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Adaptive Index Utilization in
Memory-Resident Structural Joins

Bingsheng He, Qiong Luo, and Byron Choi

Abstract—We consider adaptive index utilization as a fine-grained problem in autonomic databases in which an existing index is
dynamically determined to be used or not in query processing. As a special case, we study this problem for structural joins, the core
operator in XML query processing, in the main memory. We find that index utilization is beneficial for structural joins only under certain
join selectivity and distribution of matching elements. Therefore, we propose adaptive algorithms to decide whether to use an index
probe or a data scan for each step of matching during the processing of a structural join operator. Our adaptive algorithms are based
on the history, the look-ahead information, or both. We have developed a cost model to facilitate this adaptation and have conducted
experiments with both synthetic and real-world data sets. Our results show that adaptively utilizing indexes in a structural join improves
the performance by taking advantage of both sequential scans and index probes.

Index Terms—Adaptive query processing, memory-resident systems, structural joins, index utilization.

1 INTRODUCTION

ADAPTIVE query processing has long roots in the
relational world [5], [6], [7], [19], [21], [31] and is
important in improving the performance of autonomic
databases [17], [33], [34]. The essence of adaptation is to
gracefully adjust to the dynamic environment with some
self-learning mechanism. As a result, adaptive algorithms
may not always achieve the peak performance that can be
obtained through careful tuning. However, they are most
likely to maintain good performance in the presence of
unexpected changes with little a priori information or
manual tuning. In this paper, we consider adaptive index
utilization as a fine-grained problem in autonomic data-
bases which dynamically determines whether or not to use
an existing index during query processing.

Structural joins [2], [10], [12], [13], [15], [23], [24], [27] or
containment joins [37], have been a core operator in XML
query processing. For example, a query “find all SECTION
elements that contain FIGURE elements” involves a
structural join between the SECTION elements and the
FIGURE elements, which produces element pairs that
satisfy the element nesting relationship in an XML docu-
ment. Although previous work [2], [12], [15] deals with
disk-resident structural joins, an increasing number of
applications manipulate XML data in the main memory
[18], [32]. In these applications, main-memory indexes can
be built or loaded together with the data on the fly.
However, it is questionable whether utilizing these indexes
always has performance benefits.
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The state-of-the-art structural join algorithms include
nonholistic algorithms [2], [15], [23], [37] and holistic
algorithms [10], [12], [13], [24], [27]. Holistic algorithms
treat a query as a whole for processing, whereas nonholistic
algorithms decompose a query into binary subqueries and
evaluate the subqueries one by one [2], [15], [23], [37]. Since
the basic idea of index utilization in binary join algorithms
is similar to that in holistic join algorithms, we start with the
algorithms of adaptive index utilization on binary joins and
extend our algorithms to holistic joins.

A binary structural join compares two lists of XML
elements and finds out the ancestor-descendant relation-
ship in an XML document between the elements in the two
lists. Moreover, the XML elements are represented in some
encoding scheme. One basic encoding scheme is to use the
start and the end positions of elements in a document. This
is often referred to as the region encoding [2], [12], [13], [15],
[23], [37]. With this encoding, the ancestor-descendant
relationship checking becomes range predicates on the start
and the end positions of the elements in the two lists. As
both input lists are sorted on the (start, end) positions of the
elements, tree indexes (for example, the B+-tree [15] and the
XR-tree [23], [24]) can be built on both lists to facilitate range
search and to skip some elements unnecessary for match-
ing. In addition, an in-memory stack [2] is often used to
store elements from the ancestor list to be compared with
the current element in the descendant list so that no
backtrack on either list is needed.

Examining the operations on the lists in a structural join,
we define two execution modes for it: scan and probe. In the
scan mode, the elements in one list are sequentially read
one by one to compare with the elements in the other list. In
the probe mode, indexes are used to locate the next-to-be-
processed element in either list so that a number of
elements may be skipped. By this definition, existing
algorithms are all static—either always in the scan mode,
for example, the Stack-Tree [2], or always in the probe mode,
for example, the Anc_Des_B+ [15] with B+-tree indexes [16].
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Fig. 1. Execution time of Stack-Tree (SCAN) and Anc_Des_B+ (INX).

To study the performance of memory-resident structural
joins, we implemented these two representative structural
join algorithms. The Stack-Tree algorithm uses no index and
our modified Anc_Des_B+ algorithm uses the Cache-
Sensitive B+-Tree (CSB+-Tree) [30] instead of the B+-tree
for the main-memory performance.

