these data sets are the

same as the ones on the data set RANDOM (Table 9).

HE ET AL.: ADAPTIVE INDEX UTILIZATION IN MEMORY-RESIDENT STRUCTURAL JOINS 783

TABLE 8
Path Queries and Twig Queries on DBLP and XMark

TABLE 9
Path Queries and Twig Queries on Synthetic Data Sets

Fig. 6. Different distributions of unmatching elements in A1 in the join

A0==A1. (a) BEST. (b) 1bit_WORST. (c) LA_WORST.(d) H_WORST.

4.2 Evaluation on Binary Joins

4.2.1 Third-Party Data Sets

Once of our adaptive algorithms with our model and those

with the random probe model [20] to examine the impact of

modeling the sortedness of index probes. We varied the join

selectivity of DQ0 on DBLP. Fig. 7 shows the ratio of the

execution time of the adaptive algorithms with the random

probe model and those with our model on P4. We do not

show the ratios on P3 since the results on P3 are similar to

those on P4. The DSkip value was 21 and 35 by our model

and by the random probe model, respectively. The adaptive

algorithms with our model are considerably faster than the

ones with the random probe model. When the join selectivity

is low, the number of index probes in our adaptive

algorithms is large. As a result, there is a large amount of

cache reuse between these ascending index probes. Our

model improves the adaptation much better than the

random probe model. In comparison, when the join

selectivity is high, there are few index probes in the adaptive

algorithms and the performance difference between the two

models is small.
We then evaluated our adaptive algorithms on binary

joins with the join selectivity of DQ0 on DBLP varied. Fig. 8

shows the elapsed time of the static and the adaptive
algorithms on P3 and P4 with the join selectivities between
1 percent and 5 percent on the left and between 10 percent
and 50 percent on the right. These measurements were
obtained without software prefetching on either platform.
Since the performance trend on P3 is similar to that on P4, we
mainly present the results on P4 in the remainder of this
paper.

Our algorithms improve the join performance on both
platforms regardless of the join selectivity. When the join
selectivity is low, our adaptive algorithms consistently
outperform the best static ones with an average speedup of
1.8. In particular, our adaptive algorithms have an average
speedup of 3.1 and 1.9 over the SCAN (Stack-Tree) and INX
(Anc_Des_B+) algorithms, respectively. This performance
improvement is mainly because our adaptive algorithms
avoid most of the unworthy index probes. When the join
selectivity is high, our adaptive algorithms (except for the
look-ahead-based algorithm) consistently outperform the
best static ones with an average speedup of 1.35. The
performance improvement is because our adaptive algo-
rithms can utilize index probes to skip large unmatching
blocks even when the overall join selectivity is high. Note
that the join selectivity alone does not determine the relative
performance of the two static algorithms, as shown on the
left of Fig. 8. In contrast, our adaptive algorithms, which do
not require knowledge of the join selectivity, consistently
achieve better performance than the best static ones.

To further investigate the performance improvement of
our adaptive algorithms, we examine the statistics on
probes and scans of static algorithms. We choose the DQ0
with the descendant join selectivity of 3 percent and the
other with 30 percent as examples, denoted as DQ0L and
DQ0H . The numbers of probes in DQ0L and DQ0H are
around 12,100 and 50,500, respectively. The INX algorithm
overuses probes for DQ0H and has a performance penalty
because the number of unmatching elements in DQ0H is
less than that in DQ0L. This causes a performance penalty.

784 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

Fig. 7. Ratio of the execution time of the adaptive algorithms with the

random probe model and those with our model on P4. A ratio larger than

one means that the adaptive algorithms with our model are faster than

those with the random probe model. (a) Low DSel. (b) High DSel.

Fig. 8. Binary joins: DQ0 execution time on P3 and P4 with different descendant join selectivities. (a) P3. (b) P4.

None of the static algorithms is optimal for either query:
1) Using INX for DQ0L, the number of probes skipping
fewer than DSkip unmatching elements is about 10,600
(88.0 percent of the total number of probes). The history-
based and hybrid algorithms eliminate around 80 percent of
these unworthy probes. 2) Using SCAN for DQ0H , the total
number of elements in the unmatching blocks with a size
larger than DSkip is 329,000 (53.8 percent of the total
number of unmatching elements). The history-based and
hybrid algorithms use index probes to skip 95.4 percent of
these unmatching elements.

