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Abstract—Hardware cache behavior is an important factor in the performance of memory-resident, data-intensive systems such as

XML filtering engines. A key data structure in several recent XML filters is the automaton, which is used to represent the long-running

XML queries in the main memory. In this paper, we study the cache performance of automaton-based XML filtering through analytical

modeling and system measurement. Furthermore, we propose a cache-conscious automaton organization technique, called the hot

buffer, to improve the locality of automaton state transitions. Our results show that 1) our cache performance model for XML filtering

automata is highly accurate and 2) the hot buffer improves the cache performance as well as the overall performance of automaton-

based XML filtering.

Index Terms—Cache-conscious, automata, XML filtering, query processing, cache behavior model, buffer.
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1 INTRODUCTION

XML filtering is a newly emerged query processing
paradigm, in which a large number of XML queries

reside in the main memory and incoming XML documents
are filtered through these queries. There are many applica-
tions of XML filtering, such as selective information
dissemination and content-based XML routing. Since an
XML filtering engine is typically memory-resident and
long-running, we study the cache performance of such
engines and investigate if their overall performance could
be improved through cache performance improvement.

When we examine several recent XML filtering engines
[3], [6], [12], [13], [14], we find that they are all based on
automata (either an NFA, a Nondeterministic Finite Auto-
maton, or a DFA, a Deterministic Finite Automaton). NFA-
based approaches are space efficient because they require a
relatively small number of states to represent a large set of
queries. In comparison, DFA-based approaches are time
efficient because their state transitions are deterministic.
Since the conversion from an NFA to a DFA through subset
construction [27] increases the number of states exponen-
tially, recent work such as the lazy DFA [14] chose to
convert an NFA into a DFA lazily at runtime.

To study the cache performance of automaton-based
XML filtering, we implemented an XPath-NFA, a simplified
version of the YFilter [12], [13]. This XPath-NFA represents
a large number of XPath queries with the path sharing
technique (sharing common expressions among queries),
but without other optimization techniques. We then
converted an XPath-NFA to an XPath-DFA through subset
construction and studied the filtering performance of both
the XPath-NFA and the XPath-DFA. Not surprisingly, the

XPath-DFA outperformed the XPath-NFA to a large extent,
as long as the subset construction succeeded without
running out of memory. Therefore, we use an XPath-DFA
for our subsequent studies on cache performance.

In automaton-based XML filtering, a commonly used
data structure is the hash table [12], [13], [14], [22] for its
space efficiency. Nevertheless, a traditionally used data
structure for automata is the matrix [22]. In this paper, we
investigate both implementation schemes. Figs. 1a and 1b
show the time breakdown of filtering five sequences of
XML documents using a memory-resident XPath-DFA with
the matrix and the hash table implementation schemes,
respectively, on a P4 machine. Details of the experiment are
described in Section 5. In these figures, the filtering time of
each sequence is divided into four categories: L2 data stalls
(L2 DStalls), L1 data stalls (L1 DStalls), other stalls (e.g.,
stalls due to L1 instruction misses and branch mispredic-
tions), and CPU busy time. These figures show that the
XPath-DFA of these two implementation schemes spent a
large portion of the running time—more than 50 percent
—on stalls due to data cache misses, especially L2 data
cache misses. Therefore, we see considerable room for
improvement in the cache performance of automaton-based
XML filtering.

Since cache-conscious techniques [2], [8], [9], [15], [23],
[24], [25], [28] have been shown useful in performance
improvement of various database structures and opera-
tions, we explore if and how some existing cache-conscious
techniques are applicable to automaton-based XML filters.
Unfortunately, due to the random access nature of auto-
maton state transitions, it is difficult to apply state-of-the-art
cache-conscious data layout techniques, such as the Morton
layout [7], to automaton-based XML filtering. General-
purpose cache-conscious techniques such as blocking [25]
are also inapplicable in this case.

In order to propose cache-conscious techniques that
work for automaton-based XML filtering, we developed an
analytical model on its cache performance. In this model,
we define a round as the engine filtering one document. We
then estimate the total number of cache misses in filtering a
single document (intraround filtering) and a sequence of
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documents (interround filtering). We analyze the cache
behavior of the state transitions of an XML filtering
automaton and estimate the cache misses in three categor-
ies—compulsory misses, capacity misses and conflict
misses [17]. Additionally, we apply our model to both the
hash table and the matrix implementation schemes.

Based on the insights gained from the model, we propose
to extract hot spots (frequent state transitions) in an
automaton into an in-memory data structure called a hot

buffer. This hot buffer aims at improving both the spatial
and the temporal locality of the filter. We organize the hot
buffer either contiguously, called a contiguous hot buffer

(C-Buffer), or in segments, called a segmented hot buffer
(S-Buffer). The hot spots in a C-Buffer are stored in an array
whereas those in an S-Buffer are stored in a graph. The
C-Buffer achieves a better cache performance than the
S-Buffer at the absence of changes in the hot spots but lacks
support for incremental maintenance upon these changes.
In contrast, the S-Buffer supports incremental maintenance
efficiently.

In comparison with our previous work [16], this paper
makes the following four contributions:

1. we handle both simple XPath queries and twig
queries with branches in our XML filters,

2. we compare the matrix-based and the hash table-
based implementation schemes, and extend our
analytical model to both implementation schemes,

3. we propose the segmented hot buffer to support
incremental maintenance, and

4. we conduct a more comprehensive empirical study
to validate the accuracy of our model and the
effectiveness of our cache-conscious techniques.

The remainder of this paper is organized as follows:
Section 2 introduces the preliminaries of this work and
gives an overview of our filtering system. Section 3 presents
our analytical model for estimating the cache misses in
XML filtering. Section 4 presents our cache-conscious
techniques, the C-Buffer and the S-Buffer. In Section 5, we
experimentally validate our model and evaluate the
performance of our approach. We briefly discuss related
work in Section 6 and conclude in Section 7.

2 PRELIMINARIES AND OVERVIEW

In this section, we describe the XPath queries considered,
provide an overview of our filtering system, and discuss
representative automaton implementation alternatives.

2.1 Queries Handled

We handle a basic subset of XPath queries [11] without

branch conditions, which we call linear path queries, or path

queries in short, as well as twig queries [10] that have branch

conditions. The set of queries handled is defined as follows:

Twig ::¼ Pathj Path 00½ 00 Twig ð 00and00 TwigÞ� 00� 00

Path ::¼ Step j Path Step

Step ::¼ Axis Node test

Axis ::¼ 00= 00 j 00== 00

Node test ::¼ Tag j 00 � 00:

This grammar defines a twig query consisting of a

sequence of steps. A step in turn consists of 1) a downward

XPath axis (either “/,” a child axis, or “//,” a descendant

axis) and 2) a node test (either an XML element tag or a

wildcard “�”).
Given a twig query, we decompose it into path query

conjuncts and transform its evaluation into the evaluation of

these path queries. When all of these path queries are

satisfied, the twig query is satisfied.

2.2 System Overview

The system architecture of our XML filtering system is

shown in Fig. 2. The major components of this system

include a query parser for decomposing twig queries into

path queries and parsing path queries, an event-based SAX

parser [1] for parsing incoming documents, and an

automaton-based filtering engine that filters the documents.

The automaton in the filtering engine can be either the

XPath-DFA or our cache-conscious automaton with the

C-Buffer or the S-Buffer. We describe our cache-conscious

automata in detail in Section 4.

2.2.1 The Filtering Process of the XPath-DFA

The filtering process is driven by the events generated from

the SAX parser. There are four types of events: start-of-

document, end-of-document, start-of-element, and end-of-

element. A start-of-document event triggers a new round

whereas an end-of-document event indicates the end of a

round. During a round, a runtime stack is used to keep

track of the current state as well as previously visited states.

When a start-of-element event occurs, it triggers a state

transition in the automaton. When an end-of-element event

occurs, the automaton backtracks to the previous state.