To determine whether to use indexes for a structural join,
common wisdom holds that indexes should be used for low
join selectivities and scans otherwise. However, the
boundary between low and high selectivities is a variable
for different platforms. Moreover, given a fixed join
selectivity, it is possible that using indexes improves the
performance in some cases and degrades the performance
in others, as shown in our study (Fig. 1). The detailed
experimental setup of Fig. 1 is described in Section 4.
Differently from the relational join selectivity, we use the
ancestor join selectivity (the percentage of distinct matching
elements in the ancestor list) and the descendant join
selectivity (the percentage of distinct matching elements in
the descendant list) as in recent studies on structural joins
[23]. At this point, it is sufficient to know that both queries,
DQ2 and XQ2 have a low descendant join selectivity of
around 8 percent and that both DQ3 and XQ3 have a
relatively high descendant join selectivity of around
22 percent. All four of these queries have an ancestor join
selectivity of 100 percent.

Since neither of the static algorithms are a guaranteed
winner, we propose improving the performance of memory-
resident structural joins by adaptively determining whether
to use indexes for each step of matching during join
processing. On one hand, this adaptation should respond
to the environment well; on the other hand, the overhead of
the adaptation should be low.

First, we develop a cost model to compare index probes
with data scans. Intuitively, an index probe may skip
elements but have the overhead of going down the index
tree to reach the data leaves. The cost-based decision of
index utilization boils down to the number of elements
skipped in an index probe. Additionally, our cost model can
serve as the basis for comparing the relative performance of
different structural join algorithms.

Next, we design our adaptive schemes for index
utilization. They are based on the history, the look-ahead
information, or a mix of the two. Since our model can tell if
the previous or the upcoming index probes are cost
efficient, the decision on the adaptation for the next move
is made in a cost-based manner. The history-based adapta-
tion is analogous to the processor branch prediction [22] in
that it uses one or two bits to record the correctness of
previous decisions on whether to choose an index probe or
a data scan. The look-ahead-based adaptation checks if the
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Fig. 2. (a) Region encoding. (b) Label indexes.

next index probe can skip a sufficient number of elements to
compensate for its cost. Finally, the hybrid adaptation
scheme makes decisions considering both the history and
the look-ahead information.

We have tested these adaptive algorithms in comparison
with static algorithms on synthetic data sets, as well as on
real-world data sets. Taking advantage of both the scan and
the probe, our adaptive algorithms consistently outperform
the static algorithms and the hybrid scheme performs the
best among the three adaptive schemes.

The remainder of this paper is organized as follows:
Section 2 introduces the preliminaries of this work and
discusses the related work. We present our proposed
adaptive algorithms for binary and holistic structural joins
in Section 3. In Section 4, we experimentally evaluate the
performance of our approaches. Finally, we conclude in
Section 5.

2 PRELIMINARIES AND RELATED WORK

In this section, we introduce the preliminaries of this work
and discuss the related work. We first review the region
encoding scheme and structural join algorithms. We then
illustrate the two execution modes of a generic structural
join algorithm. Finally, we review existing techniques on
autonomic databases and adaptive query processing.

2.1 Region Encoding and Structural Joins

The structural relationship of two elements in an XML
document can be efficiently determined using a region
encoding scheme [2], [12], [13], [15], [23], [24], [37].
This scheme encodes each element with a 4-ary tuple:
< docl D, start : end, level > , where docI D is the document
identifier, start and end are the start and the end positions
(or the preorder and the postorder ranks) of the element,
and level is the depth of the element in the document tree.
The region encoding of a sample XML document is shown
in Fig. 2, with docID and level omitted. Using this
encoding scheme, the structural relationship of elements
a and d is determined as follows: 1) a is an ancestor of d if
and only if a.docID = d.docID, a.start < d.start, and
d.end < a.end and 2) a is the parent of d if and only if a
is an ancestor of d and a.level = d.level — 1.

