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Abstract 

In-network sensor query processing is a cross-layer 
design paradigm in which networked sensor nodes 
process data acquisitional queries in collaboration with 
one another.  As power efficiency is still one of the most 
severe constraints in this paradigm, we propose a 
distributed, cross-layer scheduling scheme for it.  In 
this scheme, each node employs its MAC, routing, and 
query layers to negotiate with its parent its timing for 
transmission and constructs a schedule for its query 
processing. It then follows the schedule to compute, 
communicate, and sleep in each query processing cycle. 
This scheduling reduces wasted listening and receiving 
as well as the switching between active and sleeping 
modes.  Consequently, it results in 50-60% of power 
saving on real sensor nodes in our experiments.  
Additionally, it outperforms two existing scheduling 
schemes both on schedule construction efficiency and 
on schedule quality.     

1. Introduction  

In-network sensor query processing systems such as 
Cougar [23] and TinyDB [12][13] are promising for 
data acquisitional applications of wireless sensor 
networks (WSNs) [1].  With these systems, a user 
injects SQL-style queries such as “select temperature 
from sensors”, or “select avg(light) from sensors” into 
the network through a PC.  The networked sensor nodes 
then work together to process the queries and send 
results back to the PC.  This in-network query 
processing paradigm is more efficient and flexible than 
centralized query processing [1].  Nevertheless, power 
consumption remains a critical issue in these systems 
[2][3].  In this paper, we propose a distributed, cross-
layer scheduling scheme for in-network sensor query 
processing to address the power efficiency problem.   

An immediate solution to reducing the power 
consumption is to make the nodes sleep as much as 
possible [9][12][13][16][24].  Along this direction, a 
number of sleep scheduling schemes have been adopted 
to enable nodes to sleep periodically during sensor query 
processing [13][24].  These schemes roughly schedule 
active and sleeping modes at a certain layer of a WSN 
but do not use cross-layer information to construct a 
complete query processing schedule.  There are other 

schemes that schedule the communication timings of 
nodes during sensory data collection [7][9][16], but they 
also ignore the operations in query processing such as 
query injection, computation, and aggregation. 

To further optimize the power efficiency of in-
network sensor query processing, we propose a 
distributed cross-layer scheduling scheme.  It involves 
the interaction of the three layers, namely, the medium 
access control (MAC) layer [20][24], the routing layer 
[8][10][21], and the query layer [13][23].  As the query 
processing systems usually use tree networks 
[12][13][23], we focus on tree networks in this paper.  
Similar to the existing schemes, our scheme aims to 
reduce the energy waste [24] in WSNs. 

It has been well established that idle listening
[11][20], overhearing, collision, and control packet
overhead are major sources of energy waste. Among 
these four sources, idle listening and overhearing are the 
dominating ones [17].  In our previous experience with 
the MICA2 [6] networks, these two factors cost more 
than 70% of the power during query processing [22].  
Therefore, in our scheduling scheme, we focus on 
reducing idle listening and overhearing and identify a 
number of constraints for schedule construction to 
reduce collision.   

Specifically, in our scheme a node first checks what 
transmission timing is applicable in its query processing 
cycle and sends this information to its parent.  This 
applicable transmission timing is the possible time 
within which the node can transmit.  Then, the parent 
sends the node the assigned transmission timing based 
on the applicable transmission timing information 
received.  Next, the node arranges its schedule for its 
other query processing tasks in all layers.  Finally, the 
node starts to follow its schedule for query processing 
and it no longer needs to listen or to send control 
packets before transmission.  These steps require the 
information about neighbors only.  Without causing 
confusion, we refer to the neighbors of a node as the 
nodes within its transmission range, including its parent 
and children.   

We have implemented our scheduling scheme on 
real sensor nodes by modifying the source code of 
TinyOS and TinyDB [19].  We have also performed 
initial experiments on real sensor nodes as well as on an 
emulator to evaluate our scheduling scheme.  
Additionally, we have conducted simulation studies to 
compare our scheme with two other existing scheduling 
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schemes.  The results show that our scheme significantly 
improves the power efficiency of in-network sensor 
query processing.      

The remainder of this paper is organized as follows.  
Section 2 reviews the related work on scheduling 
schemes in WSNs.  Section 3 gives an overview of our 
scheduling module.  Sections 4 and 5 present the design 
and implementation of our proposed scheme.  We 
discuss our experimental results in Section 6 and 
conclude in Section 7.     