Upon an end-of-document event, the system checks if any

accepting state has been reached and disseminates the

document to users whose queries are satisfied.
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Fig. 1. Execution time breakdown of XML filtering engines on P4.

(a) Matrix-based implementation. (b) Hash table-based implementation.

Fig. 2. Architecture of our XML filtering system.



An example of the filtering process is shown in Fig. 3. On
the top-left are the queries. The twig query q3 is decom-
posed into two path queries q3 1 and q3 2. In the middle is a
fraction of the XPath-DFA that represents the queries. The
circles in the DFA represent states and the shadowed ones
represent accepting states. An identifier inside “fg” on top
of an accepting state is the ID of a query. We say this query
is associated with the accepting state. When an accepting
state is reached, the queries associated with this accepting
state are satisfied. A twig query is satisfied only when all of
its decomposed path queries are satisfied. In this example, if
queries q3 1 and q3 2 are both satisfied, q3 is satisfied. The
content of the runtime stack is shown on the right of the
figure, as the XML document on the top-right streams
through the XPath-DFA.

In the remainder of this paper, we use the term “symbol”
from the automaton community and the terms “XML
element” or “element” and “XML tag” or “tag” from the
XML community interchangeably.

2.3 Automaton Implementation

We briefly review two commonly used alternatives for
automaton implementation, the hash table [12], [13], [14],
[22] and the matrix [22], as illustrated in Fig. 4. In the
hash table implementation, buckets are indexed by states.
A transition from one state is represented as a hash entry
< symbol; next state> and stored in the corresponding
bucket. In the matrix implementation, neighboring sym-
bols are coded as consecutive integers. Columns are
indexed by symbols and rows are indexed by states. The
cell at row i and column j in the matrix is the next state
for the state i upon the symbol j.

Due to the random access nature of hash tables, a state
transition causes more than two cache misses on average,
one for fetching the bucket and the others for fetching the
values. State transitions in a matrix are also random access
and each causes one cache miss on average (directly
fetching the state). However, regardless of the number of

outgoing transitions from a state, the matrix implementa-
tion needs a row consisting of S cells for the state, where S
is the number of symbols. Consequently, the matrix
implementation often has a large space overhead.

We have experimented with these two implementation
alternatives in automaton-based XML filtering. We find that
matrices are mostly a winner in practice, as long as the
matrix can fit into the memory. We have developed a model
to compare the cache performance of both alternatives as
well as hot buffer techniques to improve the overall
performance of both alternatives.

3 MODELING CACHE PERFORMANCE

In this section, we propose an analytical model to estimate
the total number of cache misses in automaton-based XML
filtering. We estimate the number of compulsory misses and
capacity misses by modeling the intraround and the
interround filtering processes. The intraround model serves
as part of the interround model. We then describe a coarse
estimation technique for the estimation of conflict misses.

3.1 Modeling the Cache

The memory hierarchy on a modern computer typically
contains a Level 1 cache (L1 cache), a Level 2 cache (L2
cache), and the main memory. Access to a cache (either L1
or L2) is either a hit or a miss. Given the number of cache
misses, #miss, and that of cache hits, #hit, the miss rate, m,
is defined as m ¼ #miss

#missþ#hit . The average cost of one
memory access Tavg is:

Tavg ¼ tL1 þmL1 � tL2 þmL1 �mL2 � tM; ð1Þ

where tL1, tL2, and tM are the access time of the L1 cache, the
L2 cache and the main memory, respectively; mL1 and mL2

are the miss rates of the L1 cache and the L2 cache,
respectively. Since the access time is determined by the
hardware, software techniques aim at minimizing the miss
rates and the total number of cache accesses.

We define the cache configuration as a four-element tuple
< C;B;N;A > , where C is the cache capacity in bytes, B
the cache line size in bytes, N the number of cache lines,
and A the degree of set-associativity. A ¼ 1 is a direct-
mapped cache, A ¼ N a fully associative cache, and A ¼ n
an n-associative cache ð1 < n < NÞ.

As we have seen in Fig. 1, L2 data stalls are the most
significant stalls in the XML-filtering system. Consequently,
we focus on the L2 data cache in our model, even though
the L2 cache is usually a piece of unified memory shared by
data and instructions. In the remainder of this paper, “cache” is
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Fig. 3. XML filtering process.

Fig. 4. An example automaton and its two implementation alternatives. (a) Example automaton. (b) Hash table. (c) Matrix.



short for “L2 data cache” unless specified otherwise. In addition,
the cache in our model is fully associative and uses LRU
(Least Recently Used) as the cache replacement policy.

3.2 Modeling Intraround Filtering

We start with intraround filtering, during which a single
document is filtered and there is no reuse of data from
previous rounds. Since a single document is small in
practice, we assume that there are no capacity misses in
intraround filtering. Subsequently, we focus on the estima-
tion of compulsory misses in intraround filtering.

Definitions. We model the cache behavior of a state transition, t,
in an automaton implementation using three metrics,
< Ft;Rt;Mt > :

. Ft represents the footprint of t. Footprint F is the
mean number of cache lines that are required to
access for a state transition. Specifically, Ft has a
constant value of one in the matrix implementation,
and varies for the hash table implementation. For
simplicity, we model Ft as a constant and use Ft
and F interchangeably.

. Rt represents the reuse of t. Reuse Rt is the number of
cache lines that are required for t and have already
been brought into the cache by previous state
transitions. If Rt ¼ Ft, we call it a perfect reuse.

. Mt represents the number of compulsory misses caused by
t. Mt ¼ Ft �Rt.

To model the cache characteristics of a state, we define the
span (denoted as Ps) of a state, s, as the number of cache lines
required to store the transition information of s in an
automaton implementation. P is the mean span of all states
in the automaton. For instance, Ps has a constant value equal
to the row size of the matrix in the matrix implementation,
and varies for the hash table implementation. Again, for
simplicity, we model Ps as a constant and use Ps and P

interchangeably. Suppose there are eight symbols in a
matrix-based automaton and a cache line can hold four
state transitions, we have F ¼ 1 and P ¼ 2 (Fig. 5).

Finally, we define the working set, ws, of an XML
document over an automaton as the set of states in the
automaton that are referenced during filtering the docu-
ment. The working set size, jwsj, is the number of states in
the working set.

Estimation. Based on the definitions, we have two
ways to estimate the number of compulsory misses,
Com, in the intraround filtering of a document:
1) Com ¼

Pp
t¼1 Mt ¼

Pp
t¼1 ðF �RtÞ, where p is the total

number of state transitions in filtering the document and
2) Com ¼

P
s2ws CMðsÞ, where CMðsÞ gives the estima-

tion of compulsory misses caused by the transitions
made from s. Either method can be used to validate the

other; for simplicity, we used the second way in our
estimation algorithm.

Implementation. To simplify our estimation of the
working set for a document on an XPath-DFA, we construct
a DFA solely based on the document, to represent the access
pattern of filtering the document on an XPath-DFA. Since
this document DFA is acyclic and its symbols are element
tags, we call it a tag tree.

To simulate the LRU replacement policy, we add a
timestamp to each node. The timestamp of a node is -1
initially, indicating that the state it represents has not been
fetched into the cache. Whenever a transition is made from
a state, the timestamp of the corresponding node for the
state is updated to a positive value equal to the total
number of state transitions occured so far. A node with a
positive timestamp indicates that the state it represents
resides in the cache, and the working set can be represented
as the set of tag tree nodes with a positive timestamp.

We use an example to illustrate the construction of a tag
tree (Fig. 6) and the complete algorithm of tag tree
construction can be found in our previous paper [16]. As
shown in Fig. 6, the rectangles represent tag tree nodes. The
number in a node is the state and the number beside a node
is the timestamp. After the tree is constructed, we count the
number of nodes with a positive timestamp, and obtain the
working set size of the example document to be four.