With this region encoding, XML documents are repre-
sented as label indexes, which are lists of encoded elements
sorted by (docID, start). Fig. 2b shows the label indexes of
the sample document. We refer to these label indexes as lists
of elements (or element lists) to distinguish them from the
tree indexes built on top. For simplicity of presentation, we
omit the docID and level and use a tuple < start : end > to
represent an element in the remainder of the paper.
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TABLE 1
Representatives of State-of-the-Art Structural Join Algorithms

No index

Index

Non-holistic

MPMGJN [37], Stack-Tree [2], staircase [18]

Anc_Des_B+ [15], XR-stack [23]

Holistic

[13], TJFast [27], Twig?Stack [12]

PathStack, TwigStack [10], TGGeneric [24], iTwigJoin

TwigStackXB [10], TGGenericXR [24]

With two lists of elements as input, a binary structural join
outputs all pairs of elements that satisfy the structural
relationship. In this paper, we focus on the ancestor-
descendant relationship. We call an element in the resulting
pairs a matching element. If a matching element is from the
ancestor list, it is an AYElement; otherwise, it is a DY Element.
Similarly, an unmatching element, which has no matching
element in the other list, is either an ANElement from the
ancestor list or a DNElement from the descendant list. We
call a block of consecutive matching elements in either list a
matching block and a block of consecutive unmatching
elements an unmatching block.

Table 1 shows a few representatives of the existing
structural join algorithms. We categorize them along two
dimensions: nonholistic versus holistic processing and
using indexes on the lists or not. All algorithms except
Twig?Stack [12] evaluate the query through accessing the
documents from the top down, whereas Twig? Stack utilizes
a hybrid approach combining both top-down and bottom-
up evaluations. PathStack [10] is based on a novel stack
encoding and is optimal for evaluating linear path queries
and Twig?Stack outperforms existing holistic algorithms for
twig queries (i.e., [10], [27]). All of these algorithms except
the staircase join [18] are designed for processing disk-
resident data. In comparison, we focus on memory-resident
data. With the same focus on memory-resident data, the
staircase join utilizes the consecutiveness of an XML
encoding scheme and can skip the unmatching elements
without indexes. In contrast, we focus on the adaptive
utilization of index probes for documents with a common,
possibly nonconsecutive region encoding scheme.

A number of cache-optimized tree index structures have
been proposed for main-memory databases, such as
CSB+-trees [30], CR-trees (Cache-conscious R-Trees) [25],
and T-trees [26]. Rao and Ross showed that the search
performance of CSB+-trees is better than that of T-trees [30].
We have implemented CR-trees and tested them in the
structural join. Similarly to the previous study on structural
joins for disk-based data [15], our experimental results

showed that structural joins with CR-trees in the main
memory were slower than those with CSB+-trees. There-
fore, we choose the CSB+-tree as our index structure in the
main memory and develop a model to estimate the access
cost of CSB+-trees. Note that some compression schemes,
such as the partial key technique [9], can be applied to
CSB+-trees to improve their search performance. For
simplicity, we used CSB+-trees without compression in
our model and experiments. Nevertheless, our model can
be extended to consider CSB+-trees with compression.

2.2 The Two Execution Modes of Structural Joins
Our adaptive techniques work around the scan and probe
modes of a structural join in the presence of tree indexes.
Let us illustrate these two modes with a generic static
binary structural join algorithm in the presence of B+-trees
(Algorithm 1), which is slightly modified from the original
Anc_Des_B+ algorithm [15] by adding the mode definition.
The variables used in the join algorithms throughout this
paper are shown in Table 2. We will describe the variables
in the last four rows in more detail when we present our
adaptive algorithms in Section 3.

Algorithm 1. Anc_Des_B+(AList, DList) [Modified]
Procedure: Anc_Des_B+()

1: a = AList.first, d = DList.first

2: while a # AList.end and d # DList.end do

3: if a is an ancestor of d then

4 stack.push(a;), Va; € AList and a; is an ancestor of d;
5 a is set to be the last element pushed;

6: Output (a;,d), Ya; € stack;

7 d = DList.next();

8

9

else
if a.end < d.start then
10: while stack.topEnd() < d.start do
11: stack.pop();
12: NextAnc(); /*Locate the next ancestor*/
13:  else

14: Output (a;,d), Va; € stack;

TABLE 2
Terminology Used throughout This Paper

| Variables | Description
AList, DList ancestor and descendant lists in the join
Ia, Ip tree indexes built on AList and D List
a,d cursors for AList and D List

AMode, DMode

execution modes on AList and DList (N means to scan and I means to probe the index.)

ACount, DCount

numbers of ANElement or DNElement scanned since d or a was last advanced

ASkip, DSkip

threshold values to determine AMode and DM ode

ALook, DLook

on-off flags of the look-ahead operation on AList and DList (N and L mean to determine the
execution mode without and after a look ahead, respectively.)
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Fig. 3. An example of the probe and scan modes. (a) AList and DList.
(b) Probe mode. (c) Scan mode.