Comparing the performance of individual adaptive
algorithms, we find that all three algorithms have similar
performance when the join selectivity is low. However, the
performance of the look-ahead-based algorithm is similar to
that of the best static one or, sometimes, slightly worse
when the join selectivity is high. This downside of the look-
ahead-based algorithm is due to the increased look-ahead
overhead when the join selectivity is high. As expected, the
hybrid algorithm is consistently close to the best of the
history-based and the look-ahead-based algorithms.

Additionally, we studied the performance impact of
software prefetching on both P3 and P4. Software prefetch-
ing on P4 improves the performance of both algorithms
slightly or even causes performance degradation. On P3,
software prefetching greatly improves the performance of
SCAN and slightly improves the performance of INX and
our adaptive algorithms. The performance comparison
among the static and adaptive algorithms of P3 with
software prefetching is similar to that of P4 without
software prefetching. This indicates that software prefetch-
ing with careful tuning can achieve a similar performance
improvement to hardware prefetching. In the remainder of
this section, we only focus on the results on P4 without
software prefetching.

We further examine the performance comparison of the
four pairs of queries on DBLP and XMark in Fig. 9. The
distributions of the matching elements in the data sets
contribute to the performance difference of the algorithms
on them. For instance, SCAN outperforms INX in DQ2 and
DQ3 but underperforms in XQ2 and XQ3. Regardless of the

join selectivity and the distribution in the two data sets, our

adaptive algorithms have performance better than or

similar to the best static algorithm. The average speedup

over the best static algorithm with our adaptive algorithms

is 1.45 and 1.35 on DBLP and XMark, respectively.

4.2.2 Synthetic Data Sets

Fig. 10 shows the execution time of our algorithms on

RANDOM. Regardless of join selectivities, the performance

of our adaptive algorithms is always similar to or better

than that of the best static algorithm.
Finally, we evaluated our binary joins on the synthetic

data sets with different distributions. Figs. 11a, 11b, 11c, and

11d show the normalized execution time and variable cost

of our algorithms on synthetic data sets with different

distributions. These results were obtained when the

descendant join selectivity was 3 percent and similar results

were obtained when the descendant join selectivity was

varied.
We summarize our findings on Fig. 11 on five aspects.

First, the normalized costs on all data sets increase as the

BLK value increases. This is because the number of probes

becomes larger and the advantage of INX and our adaptive

algorithms over SCAN becomes smaller.
Second, the performance comparison between the static

schemes depends on both the join selectivity and the

distribution of unmatching elements. Specifically, given a

fixed join selectivity, the performance of INX varies with the

distribution of unmatching elements. For example, given a

join with a join selectivity of 3 percent, INX is over six times

faster than SCAN under the distribution 1bit_WORST,

whereas INX is 20 percent slower than SCAN under the

uniform distribution.
Third, our adaptive algorithms outperform the static

algorithms on these data sets. In particular, the hybrid

scheme is nearly three times faster than the best static

algorithm on BEST.
Fourth, among the three adaptive schemes, the hybrid

scheme has a good and robust performance, which is

always similar to or better than the best performance of the

history-based and the look-ahead-based schemes. On data

sets BEST, 1bit_WORST, and LA_WORST, the hybrid

scheme is the best among the static and the adaptive

algorithms and it is second (slightly slower than the look-

ahead-based algorithm) on H_WORST.
Finally, our cost model accurately predicts the relative

performance of algorithms. For example, the model correctly

predicts the best algorithm on each data set.

HE ET AL.: ADAPTIVE INDEX UTILIZATION IN MEMORY-RESIDENT STRUCTURAL JOINS 785

Fig. 9. Binary joins: the execution time on DBLP and XMark on P4.

Fig. 10. Binary joins: execution time on RANDOM on P4. (a) Low DSel. (b) High DSel.

4.3 Evaluation on Path Queries

After studying the binary structural join, we evaluated our
adaptive algorithms on path queries. Fig. 12 shows the
performance comparison of our algorithms on the path
queries on DBLP and XMark. The history-based and the
look-ahead-based schemes have similar performance on
these queries. The hybrid scheme is the best among all of
the algorithms, which has an average speedup of 1.2 and 1.3
over the best static algorithm on DBLP and XMark,
respectively.

Fig. 13 shows the performance comparison of our
algorithms on the data set RANDOM with the length of
the path query varied. When the descendant join selectivity
is low (3 percent), the gap between the performance of the
SCAN and the INX schemes increases as the length of the
path query increases. In contrast, when the descendant join
selectivity is high (30 percent), this performance gap
becomes smaller as the length of the path query increases.
The complexity of a path query increases the difficulty in
determining the correct static algorithm on the join.