The accuracy of our estimation is affected by the
mapping between a tag tree node and an automaton state
in the XPath-DFA. When this mapping is one-to-one, the
working set size obtained from the tag tree equals to that on
the XPath-DFA. With a large number of queries of diverse
properties, this mapping will be close to a one-to-one
correspondence. As we observed in our experiments, this
mapping was close to one-to-one when the number of
queries was larger than 160 K. Details of the experiment are
described in Section 5.

3.3 Modeling Interround Filtering

Having modeled the cache misses in intraround filtering,
we then model the cache behavior of interround filtering.
There are two major differences between intraround and
interround filtering:

. Each round, except the first round, of interround
filtering is likely to reuse the working sets of
previous rounds.

. As multiple documents are filtered, the total size of
the states referenced during filtering may exceed the
cache capacity, upon which cache replacement
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Fig. 5. The footprint and the span of a matrix-based automaton (one

cache line can hold four state transitions.

Fig. 6. An example of tag tree.



occurs. Therefore, capacity misses are considered in
interround filtering.

We use a state as the unit in cache replacement for
simplicity, as it is complex to estimate the replacement at a
finer granularity, e.g., at the unit of a cache line. The
accuracy of this simplified estimation is sufficient for our
model, which is confirmed in our experiments.

The basic idea of our interround modeling is that we
estimate the changes of the cache content (i.e., the set of states
in the cache) for each round. Based on these changes, we
estimate the number of compulsory misses and capacity
misses.

Definitions. Given a sequence of documents

Seq ¼ ðdoc1; doc2; . . . ; docnÞ;

we obtain the corresponding working sets ðws1; ws2; . . . ; wsnÞ
using the intraround modeling. To estimate the changes of the
cache content, we define rsi;j ði � jÞ the cache set of docj at the
end of the ith round so that rsi;j is the subset of wsj that
resides in the cache and is not accessed by any state transitions
from the beginning of the ðjþ 1Þth round to the end of the ith
round. Since we assume that there are no capacity misses in
intraround filtering doci, we have rsi;i ¼ wsi.

Fig. 7 illustrates the working sets and the cache sets of
three documents in a sequence. The circles represent the
states and the shadowed ones represent the states reused in
the current round. We assume the cache can hold more than
10 states so that all states referenced during filtering the
three documents can fit into the cache. At the end of each
round, the cache set of each document (if any) is computed
by removing states that have been accessed in the current
round. In Fig. 7, the state marked with a cross is the one to
be removed from the cache set at the end of the current
round.

We have defined the intersection, difference, and union
operations on two cache sets and a sequence of cache sets to
be ordinary binary and n-ary set operations, respectively.
Similarly, we can define these operations on working sets
[16]. The working set of sequence Seq is defined as
ðws1 [ ws2 . . . [ wsnÞ. The cache content at the end of the
ith round is ðrsi;1 [ rsi;2 . . . [ rsi;iÞ, which is also the cache
content at the beginning of the ðiþ 1Þth round.

Estimation. We start by modeling the changes of the
cache contents in interround filtering. Given the working
set, wsi, of doci at the beginning of the ith round, we
estimate the cache content at the end of the ith round,

ðrsi;1 [ rsi;2 . . . [ rsi;iÞ, based on the cache content at the

beginning of the ith round, ðrsi�1;1 [ rsi�1;2 . . . [ rsi�1;i�1Þ. In

the first step, we always set rsi;i ¼ wsi. Next, we estimate

the changes on cache sets rsi�1;j and obtain rsi;j ð1 � j < iÞ:

. If no replacement occurs, rsi;j is obtained by
removing the states accessed during the ith round
from rsi�1;j. That is, rsi;j ¼ rsi�1;j � rsi;i ð1 � j < iÞ.

. If replacement occurs, we consider the replacement
in the cache content. We denote

rs0i�1;j ¼ rsi�1;j ð1 � j < iÞ;

which contain the candidate states for replacement

at the beginning of the ith round. With the LRU

replacement policy, an rs0i�1;j with a smaller j has a

higher priority to be replaced. Within an rs0i�1;j, an

earlier state has a higher priority to be replaced. The

number of states that need to be replaced is

#toReplacei ¼jrs0i�1;1 [ rs0i�1;2 . . . [ rs0i�1;i�1 [ rsi;ij

�N
P
:

Replacement is done by removing states from,

rs0i�1;1, rs0i�1;2; . . . ; until the number of states re-

placed reaches #toReplacei. Hence, rs0i�1;j ð1 � j < iÞ
is updated at the end of replacement. The set of

states that are swapped out of the cache in this

round,

Rpi ¼ððrsi�1;1 [ rsi�1;2 . . . [ rsi�1;i�1Þ
� ðrs0i�1;1 [ rs0i�1;2 . . . [ rs0i�1;i�1ÞÞ:

Finally, rsi;j can be obtained by removing the states

accessed during the ith round from rs0i�1;j. That is,

rsi;j ¼ rsi�1;j � rs0i;i ð1 � j < iÞ.
Based on the modeled interround changes of cache

contents, we estimate the number of compulsory misses and

capacity misses:

. the number of compulsory misses in the ith round is
jrsi;i � ðrsi�1;1 [ rsi�1;2 . . . [ rsi�1;i�1Þj � P , which cor-
responds to the automaton states referenced for the
first time by filtering doci.

. the number of capacity misses in the ith round is
considered in two cases:

1. If jrsi�1;1 [ rsi�1;2 . . . [ rsi�1;i�1 [ rsi;ij � P � N ,
no replacement occurs and the number of
capacity misses is zero.

2. If jrsi�1;1 [ rsi�1;2 . . . [ rsi�1;i�1 [ rsi;ij � P > N ,
there is replacement in the cache and capacity
misses occur. The set of states that are reloaded
into the cache, toReloadi ¼ Rpi \ rsi;i. The num-
ber of capacity misses in the ith round is
jtoReloadij � P .

Implementation. We have developed the intersection,

difference, and union operations on tag trees to implement

the operations for working sets and cache sets, and have

applied these tag tree operations to implement the inter-

round model [16].
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Fig. 7. An example of working sets and cache sets in interround
modeling.



3.4 Estimations for Matrices and Hash Tables

We now apply our model to the matrix and the hash table
implementation schemes, respectively. For simplicity, we
assume that all outgoing transitions of a state have an equal
probability to be accessed.

For the matrix implementation, we have F ¼ 1. When
P ¼ 1, all reuses are a perfect one. If P > 1, a perfect reuse
occurs when the transition is the same as a previous one,
while a partial reuse may occur if the transition has the
same originating state as some previous ones.

We apply Cardenas’ formula [5] to estimate the partial
reuses. Cardenas’ formula was originally used to estimate
the average number of blocks accessed by a query. Suppose
� tuples are uniformly distributed into K blocks and there
are � tuples satisfying the query, Cardenas’ formula,
K � ð1� ð1� 1=KÞ�Þ, gives the average number of blocks
that contain the � tuples. This scenario is similar to ours. We
estimate the number of cache lines accessed by a number of
distinct transitions having made from one state (denoted as
Qs). The number of satisfying tuples, the total size of all
blocks and the block size correspond to the number of
distinct transitions, the span of the state and the footprint of
a transition, respectively. That is, � and K correspond to Qs

and Ps=F , respectively. The number of distinct cache lines
visited by these Qs transitions, PMðPs;QsÞ, is estimated
using (2):

PMðPs;QsÞ ¼ Ps � ð1� ð1� 1=ðPs=F ÞÞQsÞ: ð2Þ

In intraround modeling, we estimate the number of
compulsory misses as

Com ¼
X
s2ws

CMðsÞ ¼
X
s2ws

PMðPs;QsÞ;

where Qs is estimated as the number of child nodes of the
tag tree node corresponding to the state s. In interround
modeling, the number of cache misses in each round can be
estimated using (2) based on the modeled states and state
transitions.