15: NextDes(); /*Locate the next descendant*/
#IFDEF PROBE_MODE
Procedure: NextAnc()
1: 1 is set to be the last element popped;
2: a = I4.SearchLarger(l.end);
Procedure: NextDes()
1: if stack.empty() then
2:  d = Ip.SearchLarger(a.start);
3: else
4: d = DList.next();
#ELSE
Procedure: NextAnc()
1: a = AList.next();
Procedure: NextDes()
1: d = DList.next();
#ENDIF

There are three procedures in Algorithm 1, namely,
Anc_Des_B+, NextAnc, and NextDes. The main procedure
Anc_Des_B+ performs the matching of elements between
the two lists. It maintains one cursor on each list and calls
NextAnc and NextDes to advance the cursor on the
corresponding list. The algorithm maintains an in-memory
stack, which keeps all ancestors of the element d for
processing. The operations over the stack are empty, pop,
push, and fopEnd. The first three operations are standard
stack operations and the last one returns the end value of the
element on the top of the stack.

The flag PROBE_MODE indicates the execution mode of
the join, which determines if a scan (sequentially advancing
the cursor to the next element) or an index probe (using the
index to advance the cursor to the next element, which
might have skipped several unmatching elements in the
list) is used in NextAnc and NextDes. If the flag is set to
probe, it is the original Anc_Des_B+ algorithm [15]; if the flag
is set to scan, it is similar to the Stack-Tree algorithm [2] with
minor differences in the elements pushed into the stack. In
our experiments, we found that there was no significant
performance difference between Stack-Tree and the scan
mode Anc_Des_B+.

Let us illustrate the differences between the two
modes with an example. Given AList = [ay,a,...,ay]
and DList = [dy,d;], their positions in a document are
shown in Fig. 3a. The cursor movement and the stack

content during the join processing in two execution
modes are shown in Figs. 3b and 3c, respectively. In the
probe mode, the elements as, a3, and a4 are skipped,
whereas, in the scan mode, no element is skipped. Even
though the probe mode may skip some unmatching
elements, the overhead of the index access may offset the
performance gain from skipping.

The idea of skipping unmatching elements using the
B+-tree index has been exploited in Zigzag skips [3], [4],
[14]. Cheng et al. proposed applying an ascending traversal
from the current tree node through its parent pointer and,
then, a descending traversal to locate the next matching
element [14]. It needs extira space to store an auxiliary
parent pointer in each tree node. Antoshenkov proposed
scanning the index leaf node where the last matching
element was found, prior to executing an index probe [3].
However, in our study, the node size of the CSB+-Tree is
small and the benefit of scanning the remainder of the
current leaf node is limited. Closely related to our work, an
adaptive algorithm was proposed to switch between the
skip mode and the no skip mode [4]. It switches to the no skip
mode when the number of skip attempts without actual
skipping exceeds some small threshold and switches to the
skip mode at the end of scanning the current leaf node in
the index. In comparison, we develop a cost model to
quantify the switching conditions and the frequency of our
adaptation is per tuple.

2.3 Autonomic Databases and Adaptive Query
Processing

The database community has already made many signifi-
cant contributions to autonomic query processing [17], [33],
[34]. The index advisor [33] recommends the best index
among multiple candidate indexes. In comparison, we
assume that the tree index has been built on top of each
element list and we consider adaptive utilization for these
indexes. The LEO (Learning Optimizer) [34] learns from
prior executions and uses actual cardinalities for later
executions of queries with similar predicates. Similarly, our
history-based algorithm predicts the next execution mode
based on the correctness of the previous one or two
decisions.

Adaptive query processing is self-optimizing and pro-
vides good performance for autonomic databases with little
manual tuning [17]. The state-of-the-art adaptive query
processing techniques [5], [6], [19], [31] are compared and
categorized in two surveys [7], [21]. Under their categoriza-
tion, our work belongs to intraoperator and per-tuple
adaptation. Early work on intraoperator adaptation used
either competition [5] or sampling [31] techniques. In
contrast, our look-ahead-based algorithm compares the cost
of the upcoming index probe with a threshold value at each
step of matching without competition and our history-
based algorithm is based on a short most recent observa-
tion, not sampling. Compared with the per-tuple adaptive
eddies [6], our work deals with the CPU cost of tuple
matching as opposed to routing tuples through a pool of
pipelined operators.

Our focus in this work has been to study the in-memory
cost of data scans versus index probes for tuple matching
and to propose lightweight high-frequency adaptation
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schemes for a structural join in the main memory. To the
best of our knowledge, this work is the first on applying
adaptive schemes to the index utilization in the memory-
resident structural join.