Our adaptive algorithms greatly improve the perfor-
mance of holistic structural joins on path queries. Among

them, the hybrid approach provides a good and robust

performance. It is 15 percent faster than the best static

algorithm when the join selectivity is low and has an

average speedup of 1.9 over the best static algorithm when

the join selectivity is high. The performance improvement is

mainly due to the elimination of the unnecessary index

probes on all lists.
Fig. 14 shows the normalized execution time and

variable cost of PathStack on synthetic data sets with

different distributions. We present the results for the path

786 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

Fig. 11. Normalized execution time and variable cost of binary joins on P4. (a) BEST. (b) 1bit_WORST. (c) LA_WORST. (d) H_WORST.

Fig. 12. Execution time of PathStack on P4: (a) DBLP and (b) XMark.

Fig. 13. Execution time of PathStack on P4: A1==A2 . . . ==An on the data set RANDOM. (a) DSel: ¼ 3%. (b) DSel: ¼ 30%.

Fig. 14. PathStack: normalized execution time and variable cost on P4

ðDSel: ¼ 3%Þ.

query ==A0==A1==A2 only, because we obtained similar
results for other path queries. Regardless of the data
distributions, our adaptive algorithms outperform the static
algorithms. The hybrid approach is typically a winner
among the three adaptive algorithms. Additionally, our cost
model is accurate in predicting the relative performance of
the static and adaptive algorithms.

4.4 Evaluation on Twig Queries

After studying the path queries, we evaluated our adaptive
algorithms on twig queries. Fig. 15 shows the performance
comparison of our algorithms on the twig queries on DBLP
and XMark. The history-based and the look-ahead-based
schemes have similar performance on these twig queries.
The hybrid scheme is the best among all the algorithms,
which has an average speedup of 1.3 and 1.4 over the best
static algorithm for DBLP and XMark, respectively.

Fig. 16 shows the performance comparison of our
algorithms on the data set RANDOM. One observation is
that INX is preferred over SCAN as the twig query becomes
more complex. This is mainly because the condition for
being a matching element is more stringent and more
unmatching elements can be skipped as the query becomes
more complex. Regardless of the complexity of the twig
query, our adaptive algorithms consistently outperform the
static algorithms.

Fig. 17 shows the normalized execution time and
variable cost of Twig2Stack on synthetic data sets with
different distributions. Similarly to the results on path
queries, our adaptive algorithms outperform the static
algorithms on the data sets with different distributions.
Additionally, our cost model accurately predicts the relative
performance of the static and adaptive algorithms.

4.5 Summary

We have studied the performance of our adaptive algorithms
in comparison with the state-of-the-art static algorithms for
binary structural joins [2], [15], linear path queries [10], and

twig queries [12]. Our measurement results show that our
adaptive algorithms consistently achieve good performance
regardless of changes in the join selectivity and data
distribution. The speedup of our adaptive algorithms over
the best static algorithm for a given workload is up to three
times. Additionally, the hybrid adaptive algorithm usually
outperforms the 1-bit-history and the look-ahead ones.

The success of our adaptation schemes is mainly due to
our accurate estimation of the access costs in the structural
join. Specifically, our model accurately estimates the
number of elements to skip to make an index probe cost-
effective at every step of matching. This estimation helps
the history-based branch prediction, the look-ahead-based
algorithm, and the hybrid algorithm to make correct
decisions most of the time. Consequently, the adaptive
algorithms achieve a good performance consistently with-
out the knowledge of the join selectivity or the data
distribution.

5 CONCLUSION

We have investigated the adaptive index utilization in
structural joins and found that index utilization is beneficial
only under certain join selectivity and distribution of
matching elements. To address this problem, we propose
adaptive algorithms for index utilization in memory-
resident structural joins and develop a cost model to
facilitate the decision making for the adaptation. We have
experimentally evaluated our adaptive structural joins with
synthetic data sets, as well as real-world data sets. Our
experimental results indicate that our adaptive algorithms
improve the performance of memory-resident structural
joins without 1) a priori knowledge of the join selectivity
and data distribution or 2) human intervention.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their

comments on the earlier versions of the draft. This work

was supported by Grants DAG05/06.EG11, HKUST6263/

04E, and 617206, all from the Hong Kong Research Grants

Council.