For the hash table implementation, each transition
performs a linear scan on the values of a hash bucket to
find the symbol of the transition. This scenario is different
from that of the matrix implementation. Thus, we compute
the number of hash entries visited by the Qs distinct
transitions. We present the abstraction of this problem and
its solution in Proposition 1. Especially, given the number of
hash entries that can be held in one cache line U , the
number of hash entries in a hash bucket is ðPs � UÞ. We
have ðPs � UÞ and Qs corresponding to n and m in
Proposition 1. Hence, EðPs � U;QsÞ gives the expected
number of distinct hash entries visited by the Qs transitions.

Proposition 1. Suppose we randomly choose m distinct

integers ranging from one to n ðm � nÞ. The expected

value of the maximum value of these m integers is given by

Eðn;mÞ ¼
Pn

k¼mðk �
Cm�1
k�1

Cm
n
Þ.

Proof. The maximum value of these m distinct integers

should be no less than m. The probability that kðk � mÞ
is the maximum value of these m integers is pk ¼

Cm�1
k�1

Cm
n

.

Hence, Eðn;mÞ ¼
Pn

k¼mðk �
Cm�1
k�1

Cm
n
Þ. tu

Therefore, the number of cache misses caused by these

Qs distinct transitions is given in (3). We can apply this

formula to our cache behavior model on a hash table based

automaton. The process is similar to applying (2) to the

matrix implementation.

PMðPs;QsÞ ¼ 1þ EðPs � U;QsÞ=U: ð3Þ

Finally, we compare the cache performance of the matrix

and the hash table using our model. We define the density of

an automaton as the ratio of the number of transitions to the

number of symbols multiplied by the number of states that

have any outgoing transitions. We exclude the states

without any outgoing transitions in this definition, because

these states are not in the working set of any document. The

density affects the span of the hash table implementation.

The higher the density, the larger the span of the hash table-

based automaton. In contrast, the density does not affect the

span of the matrix implementation. We compute the

threshold value of the density for the choice between the

hash table and the matrix. When the density is larger than

the threshold value, the matrix implementation has a better

cache performance than the hash table implementation.

3.5 Putting It All Together

Having modeled compulsory and capacity misses in a fully

associative cache, we now discuss the estimation of conflict

misses in an A-associative cache. Conflict misses depend on

a number of factors, including cache set-associativity, data

layout, and access patterns. Since state transitions on an

automaton are random access on a fixed data layout, the

blocks in the main memory (i.e., memory blocks) referenced

by state transitions are uniformly mapped to the sets in the

cache. When more than A distinct memory blocks are

mapped to one set in the cache, there must be cache line

replacement. A conflict miss occurs when a discarded line is

revisited.
Let Z be the number of sets in the cache ðNAÞ. Denote

Comi, Coni, and Capi as the estimated numbers of

compulsory misses, conflict misses, and capacity misses in

the ith round, respectively. Toti is the total number of cache

accesses in the ith round. It is equal to the number of state

transitions in the ith round multiplied by F . The number of

revisited lines is ðToti � Comi � CapiÞ.
Given the total number of compulsory misses of the first

i rounds, TComi ¼
Pi

j¼1 Comj, the probability of having

x distinct memory blocks mapped to a set in the cache is:

P ðxÞ ¼ 1

Z

� �x
� Z � 1

Z

� �TComi�x
: ð4Þ

The probability of a revisited line causing a conflict miss

when there are x distinct memory blocks mapped to one set

in the cache is:

CðxÞ ¼ P ðxÞ � x�A
x

; given x > A: ð5Þ

The number of conflict misses in the ith round can be

estimated using (6). The item, ð
PTComi

x¼Aþ1 CðxÞÞ, represents the

probability of causing a conflict miss by a revisited line.
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Coni ¼
XTComi

x¼Aþ1

CðxÞ
 !

� ðToti � Comi � CapiÞ: ð6Þ

Finally, the total number of cache misses in the ith round,
TMi, is estimated as follows:

TMi ¼ Comi þ Coni þ Capi: ð7Þ

Our approach to modeling cache performance has
several advantages over the hardware profiling approach.
First, our approach is more powerful because it can capture
application semantics. Compared with general profiling
tools, such as PCL [4], our model can estimate the three
categories of misses based on the processing flow of the
filtering automaton. This specialization allows us to devel-
op specialized algorithms to reduce the most significant
kind of cache misses. For example, our hot buffer
techniques mainly improve the cache performance through
reducing capacity misses and conflict misses. Second, our
approach is more flexible. Our model can run on multiple
platforms without much modification. In contrast, profiling
tools need to be carefully configured to measure the
performance for a specific hardware platform. Third, our
modeling is much less intrusive than profiling, as the model
can be run separately from the filtering engine, whereas
hardware profiling requires instrumentation, which creates
interference to the application code.

Compared with the cache simulation that can report the
three categories of misses, our approach is faster in terms of
the execution time and the time of examining the result.
Additionally, our model captures the cache behavior of
different automaton implementations and compares their
cache performance. Through modeling, we understand the
cache behavior of XML filtering and obtain insights for
developing cache-conscious filtering techniques.

4 THE HOT BUFFERS

Our model on the cache behavior of filtering makes it clear
that locality, mainly state reuse, is essential for reducing
cache misses. This observation motivates us to develop a
cache-conscious automaton organization technique called
the hot buffer. The basic idea is to replicate the frequent state
transitions, or called hot spots, into a memory area outside
the original automaton.

We have two design considerations on the hot buffer.
First, hot spots from one state should be put together so that

they can be efficiently retrieved. Second, hot spots should
be extracted following the transition paths starting from the
start state. There are two reasons for the second considera-
tion: 1) The transitions near the start state are more likely to
be hot than those far from the start state, because a round
always starts from the start state and (2) all transition paths
contained in the hot buffer should begin with the start state
so that we can easily determine whether or not a certain
transition is in the hot buffer.

Our hot buffer technique is orthogonal to the original
automaton implementation. In particular, neither the hot
buffer construction nor filtering with the hot buffer depends
on the original automaton implementation. Given a matrix-
based or a hash table-based automaton, we can construct a
hot buffer and perform filtering with it. For the simplicity of
the presentation, we describe our hot buffer technique using
the matrix implementation.

4.1 Hot Spot Representations

To address the first design consideration of how to put the
hot spots from one state together, we have designed two
representations for hot spots, the compact row and the symbol
table.

In order to identify hot spots in the original automaton,
we add a counter to each cell in the matrix to record the
access frequency of the corresponding state transition. We
then set a threshold for the access frequency. If the access
frequency of a state transition is larger than the threshold, it
is a hot spot. The threshold value is determined to
maximize the performance impact of the hot buffer [16].

Let us describe the two hot spot representations using
an example in Fig. 8a. Each cell is in the form of
<next state; counter> . The threshold on the access
frequency is 10. The shadowed cells in the automaton
are identified as hot spots.

For the compact row representation, we record the hot
base (the left-most cell that is hot) and the hot tail (the right-
most cell that is hot) in each row. To preserve the fast-
transition advantage of a matrix, we treat all cells between
the hot base and the hot tail (both ends inclusively) in a row
as hot spots and call this fragment a compact row. This way,
when checking whether a certain symbol is in the compact
row, we only need to check whether the symbol is between
the base and the tail. Note that the access frequency of some
transition in a compact row, e.g., the cell <8; 0> in row 2,
column B, has an access frequency smaller than ten and is
not really a hot spot.
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We have designed two variants for the compact row
representation, namely, the fixed-size and the variable-size
compact row representations. For the fixed-size compact
row representation, each element in the hot buffer is a tuple
with four fields, <next; base; tail; miss> , as shown in
Fig. 8b. The base and tail correspond to the hot base and the
hot tail of a compact row in the original automaton, if any.
For each compact row, ðtail� baseþ 1Þ elements are added
to the hot buffer. The value of next is set during the hot
buffer construction process. Details of the construction
algorithm are described in Section 4.2. The use of next is to
lead the current transition to move forward to a certain hot
buffer element during filtering. Given the current symbol,
tag, if base � tag � tail, a hot buffer hit occurs and the next
hot buffer element to visit is determined based on the next
field; otherwise, a hot buffer miss occurs and the miss field of
the current element points to the state in the original
automaton to resolve the hot buffer miss.