3 ADAPTIVE STRUCTURAL JOINS

In this section, we first discuss the challenges in adaptively
choosing the correct execution mode for each step of
matching. Next, we present the adaptive algorithms for
binary structural joins, including the history-based, the
look-ahead-based, and the hybrid ones. We then describe
our cost model for the adaptation. We also apply our
adaptive schemes to two holistic algorithms, PathStack [10]
and Twig?Stack [12]. Finally, we discuss a few issues about
our adaptive algorithms.

3.1 Challenges

As shown in Fig. 1, it is hard to predict the best static
algorithm even when the join selectivity is known. There-
fore, we consider choosing a correct execution mode for
each step of matching during the join processing. The first
challenge is to define the correctness of an execution mode.
As we deal with memory-resident structural joins in the
presence of indexes, we need a model to estimate the access
cost of the main-memory hierarchy for both data scans and
index probes.

One observation on the index probes in a structural join
is that their search-key values are ascending. Due to data
reuse, this sortedness of index probes has a significant
performance impact on in-memory indexed structural joins,
as we observed in our experiments. To the best of our
knowledge, there is no existing model to estimate the access
cost for these kinds of index probes in the main memory.
Specifically, the existing cost models for in-memory
databases [20], [28] considered the cost of random probes
on a tree index structure.

Having the cost model in hand, the next challenge is to
apply the correct execution modes. A static approach
containing precomputed execution modes for each step of
matching is undesirable due to the space overhead or may
even be infeasible in many situations. Furthermore, evalu-
ating joins on different element lists may need different
plans. Thus, we consider applying the execution modes
adaptively at runtime. As this adaptation happens at a high
frequency and the structural join is memory resident, our
adaptive schemes must be lightweight.

3.2 Algorithms for Binary Joins

We develop our adaptive algorithms by modifying the
generic Anc_Des_B+ algorithm (shown in Section 2.2). The
modifications include removing the static execution mode
and changing NextAnc and NextDes to adaptively choose
the execution mode according to our adaptive schemes.

3.2.1 The History-Based Algorithm

A natural way of adaptation is through observations on
the history. Our history-based algorithm belongs to this
category. Inspired by the correspondence between branch
prediction [22] and the selection of execution modes, we
develop a history-based adaptive algorithm using the

n-bit scheme. The n-bit scheme uses n bits to record the
correctness of the previous n decisions and makes the next
decision based on the n-bit history. Considering the trade-
off between the overhead of maintaining the history and
the potential gain from adaptivity, we tested the 1-bit and
the 2-bit schemes that have been known to be practical
[22]. Since the performance of the 2-bit scheme was similar
to that of the 1-bit scheme in our experiments, we focus on
the 1-bit scheme.

Procedures NextAnc and NextDes in the 1-bit adaptive
structural join algorithm 1bit-Adaptive are shown in Algo-
rithm 2. Variables ACount and DCount are both initialized
with zero and AMode and DMode both with I, that is, the
algorithm starts with the probe mode. We present the
estimation of ASkip and DSkip in our cost model in
Section 3.3. At this point, it is sufficient to know that ASkip
and DSkip are constants.

Algorithm 2. Procedures NextAnc() and NextDes() of
1bit-Adaptive
Procedure: NextAnc()
1: if AMode = N then
2:  a= AList.next();
3 ACount = ACount + 1;
4: if ACount > ASkip then
5 AMode =1;
6: l is set to be the last element popped;
7 a = I4.SearchLarger(l.end);
8: else
9: lis set to be the last element popped;
10:  olda = a;
11:  a = I4.SearchLarger(l.end);
12: If (a — olda — 1) < ASkip, then AMode = N; /*Skip
too little*/
13: DCount = 0;
Procedure: NextDes()
1: if stack.empty() then
2:  if DMode =1 then

3 oldd = d;
4: d = Ip.SearchLarger(a.start);
5 If (d — oldd — 1) < DSkip, then DMode = N; /

*Skip too little*/

6: else

7: d = DList.next();

8: DCount = DCount + 1;

9: if DCount > DSkip then
10: DMode = 1;
11: d = Ip.SearchLarger(a.start);
12: else

13:  d = DList.next();
14: ACount = 0;

Let us describe the adaptive algorithm in more detail
using the NextDes procedure. Suppose the previous mode
was probe. If the number of unmatching elements skipped
was smaller than the threshold value (DSkip), the previous
mode was incorrect and the algorithm changes to the scan
mode (Line 5). Similarly, if the previous mode was scan and
the number of unmatching elements scanned since the
cursor of the ancestor list was last advanced was larger than
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and #La<= DSkip

DCount<=DSkip
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DCount >DSkip
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©

Fig. 4. Execution mode switching in our adaptive schemes. #skip represents the number of unmatching elements that was skipped in the previous
probe and # La represents the number of unmatching elements that may be skipped in the current index probe (the comparison of #La and DSkip is
examined through a look-ahead operation). (a) One-bit history-based. (b) Look-ahead-based. (c) Hybrid.