2. Related Work 

Scheduling has been applied to different layers of a 
WSN to enable a sensor node to sleep without affecting 
its other activities.  For instance, TinyDB schedules at 
the query layer: a node wakes up at the start time of each 
sample interval [13] and keeps active for a fixed period, 
typically four seconds [3].  S-MAC schedules at the 
MAC-layer: a node sleeps for some time, and then it 
wakes up and listens to the wireless channel [24].  As 
these scheduling schemes only roughly control the 
active and sleeping timings, they do not reduce the 
energy waste significantly.  In the following, we discuss 
several scheduling schemes that operate at a finer 
granularity and are closely related to ours. 

Florens et al. studied a centralized scheduling 
algorithm for data distribution and collection in WSNs 
[7].  In their algorithm, the sink allocates the 
transmission timing to all other nodes in a WSN.  This 
centralized nature requires the sink to know the current 
network topology, which is usually difficult in practice.  
Furthermore, it is often costly to disseminate schedules 
from the sink to all other nodes in a network.   

To avoid the problem in centralized scheduling, a 
number of distributed scheduling schemes have been 
proposed.  A representative scheme is Flexible Power 
Scheduling (FPS), which is a distributed on-demand 
power-management protocol for tree networks [9].  In 
this protocol, a parent randomly chooses reserved slots
and broadcasts the reserved slots.  A child sends a 
request for a specific reserved slot if it has some 
message to send, and the parent confirms the request if 
the slot has not been requested by other children.  The 
protocol helps reduce the collision between children of 
the same parent, a.k.a., siblings.   

However, one problem of FPS is that it does not 
reduce the collisions between neighbors that are not 
siblings.  Suppose two nodes A and B are neighbors, and 
node A receives at times 1 and 2 from its children.  If 
node B transmits at time 1 or 2, collision will occur at 
node A at time 1 or 2.  In such scenarios, collisions may 
become even worse with scheduling than without.   

Another example of distributed scheduling is a 
scheme proposed by Sichitiu [16].  In this scheme, a 
source node first broadcasts a special route setup packet, 
RSETUP, to set up a route and a temporary schedule 

with a neighbor.  If the RSETUP packet finally arrives 
at the sink, the nodes along the path will set their 
temporary schedules to be permanent schedules; 
otherwise, the temporary schedule of the source node 
will be removed.  If collision occurs during this setup 
process, the RSETUP packet will be postponed to the 
earliest time when the node does not transmit or receive. 

Nevertheless, Sichitu’s scheme does not consider the 
scenarios in which nodes may not get a schedule.  
Because the nodes are synchronized under the 
scheduling scheme and their tasks are similar, collisions 
may occur frequently. Consequently, even after the 
RSETUP transmission of a node is postponed, collisions 
may still occur when the transmission is started again.  
In our experience with real WSNs, we often find that the 
sink cannot receive data from some nodes.  These nodes 
are called dead nodes. The query result accuracy in 
sensor query processing is low if the number of dead 
nodes is large.  

In consideration of the existing schemes and our 
goal of improving the power efficiency of in-network 
sensor query processing, we design our scheme to have 
the following three unique features.  First, our scheme 
considers all tasks in query processing, including 
transmission as well as query injection, computation and 
in-network aggregation.  Second, our scheme attempts 
to allocate consecutive sleeping and transmission 
timings to nodes.  This consecutiveness helps save 
power; otherwise, frequent switching of running modes 
would increase power consumption [25].  Third, all 
layers of a query processing system are involved in the 
schedule construction and execution.  This cross-layer 
design improves the efficiency of the resulting schedule 
as there is detailed timing information for each operation.          

3. System Overview 

A typical WSN setup for in-network sensor query 
processing is shown in Figure 1.  In this WSN, every 
node has a unique ID.  The server is used to post queries 
to the sensor network and to receive query results from 
the network via the sink connected to it.  The sink 
forwards commands and queries to the sensor nodes.  
The sensor nodes process the queries and generate query 
results.  Finally, query results are forwarded towards the 
sink, which in turn forwards these results to the server.   

Sink node
ID: 0

Sensor node
ID: 2

Server

Sensor node
ID: 3

Sensor node
ID: 4

Sensor node
ID: 1

Figure 1.  A typical WSN setup 
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In such a WSN, data acquisition is usually done in 
the form of continuous queries [13], which collect data 
at a fixed sample interval and repeat for a long time.  
Due to their long running nature, these continuous 
queries benefit more from a good schedule than 
snapshot queries, which return results only once.  In this 
paper, we focus on continuous queries.   