REFERENCES

[1] IA-32 Intel Architecture Optimization Reference Manual, ftp://
download.intel.com/design/Pentium4/manuals/24896611.pdf,
2006.

[2] S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, D. Srivastava, and
Y. Wu, “Structural Joins: A Primitive for Efficient XML Query
Pattern Matching,” Proc. 18th Int’l Conf. Data Eng. (ICDE ’02), 2002.

HE ET AL.: ADAPTIVE INDEX UTILIZATION IN MEMORY-RESIDENT STRUCTURAL JOINS 787

Fig. 15. Execution time of Twig2Stack on P4: (a) DBLP and (b) XMark.

Fig. 16. Execution time of Twig2Stack on P4: twig queries of different

complexities on RANDOM. (a) DSel: ¼ 3%. (b) DSel: ¼ 30%.

Fig. 17. Twig2Stack: normalized execution time and variable cost of

SYN-T1 on P4 ðDSel: ¼ 3%Þ.

[3] G. Antoshenkov, “Query Processing in DEC Rdb: Major Issues
and Future Challenges,” IEEE Data Eng. Bull., vol. 16, no. 4, pp. 42-
52, 1993.

[4] G. Antoshenkov, “Dynamic Optimization of Index Scans Re-
stricted by Booleans,” Proc. 12th Int’l Conf. Data Eng. (ICDE ’96),
1996.

[5] G. Antoshenkov and M. Ziauddin, “Query Processing and
Optimization in Oracle RDB,” VLDB J., vol. 5, no. 4, pp. 229-237,
1996.

[6] R. Avnur and J.M. Hellerstein, “Eddies: Continuously Adaptive
Query Processing,” Proc. ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD ’00), 2000.

[7] S. Babu and P. Bizarro, “Adaptive Query Processing in the
Looking Glass,” Proc. Second Biennial Conf. Innovative Data Systems
Research (CIDR ’05), 2005.

[8] R. Berrendorf, H. Ziegler, and B. Mohr, “PCL: Performance
Counter Library,” http://www.fz-juelich.de/zam/PCL/, 2006.

[9] P. Bohannon, P. McIlroy, and R. Rastogi, “Main-Memory Index
Structures with Fixed-Size Partial Keys,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’01), 2001.

[10] N. Bruno, N. Koudas, and D. Srivastava, “Holistic Twig Joins:
Optimal XML Pattern Matching,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’02), 2002.

[11] S. Chen, P.B. Gibbons, and T.C. Mowry, “Improving Index
Performance through Prefetching,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’01), 2001.

[12] S. Chen, H. Li, J. Tatemura1, W. Hsiung, D. Agrawal, and K.
Selcuk Candan, “Twig2Stack: Bottom-Up Processing of General-
ized Tree Pattern Queries over XML Documents,” Proc. 32nd Int’l
Conf. Very Large Data Bases (VLDB ’06), 2006.

[13] T. Chen, J. Lu, and T.W. Ling, “On Boosting Holism in XML Twig
Pattern Matching Using Structural Indexing Techniques,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’05), 2005.

[14] J.M. Cheng, D.J. Haderle, R. Hedges, B.R. Iyer, T. Messinger, C.
Mohan, and Y. Wang, “An Efficient Hybrid Join Algorithm: A
DB2 Prototype,” Proc. Seventh Int’l Conf. Data Eng. (ICDE ’91),
1991.

[15] S.-Y. Chien, V.J. Tsotras, C. Zaniolo, and D. Zhang, “Efficient
Structural Joins on Indexed XML Documents,” Proc. 28th Int’l
Conf. Very Large Data Bases (VLDB ’02), 2002.

[16] D. Comer, “Ubiquitous B-Tree,” ACM Computing Surveys, vol. 11,
no. 2, pp. 121-137, 1979.

[17] S. Elnaffar, W. Powley, D. Benoit, and P. Martin, “Today’s DBMSs:
How Autonomic Are They?” Proc. 14th Int’l Conf. Database and
Expert Systems Applications (DEXA ’03), 2003.

[18] T. Grust, M. van Keulen, and J. Teubner, “Staircase Join: Teach a
Relational DBMS to Watch Its Axis Steps,” Proc. 29th Int’l Conf.
Very Large Data Bases (VLDB ’03), 2003.

[19] P.J. Haas and J.M. Hellerstein, “Ripple Joins for Online Aggrega-
tion,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’99), 1999.