DSkip, the previous mode was incorrect and the algorithm
changes to the probe mode (Lines 9-11). This mode
switching is illustrated in Fig. 4a.

Since the history-based algorithm maintains only one or
two previous decisions, it has a low misprediction rate
when there are consecutive long unmatching blocks (the
length of each block is larger than the threshold value) or
consecutive short ones (the length of each block is smaller
than the threshold value). The 1-bit scheme used in the
history-based algorithm is lightweight as the bookkeeping
overhead is low. As shown in our experiments, the
1-bit scheme is a good trade-off between the efficiency
and the overhead of the adaptation.

3.2.2 The Look-Ahead-Based Algorithm

The history-based algorithm predicts the execution mode
based on the history and may make incorrect decisions. As
we assume the two lists are static during the join
processing, it is possible to make decisions based on the
look-ahead information.

The state diagram of the look-ahead-based scheme is
shown in Fig. 4b. It decides the execution mode using the
look-ahead operation. We discuss the look-ahead-based
algorithm with the NextDes procedure (Algorithm 3). The
main idea is to look ahead at the element offset by DSkip in
the descendant list and to examine whether the length of
the current unmatching block is larger than DSkip. If so, an
index probe is chosen to skip this unmatching block.
Otherwise, the execution mode should be scan, and the
block is scanned.

Algorithm 3. Procedure NextDes() of Look-ahead-Adaptive
1: if stack.empty() then

2:  if (d+ DSkip).start < a.start then

3: d = Ip.SearchLarger(a.start); /*DMode = I*/
4: else

5: while d.start < a.start do

6: d = DListnext(); /*DMode = N*/

7: else

8: d = DList.next();

Differently from the history-based algorithm, the look-
ahead-based algorithm always makes a correct decision.
However, each look-ahead operation induces the possible
overhead of scanning one unmatching element. Since an
element in the region encoding uses 16 bytes and is smaller
than an L2 cache line in our experiments, this overhead can
be an L2 cache miss in the worst case. This overhead is
negligible when the total number of elements skipped is
large and can otherwise be considerable.

3.2.3 The Hybrid Algorithm

With the history-based and the look-ahead-based algo-
rithms, we consider if it is possible to decide the execution
mode based on both the history and the look-ahead
information. With the history information, some unneces-
sary look-ahead operations can be eliminated. With the
look-ahead information, some incorrect decisions that
would have been made based solely on the history may
be avoided.

We propose a hybrid algorithm utilizing the history and
the look-ahead information, namely, Hybrid-Adaptive. We
integrate the history-based and the look-ahead-based
adaptation components into the NextDes procedure, as
shown in Algorithm 4. Flag DLook indicates whether the
algorithm applies the look-ahead-based component (Lines 3-
11) or the history-based component (Lines 14-23). The
algorithm starts with a look-ahead operation, that is, DLook
is L, initially. When it finds the execution mode that needs
to be changed (Lines 18 and 23), it performs a look-ahead
operation and decides the next execution mode based on
the look-ahead information. Otherwise, the execution mode
is unchanged. The state diagram of the algorithm is
sketched in Fig. 4c.

Algorithm 4 Procedure NextDes() of Hybrid-Adaptive
1: if stack.empty() then

2:  /*the look-ahead-based component*/
3: if DLook = L then

4 DLook = N;

5: if (d + DSkip).start < a.start then
6: d = Ip.SearchLarger(a.start);
7 DMode =1;

8: else

9: while d.start < a.start do

10: d = DList.next();

11: DMode = N;

12:  else

13: /*the history-based component*/
14: if DMode =1 then

15: oldd = d;

16: d = Ip.SearchLarger(a.start);
17: if (d — oldd — 1) < DSkip then
18: DLook =L, go to Line 3;
19: else

20: d = DList.next();

21: DCount = DCount + 1;