The architecture of a query processing system with 
our scheduling module is shown in Figure 2.  The 
scheduling module is illustrated in the dashed box on the 
left.  The system works as follows.  First, the routing 
layer constructs a routing tree.  Then, the sink may inject 
a query into the network.  A node starts to construct a 
schedule when it receives a query.  When all nodes 
involved in the query have constructed their schedules, 
the sink broadcasts a synchronization signal.  In turn, 
these nodes synchronize with the sink and start to run 
following their schedules.  During this process, both the 
construction of the routing tree and that of the schedules 
are reported from bottom up to the sink.  When all 
children of the sink have reported, the sink knows that 
the routing tree or the schedule construction has 
completed. 

R o u tin g  L a ye r

Q u e ry L a ye r

M A C  L a ye r

R ou te  M a in te n an c e

S e le c tion  /  P ro je c tion  /  Jo in  / A g g re ga t io n

T ra n s m is s ion  /  
R e c e i v in g

R ou te  S e le c tio n

C o llis i on  D e te c tion

S c h e d u lin g M o d u le

S c h e d u le   C on s tru c tio n

T im e  S yn c h ron iz a tion  

Q u e ry  S c h e d u lin g  

Schedule
Execution

Figure 2.  Architecture of scheduling module 

In the system, the scheduling module is mainly 
responsible for three tasks.  First, schedule construction.  
Even though schedule construction is performed at the 
routing layer, it requires information from both the 
query layer and the routing layer.  Second, time 
synchronization.  Time synchronization is done at the 
MAC layer.  We adopt the synchronization mechanism 
designed by Su Ping, which has an accuracy of a few 
milliseconds [15].  Since the time unit is at the level of a 
hundred milliseconds in our scheme, this accuracy is 
sufficient.  Third, schedule execution.  The execution of 
the schedule on a node is to control the timing for each 
task at all three layers.      

We use a slot as the time unit in a schedule and 
number slots in the form of periodic modular m, if a 
sample interval has m slots [9].  Specifically, the slot 
number s of the slot that starts at time t is computed in 
Equation (1), given the slot length ls, the schedule start 
time t0, and the number of slots m in a sample interval.   

mmod
ls

tts 0

⎥⎦
⎥

⎢⎣
⎢ −=                        (1)   

We define the length of a slot as the period within 
which the largest data packet can be successfully 
transmitted out of a node.  Consequently, a slot assigned 
to a task in query processing may be longer than needed.  
Nevertheless, the power consumption caused by this 
difference is little (at the micro-joule level on MICA2 
motes).  Furthermore, this additional time can be used to 
tolerate the time synchronization errors.   

Depending on the operations in a task, a slot can be a 
sleeping slot, a transmission slot, a processing-listening 
/ receiving (PL/R) slot, or a query injection / 
maintenance (Q/M) slot.  In a transmission slot, a node 
sends a packet.  In a PL/R slot, a node listens to the 
wireless channel and receives data packets, if any.  In a 
Q/M slot, a node listens to the channel for a new query, 
or sends or receives route maintenance packets.  Most 
routing protocols need such route maintenance packets 
to manage routes between nodes [4][10].      

In the following, we present schedule construction 
and execution in detail.  We omit the details of time 
synchronization as it is not the focus of this paper.    

4. Schedule Construction 

Figure 3 shows the schedule construction module.  
The algorithm NegotiateTransmissionSlots negotiates 
the transmission slots for a node.  It has two sub-
procedures: DetermineApplicableTransmissionSlots that 
determines the applicable transmission slots for the node, 
and AllocateChildrenTransmissionSlots that allocates 
the transmission slots to the children of the node.  After 
the transmission slots are allocated for a node, 
ConstructSchedule constructs the schedule on the node.  

NegotiateTransmissionSlots

DetermineApplicableTransmissionSlots AllocateChildrenTransmissionSlots

Allocated
Transmission
Slots ConstructSchedule

Neighbor Information, Local Information 

Schedule

Figure 3.  Schedule Construction 

This schedule construction module attempts to 
follow a number of constraints so that in the resulting 
schedule query results can be successfully transmitted to 
the sink.  These constraints are listed in Section 4.1.   

4.1. Constraints for Schedule Construction 
We formulate the following four constraints for 

schedule construction. 

(i) Neighbor nodes have different transmission slots. 
(ii) Siblings have different transmission slots.  
(iii) For any two neighbor nodes A and B, all children 

of node A have different transmission slots from 
node B. 
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(iv) The transmission slots of a parent node in each 
sample interval are later than its children.  