For the variable-size compact row representation, each
element in the hot buffer is a variable-size tuple,

<miss; base; tail; next½0 : tail� base�>;

as shown in Fig. 8c. The definitions of base, tail, andmiss are
the same as the ones in the fixed-size compact row
representation. The array next stores the transition informa-
tion of a compact row, i.e., state transitions from the state
miss upon the symbols between base and tail. Each next
element can be either a start position of a hot buffer element
or a state in the original automaton. In Fig. 8c, the underlined
next elements are states in the original automaton, and other
next elements are positions in the hot buffer. Given the start
position of the current hot buffer element, cur, and the
current symbol, tag, if base � tag � tail, a hot buffer hit
occurs, and the next hot buffer element or a state in the
original automaton to visit is next½tag� base�; otherwise, a
hot buffer miss occurs and the miss field of the current hot
buffer element is used.

For the symbol table representation, each element in the
hot buffer is a variable-size tuple,

<miss; numEntries; tableEntry½0 : numEntries� 1�>;

as shown in Fig. 8d. The definition of miss is the same as
the one in the compact row representation. The array
tableEntry is the symbol table and each hot spot from the
state miss is represented as a table entry, <symbol; next> .
The definition of next is the same as the one in the variable-
size compact row representation. The numEntries value is
the number of table entries in the symbol table. We add an
entry to the symbol table only if the transition from the state
miss upon this symbol is hot. Compared with the compact
row representation, the symbol table contains no false hot
spots. Given the start position of the current hot buffer
element, cur, the symbol table is stored from position ðcurþ
2Þ to position ðcurþ 2þ 2 � numEntriesÞ. Given the current
symbol tag, we scan table entries. If a table entry with tag is
found, it is a hot buffer hit. Otherwise, it is a hot buffer miss.

We now compare the space efficiency of these compact
row representations. We define the hotness of a compact row
to be the ratio of the number of hot spots to the number of
symbols in the compact row. The hotness of the automaton

is defined as the average hotness of all compact rows in the
automaton. Given the hotness of an automaton, h, the
symbol table representation uses ð2þ ðtail� baseþ 1Þ �
2� hÞ integers to represent one compact row on average.
The space required by the fixed-size and the variable-size
compact row representations are around ð4þ ðtail� baseþ
1Þ � 4Þ and ð3þ ðtail� baseþ 1ÞÞ integers, respectively.
Thus, the variable-size compact row representation always
has a higher space efficiency than the fixed-size representa-
tion. When the hotness is larger than a threshold value
( tail�baseþ2
2ðtail�baseþ1Þ , around 50 percent), the variable-size compact

row has a higher space efficiency than the symbol table.
Note that in our implementation, we encode the symbols

in their alphabetic order as consecutive integers. If we have
a priori knowledge of the access pattern on the symbols,
such as DTDs/XML schemas, we can improve the efficiency
of both representations by encoding more frequently
accessed symbols as consecutive integers. However, the
performance benefit of this careful encoding is quite limited
compared with identifying hot spots, since the number of
symbols is much smaller than the number of transitions.

4.2 Hot Buffers

Our hot buffer techniques address the second design
consideration of how to extract the hot spots following the
transition paths starting from the start state. Since sequen-
tial access is much more cache friendly than random access,
one alternative is to pack hot spots contiguously into an
array. We call this alternative a contiguous hot buffer, or a
C-Buffer. However, the access patterns may change over
time so that the hot buffer needs to be maintained. In order
to balance the filtering and maintenance efficiency, we also
propose an alternative called a segmented hot buffer, or an
S-Buffer.

Since the algorithms for different hot spot representa-
tions are similar, we only present the algorithms for the
fixed-size compact row representation.

4.2.1 The C-Buffer

Figs. 8b, 8c, and 8d show the C-Buffers with different hot
spot representations constructed from the hot spots in the
original automaton in Fig. 8a. As shown in Fig. 8b, the
C-Buffer with the fixed-size compact row representation is
an array structure starting from index 0. We present the
construction algorithm for the C-Buffer in Algorithm 1. We
treat the original automaton as a graph with states as nodes
and transitions as edges, and perform a breadth first
traversal on the automaton. To assist the traversal process,
the algorithm maintains two queue structures, wqueue and
pqueue. The queue wqueue stores the waiting states from
which a hot spot will be inserted into the C-Buffer. The
queue pqueue stores the row indexes in the C-Buffer at
which the hot spots are inserted into the C-Buffer.

Algorithm 1 C-Buffer construction

Input: Automaton Au with counters, threshold for the
access frequency t, an empty C-Buffer cBuf , the size limit of

the C-Buffer in number of hot spots sizeLimit

1: wqueue.enqueue(Au’s start state), pqueue.enqueue(0);

2: curSize ¼ 1; /� the total number of elements

having been inserted into cBuf�/
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3: while wqueue is not empty do

4: curState ¼ wqueue.dequeue(), curIndex ¼ pqueue.
dequeue();

5: let p be the element in cBuf so that p:miss ¼ curState;
6: if p is nil then

7: if curSize � sizeLimit then

8: cR is the compact row of the row curState in Au

according to t;

9: Set cBuf’s ðcurIndexÞth element: next ¼ curSize,
miss ¼ curState, and base, tail are the smallest

and the largest symbols of cR, respectively;

10: for state s in cR do

11: wqueue:enqueueðsÞ, pqueue:enqueueðcurSizeÞ;
12: curSize ¼ curSizeþ 1;

13: else

14: Set cBuf’s ðcurIndexÞth element: miss ¼ curState;
15: else

16: Set cBuf’s ðcurIndexÞth element: next ¼ p:next,
miss ¼ p:miss, base ¼ p:base, and tail ¼ p:tail;

During the traversal (Lines 5–16), the algorithm checks if

any existing hot spot in the hot buffer and the new one

transit to the same state. If so, the algorithm sets the fields of

this new hot spot to be the same as the existing one

(Line 16). Otherwise, it checks if the size limit has been

reached. If so, it simply sets the miss value for the new hot

spot (Line 14). Note that all fields of a hot spot are initially

-1. Otherwise, the following operations are performed. First,

it extracts the compact row from the original automaton

according to the threshold value. Then, it sets the current

C-Buffer element. Next, it puts the waiting states in the

compact row into wqueue and puts the row indexes to insert

the hot spots into pqueue. The construction completes when

wqueue is empty.
The size limit should be no more than the L2 cache

capacity. With this size limit, the hot buffer is expected to be

cache resident and has little cache thrashing. In practice, we

set the size limit to be the L2 cache capacity.
After a C-Buffer is constructed, a state transition on the

C-Buffer is performed as follows: Given the current index,

cur, in the C-Buffer and the current symbol, tag, if

base � tag � tail, a C-Buffer hit occurs and the next array

element to visit is the one with an index of ðnextþ tag�
baseÞ in the C-Buffer; otherwise, a C-Buffer miss occurs and

the miss field of the current array element points to the state

in the original automaton to resolve the C-Buffer miss.

Filtering on the automaton with a C-Buffer is performed
as follows: The filtering is performed using a runtime stack,
which is the same as the one used in the filtering without a
C-Buffer. If a transition is a C-buffer hit, it will not reference
the original automaton. Otherwise, it is a C-Buffer miss and
the original automaton is visited. Prior to visiting the
original automaton, we save the context of the stack as
ðmSize;mTopÞ, where mSize is the size of the runtime stack
and mTop is the content on the top of the runtime stack.
Next, we replace the top of the runtime stack with the miss
value of the mTopth array element in the C-Buffer. The
filtering process continues on the original automaton until
the size of the stack becomes mSize again. At this point, we
set the content on the top of the runtime stack to be mTop
and resume the transition on the C-Buffer.