22: if DCount > DSkip then
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TABLE 3
Input Parameters for the Cost Model

| Parameter | Description

CL the average cost of accessing one cache line
Can the average cost of scanning one ANElement
Cbn the average cost of scanning one DNElement
Car the average cost of one probe on [4
Cbpr the average cost of one probe on Ip

Cr the average cost of accessing an index node that resides in the cache

CNR the average cost of accessing an index node that does not reside in the cache

Nan the number of ANElement scanned

Npn the number of DNElement scanned

Nar the number of probes on 4

Npr the number of probes on Ip
23: DLook = L, go to Line 3; o
24: else ASkip = C’—AI-‘ 7 (2)
25:  d = DList.next(); AN
26: ACount = 0;

) [C

3.3 The Cost Model N . DSkip = | 2L 3)
All of our adaptive structural join algorithms need a cost Cpn

model to determine the threshold values, ASkip and DSkip.
Furthermore, it is desirable to quantitatively compare the
relative performance of the algorithms without running
them on target machines. Therefore, we developed a cost
model for performance estimation, part of which estimates
ASkip and DSkip.

Let us go through the cost model from the top down. The
total cost of a structural join includes three components: the
cost of scanning the matching elements, the cost of scanning
the unmatching elements, and the cost of index probes. Our
cost metric is the execution time. For a given workload (a
structural join on two element lists), the cost of scanning the
matching elements is fixed among the stack-based algo-
rithms (either the static ones or the adaptive ones), because
their numbers of stack operations and matching elements
scanned are fixed. To compare the relative performance of
these algorithms, we can exclude the fixed cost of scanning
the matching elements and only compare the costs of
scanning the unmatching elements and index probes.

We define variable cost V C to be the total cost of scanning
the unmatching elements and index probes for a given
workload. Define SC,y and SCpy to be the total cost of
scanning the ANElements and DNElements, respectively.
Also, define SCy; and SCp; to be the total cost of index
probes on indexes I4 and Ip, respectively. Then, the top-
level equation for the variable cost is the following:

VC = SCay + SCpy + SCar + SCpy. (1)

The larger VC an algorithm has, the less efficient it is.

To estimate SCyy, SCpn, SC4r, and SCp;, we need
the parameters listed in Table 3. Each cost component in
(1) is computed as the unit cost of an operation
multiplying the number of operations. That is, SCyuy,
SCpn, SCa1, and SCpy are estimated to be (Cay X Nay),
(CDN X NDN)/ (CA[ X NA[), and (CD[ X ND]), respectively.
In addition, we can estimate ASkip and DSkip in (2) and
(3), respectively.

We obtain the values of Cyy and Cpy through calibra-
tion on target machines. The values of C4; and Cp; are
estimated using the values of Cr and Cyp, which are also
obtained through calibration on target machines. The
detailed experimental setup of the calibration is described
in Section 4. In our experiments, the values obtained
through calibration were stable and sufficiently accurate
for our cost model. This accuracy contributes to the
improved performance of our adaptive algorithms.

We now focus on the estimation of C4; and Cpy using Cp
and Cypg. One critical factor for estimating C4; and Cpy is
cache reuse among index probes. Note that the index search
keys in a structural join are in ascending order. We describe
cache reuse among the probes with ascending search keys
using a proposition and a corollary. We make an observation
about the proposition, the corollary, and our estimations: If
an index node does not reside in the cache, its descendant
nodes are not likely to reside in the cache either. In addition,
let P, and Py be the paths accessed by two probes with
search-key values k and ¥, respectively; we denote
LP(P, Py) to be the longest common prefix of P, and Py.

Proposition 1. Let Py, Py, and Py be the paths accessed by three
index probes with search-key values k, k!, and k”, respectively.
If k < K < ki//, then Lf)(f)kﬂ7 Pk) isa prefix Of LP(Pk//, Pk/)

Proof. Suppose nin; ... n, are the index nodes contained in
P, from the top down, where k is the search-key value
and h is the height of the index tree. We define a key
sequence, ajas . . .aj—1, for each probe so that a; (1 <i <
h) is the maximum of the key values that are less than &
in the nonleaf node n;.