Constraint (i) ensures that the signals from a sender 
do not clash with its neighbors’.  However, if siblings 
are not neighbors, they may simultaneously send packets 
to their parent, where collision would occur.  Constraint 
(ii) is to avoid this kind of collision. Constraint (iii) 
prevents another kind of collision, illustrated in Figure 
4.  In this figure, A and B are neighbors, and D is the 
child of A.  As B and D may not be neighbors, it is 
possible that B and D transmit simultaneously, which 
causes collision at node A.  In addition to the first three 
constraints, Constraint (iv) is necessary to allow a parent 
to merge or to aggregate the query results from its 
children.  However, if there is no packet merging or 
aggregation at the parent, Constraint (iv) is unnecessary. 

C

S

A

BD

Figure 4.  An example for Constraint (iii) 

All of these constraints focus on collisions at the 
parent node of a sender instead of completely collision-
free schedules because it is impractical for a WSN to set 
up completely collision-free schedules in a distributed 
way due to the high overhead.  Moreover, most of the 
times completely collision-free schedules are 
unnecessary for query processing systems in practice; 
these systems can work well as long as the query results 
of a node can be successfully received by its parent.  An 
example of this non-parent collision is shown in Figure 
5.  In this example, nodes D and E are both neighbors of 
B.  If D and E transmit simultaneously, B may receive 
colliding messages from D and E.  However, the parents 
A and C can still get correct messages since collisions do 
not occur at nodes A and C.

E

C

M K

A B

D

P
Q

Node P is the parent 
of Q

Node M and K are 
neighbors 
(NOT parent-child) 

     
Figure 5.  An example of the collision  

Next, we prove that these constraints are sufficient to 
ensure no collisions occur at the parents of the senders.   

Property 1. Constraints (i) - (iii) ensure that no 
collisions occur at the parent of a sender during 
transmission.   

Proof. We prove by contradiction.  Suppose a collision 
occurs at the parent P of a sender S and the four 
constraints are observed.  By the definition of collision 
[18], there are two possible causes: (1) several neighbors 
of P, including S, are sending to P simultaneously, or (2) 
nodes S and P are sending simultaneously.   

Assume that the collision occurs due to the first 
cause.  If among all sending neighbors, only sender S is 
a child of P, then S has the same transmission slot as 
some neighbors of P, which violates Constraint (iii).  
Otherwise, it violates Constraint (ii).  Hence, the first 
cause is impossible as long as the constraints are 
observed.   

The second cause contradicts with Constraint (i) 
since nodes S and P are neighbors.  

4.2. Negotiation of Transmission Slots  
 Following the constraints, we design the algorithm 

in the scheduling module to reduce the collisions.  
Algorithm 1 shows NegotiateTransmissionSlots in this 
module, which runs on each node.  It has two inputs. 
One is the table of neighbor information, denoted as 
NbrTbl.  This table stores the information of a neighbor 
node such as its node ID, hop count, parent node ID, 
timestamp of the last received route maintenance packet, 
and a flag indicating whether it is a child of the node.   

Algorithm 1 .  NegotiateTransmissionSlots
Input:  NbrTbl , LocalInf
Output: TSI
1: switch (event)
2:     case: ScheduleTimer fired
3:          if  ATS == null & (IsLeaf() or CTS != null)
4:               ATS= DetermineApplicableTransmissionSlots 
                                                                    (NbrTbl , LocalInf) 
5:                if ATS != null 
6:                      if !IsSink()
7:                           send ATS to parent 
8:                      else
9:                           TSI = AllocateSinkTransmissionSlots(ATS) 
10:                         output TSI 
11:         if  HasChildren()  & CTS == null 
12:              CTS = AllocateChildrenTransmissionSlots 
                                                       (NbrTbl , LocalInf, CATS)

13:              if CTS !=null
14:                    send CTS to children 
15:    case: received TSIQ from a non child / parent neighbor Q
16:        mark TSIQ as non-applicable slots for transmission 
17:    case: received ATSK from a child K
18:        insert ATSK to CATS 
19:    case: received CTSP from the parent node P
20:        extract TSI from CTSP and broadcast TSI to neighbors
21:        output TSI  
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The other input, denoted as LocalInf, is the 
information of the node itself, such as the node ID, the 
parent node ID and the hop count.  The output is the 
information of the allocated transmission slots of the 
node.   

There are four major variables in Algorithm 1.   
Applicable Transmission Slots (ATS) describes all 
possible slots for the node to transmit packets.  Children 
Applicable Transmission Slots (CATS) is the set of the 
ATSs of all children of the node.  Children 
Transmission Slots (CTS) are the slots allocated by the 
node to its children (if any), and the Transmission Slot 
Information (TSI) describes the transmission slots 
allocated by the parent of the node.  These four variables 
are all initialized as null.   