The arrows shown in Fig. 9 illustrate the filtering process
of an XML document,

<A> <B> <C> <=C> <=B> <=A>;

with the C-Buffer. The arrows with solid lines represent the
transitions on the C-Buffer and the arrow with a dashed line
redirects the transition to the original automaton. The
filtering process starts from index 0 ðcur ¼ 0Þ on the C-
Buffer. When the <A> tag is encountered, we calculate the
next index to be one by ðnextþ tag� baseÞ, where next ¼ 1,
tag ¼ A, and base ¼ A in Element 0. The subsequent event,
<B> , is processed in a similar way. When the third event
is processed, < C > , there is a C-Buffer miss and the
transition is redirected to the original automaton. After the
fourth event, < =C > , is processed, the runtime stack is
restored and the transitions resume on the C-Buffer.

4.2.2 The S-Buffer

The construction process of the S-Buffer is similar to that of
the C-Buffer. As shown on the right of Fig. 10, the S-Buffer
is a graph structure. We call the segment (node) containing
the start state of the original automaton the root segment.
Each segment in the graph contains the hot spots from a
compact row in the original automaton. The next field of
each hot spot is the address of the first hot spot in the
segment that stores the hot spots in the compact row of the
state miss in the original automaton.

The filtering process using the S-Buffer is also similar to
the one using the C-Buffer. The major difference is on the
computation of the next hot spot. Given the current hot spot
cur and the current symbol tag, if base � tag � tail, the
transition is an S-Buffer hit, and the address of the next hot
spot to visit is ðcur:nextþ ðtag� baseÞ � vÞ, where v is the
size of a hot spot. Otherwise, it is an S-Buffer miss and the
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transition is redirected to the original automaton. The

arrows with dashed lines shown in Fig. 10 illustrate the

filtering process of an XML document,

<A> <B> <C> <=C> <=B> <=A>;

with the S-Buffer.
We have developed algorithms for both insertion and

deletion operations of the hot spots in the S-Buffer. The

insertion and deletion algorithms are similar in that they

first find the target segment and next perform insertions or

deletions on that segment. Therefore, we present the

insertion algorithms only. Insertion of hot spots can be

done either one by one or in a batch. Again, since the

processes of individual insertions and those of batch

insertions are similar, we present Algorithm 2 for inserting

the hot spots from a compact row in a batch. The algorithm

takes the state s as an input parameter and inserts the hot

spots from the compact row of the state s in the original

automaton.

Algorithm 2 S-Buffer insertion: InsertStateðsÞ
1: let hp be the hot spot in the S-Buffer so that hp:miss ¼ s;
2: if hp is not nil then

3: cR is the new compact row extracted from the state s

in the original automaton;

4: Set oldSeg to be the segment that hp:next points to;

5: cR0 is the old compact row constructed based on
oldSeg;

6: start and end are the smallest and largest symbols of

cR, respectively;

7: start0 and end0 are the smallest and largest symbols of

cR0, respectively;

8: if cR is different from cR0 then

9: Allocate a new segment newSeg with a size of

ðend� startþ 1Þ;
10: for i ¼ 0; i < ðend� startþ 1Þ; iþþ do

11: h is the ith hot spot of the newSeg;

12: /� decide whether h is in the old compact row �/

13: if ðiþ startÞ � start0 and ðiþ startÞ � end0 then

14: Evaluate h using the ðiþ start� start0Þth hot

spot in oldSeg;

15: else

16: Evaluate h:miss as the ith cell of cR;
17: /� update pList of the new segment �/

18: newSeg:pList ¼ oldSeg:pList;
19: for hot spot pS in newSeg:pList do

20: pS:next ¼ newSeg, pS:base ¼ start, pS:tail ¼ end;

21: Release the space of oldSeg;

The algorithm first checks if any hot spot in the hot buffer
originates from the state s. If so, it continues to check
whether the new compact row is different from the old
compact row. If so, the algorithm performs maintenance on
the S-Buffer and inserts the new hot spots into the S-Buffer in
two steps. First, the algorithm allocates a new segment to
store the hot spots from the new compact row. Then, the
algorithm sets the fields of the hot spots in the new segment.
For the hot spots that are already in the old compact row, it
sets their fields using the values from the old segment;
otherwise, it sets their miss values and leaves other fields to
have the default values ðbase ¼ tail ¼ �1; next ¼ nilÞ.

The algorithm maintains an auxiliary list pList for each
segment to keep the addresses of the hot spots with next
pointing to the segment. At the end, the algorithm sets the
fields of the hot spots in pList by setting their next values
addressing the new segment, and updating their base and
tail values based on the new compact row. Finally, the
algorithm releases the space of the old segment.

Let us further illustrate insertions using examples shown
in Fig. 11. Starting with the original automaton and the
S-Buffer shown in Fig. 10, we insert two hot spots into the
S-Buffer: 1) A new hot spot <6; B; 20> that originates from
State 6 (Fig. 11a). The algorithm executes with s ¼ 6. First, it
finds the second hot spot in Segment S3. Next, it allocates a
new segment, S6, and updates the next, base, and tail values
of the second hot spot of S3. 2) A new hot spot <0; C; 3>
that originates from state 0 (Fig. 11b). The algorithm
allocates a new segment S02 by copying the old segment S2

and adding a new hot spot <nil;�1;�1; 3> to S02, and
updates S1 accordingly.

Having developed the maintenance algorithms, we show

how an S-Buffer handles a dynamic automaton with queries

being added or removed. Adding or removing a query is

handled using existing algorithms [14]. When queries are

added, new state transitions and new states may be added

to the original automaton, but we do not maintain the

S-Buffer until we observe that the buffer hit rate (defined as
#hit

#missþ#hit , where #hit and #miss are the numbers of hot

buffer hits and misses, respectively) is lower than a

threshold value. When queries are removed, some states

and state transitions may become invalid. If these invalid

state transitions are in the buffer, we mark them as invalid

but do not remove them until the buffer maintenance time.

4.3 Discussion

Given a workload, i.e., a sequence of documents, we define
the effectiveness of a hot buffer using speedup, the ratio of
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TM, the number of cache misses in the filtering without the
hot buffer, to BM, the number of cache misses in the
filtering with the hot buffer:

speedup ¼ TM

BM
: ð8Þ

TM and BM can be estimated using our cache behavior
model [16]. Given a hot buffer, BM is affected by the hot
buffer hit rate. We maintain the hot buffer based on its hit
rate. The threshold for the buffer hit rate is the one when
speedup is one. When the hit rate is lower than the hit rate
threshold, the hot buffer needs to be maintained.

Combining two hot spot representations and two buffer
organizations, we have developed four hot buffer types:
C-Buffers with compact rows and with symbol tables, and
S-Buffers with compact rows and with symbol tables. We
choose a suitable buffer type to maximize the speedup.
Intuitively, we use the compact row representation when
the hotness is high, and use the symbol table representation
otherwise. We use the C-Buffer when the set of hot spots is
static, and use the S-Buffer otherwise. We summarize the
choice of hot buffer types according to the hotness and the
hot spot dynamics in Table 1.

5 EXPERIMENTAL EVALUATION

In this section, we compare the performance of the matrix
and the hash table implementation schemes, validate the
accuracy of our cache behavior model, and study the
effectiveness of the hot buffer.

5.1 Setup and Methodology

All of our experiments were conducted on a 2.8GHz P4
machine with 2.0GB memory running Red Hat Linux 9.0.
The P4 processor has the hardware prefetching enabled.

The L1 cache was 32K bytes (16K bytes for instructions and
16K bytes for data). The L2 cache was 512K bytes, unified,
and 8-way associative. The cache line size for the L2 cache
was 64 bytes. We also conducted our experiments on a
P3 machine and obtained similar results as on P4 [16]. Our
XML filtering system was written in C++ and compiled
using g++ 3.2.2-5 with optimization flags O3 and finline-
functions. The filtering experiments were always memory-
resident and the memory usage never exceeded 90 percent.