Given any two probes with search-key values k, and k,,
where k, > k, and their key sequences are ajas...a;_1
and bibs...b,_1, respectively, if a;, =b; (1 <i<m,m <
(h—=1)) and a; #b; (i >m), we have LP(F,, ,F )=
ning...n, and vice versa. As a special case, when
m =1, LP(Py,, P,) = ny, that is, P, and P, only have
the root node in common.
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Let P;, Py, and Py be ning...ny, ninj...n,, and

n{nj ...nj, respectively. Suppose

aias...ap-1, ayay...a, ;, and ajay ...a; ,
are the key sequences of the probes with search-key
values k, ¥/, and k", respectively. Since k < k' < k", we
have a; < o] < af (1 <i<h).
We give the relationship of LP(Py, P;) and LP (P, Py)
according to the differences among the key sequences:

l. a;=d, (1<i<h) indicates P, = Py. We have
LP(P]CH’ Pk) = LP(Pk”a-P]c’)~
2. gi=ada;(1<i<m,m< (h—1))and

a; # a; (i > m).

We have two cases based on the differences of the
key sequences of the probes with search-key
values k' and £':

a. a;=ada! (1<i<h) indicates Py = Py». We
have LP(PW, Pk,r) = Pkw. Hence, LP(Pkn, Pk)
is a prefix of LP(Py, Py).

b. a;=da/ (1<i<m/ ,m <(h-1))and

a, #a (i >m').

We have LP(Py,Py)=n/...n),. Similarly,
we have a;=a] (1 <i<m" m"<(h-1))
and a; # @ (i > m”) and obtain

LP‘(P]ﬂ Pk-rr) = n’ll .. TLI/

< Tl

Since
a; <a, <a (1<i<h),

we have m” < m' and LP(Py, P;) is a prefix

of Lf)(ljkﬂ7 Pkr)
In all cases, we have that LP(Py, P;) is a prefix of
LP(Py, Py). O

Corollary 1. Let By, (1 < i <mn,n > 3) be the path accessed by a
probe with search-key wvalue k;. If ky <ko...<k,, then
LP(Py,, Py,) is a prefix of LP(Py,, Py, ), 1<j<n-2.

Proof. Since k; < ko1 <k, (1<j<n—2), LP(Pk”,Pky) is a
prefix of LP(P;, , Py, ,) according to Proposition 1. 0

According to Corollary 1, we only need to consider the
cache reuse between two consecutive probes in a structural
join. Given two consecutive index probes p; and p;;; in a
structural join, p;1; may access an index node in the path of
pi (the node is likely to reside in the cache) or may access an
index node that is not in the path of p; (the node does not
reside in the cache). For simplicity, we assume that the
probability of accessing an index node in the path of p; is
equal to that of accessing an index node that is not in the
path of p;, that is, the probability is 1.

The estimation of the unit cost of one probe on a
CSB+-Tree index with a height of & is shown in (4). C7(h) is
either Cy4; or Cpy in Table 3. Since the root node is likely to
reside in the cache, we estimate C;(h) to be the total cost of
accessing the root node Cp and accessing the lower levels
Cr(h — 1). The partial cost Cy,(h) is estimated using (5). If a
node at height h resides in the cache, the cost of accessing

Input lists Stacks

Meeell> @5

Fig. 5. Skipping in PathStack and Twig*Stack. The top-down stack of g;
is empty. Unmatching elements in the element lists ¢;.1, gi10, ..., and g,
can be skipped. (a) PathStack. (b) Twig>Stack.

this node is Cr and we recursively estimate the cost of
accessing the lower levels of the index. Otherwise, this node
and the nodes at its lower levels accessed by the probe do
not reside in the cache and the cost of accessing these nodes
is hC' NR-

Cr(h) = Cr + Cr(h — 1), (4)

1 - 1 .
CL(h) — {%)(CL(h 1) + CR) + zhC]\“Rv Zi(l) (5)

In summary, our cost model estimates the cost of index
probes with sorted keys considering the cache reuse among
these probes. This consideration improves the accuracy of
our estimation. Specifically, without this consideration, the
threshold values obtained by the random probe model [20]
are larger than those by our model. These larger threshold
values may result in missing the opportunities of skipping
some unmatching blocks and, in turn, reduce the perfor-
mance improvement of our adaptive algorithms, as we
observed in our experiments.

3.4 Algorithms for Holistic Joins

After presenting the adaptive schemes on binary joins, we
apply our adaptive schemes to two holistic joins, PathStack
[10] and Twig?Stack [12]. Since Twig’>Stack subsumes
TwigStack [10], we focus our discussion on Twig?Stack.
PathStack is optimal for path queries and Twig?Stack is the
state-of-the-art holistic algorithm for twig queries. Since both
algorithms originally scan all involved element lists and do
not utilize tree indexes, we first need to study how to use an
index in these algorithms and then design adaptive index
utilization sc