[20] R.A. Hankins and J.M. Patel, “Effect of Node Size on the
Performance of Cache-Conscious B+-Trees,” Proc. ACM Int’l Conf.
Measurement and Modeling of Computer Systems (SIGMETRICS ’03),
2003.

[21] J. Hellerstein, M. Franklin, S. Chandrasekaran, A. Deshpande, K.
Hildrum, S. Madden, V. Raman, and M. Shah, “Adaptive Query
Processing: Technology in Evolution,” IEEE Data Eng. Bull.,
vol. 23, no. 2, pp. 7-18, 2000.

[22] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach, second ed. Morgan Kaufman, 1996.

[23] H. Jiang, H. Lu, W. Wang, and B. Ooi, “XR-Tree: Indexing XML
Data for Efficient Structural Join,” Proc. 19th Int’l Conf. Data Eng.
(ICDE ’03), 2003.

[24] H. Jiang, W. Wang, H. Lu, and J.X. Yu, “Holistic Twig Joins on
Indexed XML Documents,” Proc. 29th Int’l Conf. Very Large Data
Bases (VLDB ’03), 2003.

[25] K. Kim, S.K. Cha, and K. Kwon, “Optimizing Multidimensional
Index Trees for Main Memory Access,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’01), 2001.

[26] T.J. Lehman and M.J. Carey, “Query Processing in Main Memory
Database Management Systems,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’86), 1986.

[27] J. Lu, T.W. Ling, C.-Y. Chan, and T. Chen, “From Region Encoding
to Extended Dewey: On Efficient Processing of XML Twig Pattern
Matching,” Proc. 31st Int’l Conf. Very Large Data Bases (VLDB ’05),
2005.

[28] S. Manegold, P. Boncz, and M. Kersten, “Generic Database Cost
Models for Hierarchical Memory Systems,” Proc. 28th Int’l Conf.
Very Large Data Bases (VLDB ’02), 2002.

[29] T.S.P. Organization, “SAX: Simple API for XML,” http://
www.saxproject.org, 2006.

[30] J. Rao and K.A. Ross, “Making Bþ-Trees Cache Conscious in Main
Memory,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’00), 2000.

[31] A. Shatdal and J.F. Naughton, “Adaptive Parallel Aggregation
Algorithms,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’95), 1995.

[32] S. Sipani, K. Verma, J.A. Miller, and B. Aleman-Meza, “Designing
a High-Performance Database Engine for the ‘Db4XML’ Native
XML Database System,” J. System and Software, vol. 69, nos. 1-2,
pp. 87-104, 2004.

[33] A. Skelley, “DB2 Advisor: An Optimizer Smart Enough to
Recommend Its Own Indexes,” Proc. 16th Int’l Conf. Data Eng.
(ICDE ’00), 2000.

[34] M. Stillger, G.M. Lohman, V. Markl, and M. Kandil, “LEO—DB2’s
LEarning Optimizer,” VLDB J., pp. 19-28, 2001.

[35] “XMark—An XML Benchmark Project,” http://monetdb.cwi.nl/
xml/index.html, 2006.

[36] “XML Data Repository,” http://www.cs.washington.edu/
research/xmldatasets/, 2006.

[37] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman, “On
Supporting Containment Queries in Relational Database Manage-
ment Systems,” Proc. ACM SIGMOD Int’l Conf. Management of
Data (SIGMOD ’00), 2001.

Bingsheng He received the bachelor’s degree
in computer science from Shanghai Jiao Tong
University (1999-2003). He is a PhD student in
the Computer Science and Engineering Depart-
ment at the Hong Kong University of Science
and Technology (HKUST). His research inter-
ests are in database systems, especially cache-
centric query processing techniques.

Qiong Luo received the BS and MS degrees in
computer sciences from Beijing (Peking) Uni-
versity, China, in 1992 and 1997, respectively,
and the PhD degree in computer sciences from
the University of Wisconsin-Madison in 2002.
She is an assistant professor in the Computer
Science and Engineering Department, Hong
Kong University of Science and Technology
(HKUST). Her research interests are database
systems, with focus on data management and

analysis techniques related to network applications.

Byron Choi received the BEng degree in
computer engineering from the Hong Kong
University of Science and Technology (HKUST)
in 1999 and the MSE and PhD degrees in
computer and information science from the
University of Pennsylvania in 2002 and 2006,
respectively. He is currently an assistant pro-
fessor in the School of Computer Engineering,
Nanyang Technological University, Singapore.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

788 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 6, JUNE 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