We used a hardware profiling tool, PCL [4], to count
cache misses and CPU execution cycles. Table 2 lists the
main performance metrics used in our experiments.

To evaluate the performance of a filtering engine, there
are quite a few parameters to be varied for the automata
and the documents. For the automaton setup, we consider
the number of queries and the query characteristics
including the number of symbols, the number of steps,
and the probabilities of having a wildcard, a descendant
axis and a branch. To simplify this setup, we treated the
wildcard as a special symbol and fixed the maximum
number of steps to be six [12]. The symbols are uniformly
distributed in the queries. We varied the parameters listed
in Table 3. All parameters used in our experiments were in their
default settings unless specified otherwise. With these para-
meter values, the automaton can represent millions of path
queries. For example, when the number of symbols is 16,
the automaton can at most represent ð1þ 16þ 162 þ . . .þ
166Þ states and ð16þ 162 þ . . .þ 166Þ transitions, both of
which are around 16 million. These parameter values are
comparable with those in the previous work [12], [14].

For the comparison between the matrix and the hash
table, we consider the density of the automaton. We varied
the Pr== value to obtain different densities, as shown in
Table 4, with other parameters in Table 3 under their
default settings. The larger the Pr== value, the higher
density of the automaton.

For the document setup, we consider the number of
symbols, the distribution of the symbols in a document and
the depth of the document tree. For simplicity, we used the
same settings as those in the automaton setup. Additionally,
given a sequence of documents, we consider its working set
size and the hotness of the automaton after filtering this
sequence. We define a parameter fanout for a document
sequence to be the average number of child nodes for a
nonleaf node in the tag tree Tu, where Tu is the union of the
tag trees of the documents in the sequence. Given the
fanout value, the hotness of the automaton after filtering
the document sequence is around fanout

S .
We used three document sets in our experiments. Each

document set consists of five sequences of documents.
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Table 5 lists some characteristics of each sequence in these
document sets.

The hotness of the automaton after filtering each
sequence in the document set COLD is around 0.08, which
is smaller than the estimated hotness threshold (0.5). In
contrast, the hotness of the automaton after filtering each
sequence in the document set HOT is around 0.625, which is
larger than the estimated hotness threshold. These two
document sets test low and high hotness.

The sequences in the document set HOT have similar
working set sizes to the document set COLD. Both document
sets test performance impacts of different working set sizes.
Take the document set COLD as an example. Sequence 1 has a
working set smaller than the L2 cache capacity (no cache
replacement occurred in our model), and other sequences
have a working set larger than the L2 cache capacity.

For constructing the hot buffer for each sequence, we
warmed up the engine by filtering the sequence once and
performed our speedup estimation to obtain the frequency
threshold. The resulting threshold values of the hot buffers
for these sequences were all one. With the frequency
threshold, we extracted hot spots from the warmed-up
engine and constructed the C-Buffer. The C-Buffers with the
fixed-size compact row representation of Sequences 1 and 2
are smaller than the size limit (i.e., the L2 cache capacity),
whereas those of other sequences reach the size limit. The
C-Buffers with the variable-size compact row representa-
tion of Sequences 1-3 are smaller than the size limit,
whereas those of other sequences reach the size limit. The
C-Buffers with the symbol table representation of Se-
quences 1-4 are smaller than the size limit, whereas that
of Sequence 5 reaches the size limit. As the frequency
threshold for the hot spots is one for each sequence, a
C-Buffer contains all referenced transitions if it does not
reach the size limit. Otherwise, it contains only part of all
referenced transitions.

Consequently, these five sequences represent five differ-
ent cases:

1. the working set of the sequence is cache-resident
(Sequence 1),

2. the working set of the sequence is not cache-resident,
but each C-Buffer variant contains all state transitions
that are referenced by the sequence (Sequence 2),

3. the C-Buffer with either the variable-size compact
row or the symbol table representation contains all
state transitions that are referenced by the sequence
(Sequence 3),

4. only the C-Buffer with the symbol table representa-
tion contains all state transitions that are referenced
by the sequence (Sequence 4), and

5. no C-Buffer variant contains all state transitions that
are referenced by the sequence (Sequence 5).

The sequences in the document set SPAN have different
numbers of symbols. They test different spans. When
S ¼ 16, one row of the matrix-based automaton can fit into
one cache line.

Fig. 1 shows the time breakdown of filtering the
document set COLD. The numbers of cache misses were
obtained from PCL. The L1 and L2 cache miss penalties
were 10 and 200 cycles on P4, respectively, measured
through a cache-memory calibration tool [20].

We define the accuracy of our model as follows.
accuracy ¼ 1� jmeasurement�estimationjmeasurement .

Finally, we summarize the three threshold values used in
our experiments. The first one is the threshold for the access
frequency. We select hot spots from the automaton
according to this frequency threshold. The second one is
the threshold for the density of an automaton. Based on this
density threshold, we choose either the matrix or the hash
table implementation scheme for the automaton. The third
one is the threshold for the hotness of an automaton. Based
on this hotness threshold, we choose either the compact row
or the symbol table representation for the hot buffer.

5.2 Matrices versus Hash Tables

We experimentally compared the matrix and the hash table
implementation schemes. Fig. 12 shows the cache and the
overall performance ratios of the hash table over the matrix
with Pr== varied. We report the results for the fifth
sequence in the document set COLD only, because we
obtained similar results for other sequences. The trend of
the overall performance strictly follows that of the cache
performance. Both ratios increase as the Pr== value
increases. This indicates that the performance gap between
the matrix and the hash table becomes large as the density
increases.
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TABLE 4
The Density Values for Different Pr== Values

TABLE 5
Document Sets in Our Experiments



Comparing the cache performance, we find that the hash

table outperforms the matrix only when the Pr== value is

very low (i.e., the density is very low). Furthermore, the

hash table has a worse overall performance than the matrix,

due to its higher computation cost of each transition.
Table 6 shows the measured and the estimated density

threshold values for the document set SPAN. Our estima-

tion has an average accuracy of 81 percent.

5.3 Model Validation

Figs. 13a, 13b, 13c, 13d, 13e, and 13f show the estimated and

the measured numbers of L2 data cache misses for the

matrix and the hash table implementation schemes,

respectively. We evaluated our model with documents

and automata of different characteristics. First, we used the

document set COLD to validate our modeling for different

working set sizes, as shown in Figs. 13a and 13d. For both

implementation schemes, we observed in our model that
the L2 cache replacement did not occur in filtering
Sequence 1 but happened in filtering other sequences. Our
model achieved an accuracy of higher than 85 percent for
both schemes. Second, we used the fifth sequence of the
document set COLD and varied the number of queries to
validate our modeling on different automata, as shown in
Figs. 13b and 13e. We obtained similar results for the other
document sequences in our document sets. Third, we used
the document set SPAN to validate our modeling on
different spans, as shown in Figs. 13c and 13f. Our model
is consistently accurate regardless of the characteristics of
the automata and the documents. The estimation is always
lower than the measurement. One possible reason is that the
cache misses caused by other data structures in the system
(e.g., the runtime stack) are not counted in our model.

5.4 Hot Buffers

We evaluated the effectiveness of the hot buffer using two
document sets, COLD and HOT. For each document set, we
examined the effects of both capacity and conflict misses.
Since the matrix outperformed the hash table for these two
document sets, we used the matrix-based XPath-DFA as our
comparison, and evaluated the filtering performance of the
C-Buffer and the S-Buffer with static and dynamic work-
loads. Through these experiments, we find that 1) the hot
buffer (either the C-Buffer or the S-Buffer) greatly improves
the filtering performance and 2) the S-Buffer provides a
good balance between the filtering and maintenance
efficiency.

5.4.1 C-Buffer

We simulated a static workload by filtering a document
sequence five times (five runs), with and without the hot
buffer.

We first report the results obtained from the document
set COLD. The performance comparison of filtering these
five sequences is shown in Fig. 14. “w/ C-Buffer,” “w/ C-
Buffer(CR),” and “w/ C-Buffer(ST),” mean that the number
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Fig. 12. The L2_DCM and TOT_CYC ratios for the hash table over the

matrix. (a) Low Pr==. (b) High Pr==

TABLE 6
Estimated and Measured Density Threshold Values

with S Varied

Fig. 13. Model validation for the matrix and the hash table implementation schemes. (a), (b), and (c) Matrix. (d), (e), and (f) Hash table.



was measured when filtering using the C-Buffer with the

fixed-size compact row, the variable-size compact row, and

the symbol table representations, respectively, and “w/o

HB” measured without the hot buffer.
All C-Buffer variants greatly improve the cache perfor-

mance and the filtering performance. The main reasons

include: 1) The C-Buffer has a good cache locality and

reduces the number of capacity misses. 2) The contiguous

layout of the C-Buffer reduces the conflict misses. 3) The

hardware prefetching on P4 reduces the number of cache

misses on the C-Buffer. In particular, the performance of the

variable-size compact row representation is consistently

higher than those of the other two hot spot representations.
We analyze the results for each case:

. Case (a). Without the hot buffer, there are only a few
cache misses in the second and later runs. The
decrease in the number of cache misses from the first
to the second run is because the working set of the
documents becomes L2 cache-resident. The small
numbers of cache misses in the later runs are mainly
conflict misses. With the hot buffer, there are few
cache misses in the later runs as few conflict misses
occur. In this case, the improvement by the hot
buffer is relatively insignificant, except for the first
run.

. Case (b). Different from Case (a), the filtering
without the hot buffer in this case suffers from
cache thrashing. The large numbers of cache misses
in the second and later runs are capacity misses and
conflict misses. In this case, the hot buffer helps

greatly, as it contains all states that are referenced by
the sequence.

. Case (c). The hot buffer reduces the cache thrashing
significantly, but the C-Buffer with the fixed-size
compact row representation has a small number of
cache misses due to the hot buffer misses.

. Case (d). The hot buffer significantly reduces the
cache thrashing, but the C-Buffers with the fixed-size
and the variable-size compact row representations
have a small number of cache misses due to the hot
buffer misses. Although the variable-size compact
row representation has more cache misses than the
symbol table representation, it has a better overall
performance due to its fast transition nature.

. Case (e). The hot buffer reduces the cache thrashing
significantly, but all C-Buffer variants have a small
number of cache misses due to the hot buffer misses.

We further evaluated the C-Buffer with the document set
HOT, and obtained similar results except that both the
fixed-size and the variable-size compact row representa-
tions have a better cache performance as well as overall
performance than the symbol table representation. We also
performed the filtering with the S-Buffer and found that the
S-Buffer improved the filtering performance but its perfor-
mance improvement was smaller than the one with the
C-Buffer.

5.4.2 S-Buffer

Our last experiment evaluated the overall performance of
the hot buffer with dynamic workloads. For simplicity, we
simulated a dynamic workload by filtering two sequences
in a predefined order. We started by filtering one sequence
(denoted as Sequence A) five times and the filtering
performance became stable. Next, we filtered another
sequence (denoted as Sequence B) repeatedly.

To understand how the hot spot dynamics affect the
performance of the S-Buffer, we consider two kinds of
dynamic workloads: one with sequences of increasing
working set sizes (i.e., Sequence B has a larger working
set size than Sequence A) and the other with sequences of
decreasing working set sizes (i.e., Sequence B has a smaller
working set size than Sequence A). We simulated the first
workload using Sequences 1 and 5 in the document set
COLD as Sequences A and B, respectively, and the second
workload using these two sequences as Sequences B and A,
respectively. We measured the accumulated execution time
of each engine filtering Sequence B, shown in Fig. 15. “With
S-Buffer,” “With S-Buffer (CR),” and “With S-Buffer(ST)”
mean that the number was measured when filtering using
the S-Buffer with the fixed-size and the variable-size
compact row, and the symbol table representations,
respectively.

For both kinds of workloads, the S-Buffer improves the
filtering performance. For the first workload (Fig. 15a), the
change of the document sequences triggered the main-
tenance of the S-Buffer. This maintenance was because there
was a dramatic drop in the hit rate of the S-Buffer (from
around 100 percent to 11.5 percent) when the documents
changed from Sequence 1 to Sequence 5. The performance
of the XPath-DFA and the C-Buffer without maintenance
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Fig. 14. Filtering with the C-Buffer. Left: L2 cache performance; Right:

filtering performance.



were similar. In comparison, the accumulated time of the
S-Buffer with maintenance had a sharp increase at the
beginning due to the maintenance cost. After the main-
tenance was performed, the new S-Buffer was 50.4 percent
faster than the C-Buffers without maintenance.

For the second workload (Fig. 15b), when the documents
changed from Sequence 5 to Sequence 1, the hit rate of the
S-Buffer increased (e.g., the hit rate of the S-Buffer with the
symbol table representation increased from 75.4 percent to
95.2 percent) and no maintenance was triggered. This is
because the S-Buffer constructed from Sequence 5 contained
most of hot spots near the start state, which were reused
during filtering Sequence 1.

6 RELATED WORK

Cache-conscious techniques have been widely studied in
the database area. A generic cost model for various
database workloads was proposed by Manegold et al.
[21]. Our work follows this direction but specifically models
the cost of XML filtering. Specialized data structures, such
as the CSS-Tree used in decision support systems [23], have
been proposed to reduce cache misses. Several data layout
techniques, either static [23] or adaptive [15], [24], have also
been proposed for improving cache performance. Typical
cache-conscious techniques, including blocking [25], data
partitioning [25], loop fusion [25], data clustering [25],
prefetching [8], [9], and buffering [28], were proposed for
improving the cache behavior of traditional database
workloads, such as joins. In contrast, we focus on the state
transitions of automata, which are used as nontraditional
query processing operations in XML filtering.

There has also been work from other areas on cache-
conscious data structures. Klarlund et al. studied several
cache-conscious techniques to reduce the pointer chasing in
BDD (Binary Decision Diagram) applications [19]. Watson
proposed general guidelines for cache-conscious automata,
such as reorganizing the automata according to the access
patterns and popularity information [26]. Compression
techniques for automata [18] also improve the memory
performance. As the automata in our work are used for
XML filtering, we modeled their cache behavior with
respect to the filtering workload and proposed techniques
that take advantage of the locality patterns of the workload.

Automaton-based XML filtering has emerged as a
fruitful research area. XFilter [3] uses one NFA for each

path query and uses list-balancing to speed up the

processing. Both YFilter [12], [13] and XTrie [6] support

path sharing and convert a large number of XPath queries

into a single NFA. XFilter, YFilter and XTrie use various

indexing and optimization techniques to improve the

filtering throughput. The lazy DFA [14] attempts to perform

the subset construction only when needed in order to

improve the scalability. Our model and technique are

applicable to these existing engines for further performance

improvement.
With the same focus on the cache-conscious XML

filtering as this paper, our previous paper [16] modeled

an automaton with a span one and developed the hot buffer

technique to handle static hot spots. In contrast, this paper

extends the model to the case where the span can be

multiple cache lines and supports estimations for the matrix

and the hash table implementation schemes. Moreover, this

paper proposes the S-Buffer technique to support incre-

mental maintenance for dynamic hot spots.

7 CONCLUSION

Automata are the key data structure in several XML filters.

Through experiments, we find that cache stalls, especially

L2 data cache stalls, are a major hurdle for further

improving the performance of large automaton-based

XML filters. To study the cache performance of automa-

ton-based XML filtering, we have estimated the cache

misses by modeling the filtering process. Furthermore, we

have proposed a cache-conscious technique, the hot buffer,

to improve the cache performance as well as the overall

performance of automaton-based XML filtering.
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