Algorithm 1 uses a timer called ScheduleTimer, 
which signals a timer event every time interval Tsh. Tsh
is set to be MAX_NBR_NUM * ls, where  
MAX_NBR_NUM is a constant, the maximum number 
of neighbors of a node, and  ls is the length of a slot.  
The length MAX_NBR_NUM * ls allows a node to have 
sufficient time to receive the packets containing the 
information of the transmission slots from its neighbors.   

When there is a ScheduleTimer event, if the 
applicable transmission slots of the node are not 
determined yet, and if the node (1) is a leaf node or (2) 
has successfully allocated transmission slots to its 
children, DetermineApplicableTransmissionSlots is 
called to determine the applicable transmission slots 
(ATS) for the node.  When the applicable transmission 
slots are successfully determined, the node sends them 
in a packet to its parent.  After a parent node has 
received all applicable transmission slots of its children, 
AllocateChildrenTransmissionSlots is called to attempt 
to allocate the transmission slots for the children.  If the 
allocation is successful, the parent sends the allocated 
transmission slots (CTS) to its children.   

When a node receives the allocated transmission 
slots from its parent, Algorithm 1 on this node outputs 
the allocated transmission slots (TSI) and broadcasts 
them.  If another node who is not the broadcasting 
node’s child or parent receives this information, it marks 
these slots as non-applicable slots for transmission (Line 
16).  That is, it will not use these slots as transmission 
slots for its children or as applicable transmission slots 
for itself. Since the sink node does not have a parent, it 
allocates the transmission slots for itself when it has 
finished the allocation of the transmission slots to all its 
children (Line 9).  

For reliability, a node replies an ACK when it 
receives the applicable transmission slots from its child 
or the allocated transmission slots from its parent.    

4.2.1. The Sub-Procedures  
Procedures 1 and 2 show two sub-procedures used in 

Algorithm 1, DetermineApplicableTransmissionSlots
and AllocateChildrenTransmissionSlots.   

Procedure 1 makes a node wait for two types of 
neighbors that have not been allocated transmission 
slots: (1) lower hop neighbors (Line 4); or (2) non-
sibling neighbors at the same hop but with a smaller 
node ID than this node (Line 9).  Lower hop nodes are 
the nodes that have larger hop counts than this node.  
This waiting mechanism makes the neighbors start at 
different times to determine their applicable 
transmission slots.  The reason is that if the neighbor 
nodes start this process simultaneously, there may be 
conflicts in their applicable transmission slots.  
However, this waiting mechanism may cause deadlocks 
due to node failure or cyclic waiting.  To break the 
deadlocks, Procedure 1 uses two timeouts, HTimeout
and NTimeout. These timeouts will be discussed in 
detail in Section 4.2.2 together with those timeouts used 
in Procedure 2.   

   
Using NeededPLRSlots and the known allocated 

transmission slots of the neighbors, the function 
FindAvailableSlots applies the four constraints to 
determine the applicable transmission slots.  
NeededPLRSlots is acquired from the query layer via 
calling QueryLayer->GetNeededPLRSlot, which outputs 
all slots needed in processing and receiving.  To follow 
Constraint (iv) in Section 4.1, FindAvailableSlots starts 
searching for the available transmission slots that are 
later than the latest allocated transmission slot of the 
children.  As illustrated by the example in Figure 6, the 
operations of determining the applicable transmission 
slots are similar to memory allocation.  In Figure 6, 
because slot 7 should be reserved for query processing 
as required by the query layer, the applicable 
transmission slots are 8-12.  

Slot sequence number

1 8

Transmission slot of neighbors

Applicable transmission slots

3 4 5 9 10

Possible PL/R slots for the node (1-7)

6 72 11 12

Figure 6. Search applicable transmission slots 

Procedure 1 .  DetermineApplicableTransmissionSlots 
Input:   NbrTbl , LocalInf
Output: ATS  if successful; otherwise null 
1: HTimeout - - 
2: if  HTimeout > 0 
3:     for (i =0; i<  NbrTbl.Size; i++) do
4:      if IsLowerHopNbr( NbrTbl[i]) & !NbrTbl[i].TSI
5:            return null
6: NTimeout - - 
7: if  NTimeout > 0   
8:     for (i =0; i<  NbrTbl.Size ; i++) do
9:       if IsSameHopSmallIDNbr(NbrTbl[i]) & !NbrTbl[i].TSI
10:           return null
11: NeededPLRSlots = QueryLayer -> GetNeededPLRSlots() 
12: ATS =  FindAvailableSlots (NeededPLRSlots, LocalInf) 
13: return ATS 
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Procedure 2 allocates transmission slots for the 
children of a node.  It makes the node wait for lower hop 
non-children neighbors that have not been allocated 
transmission slots yet (Line 4).  This is to ensure the 
transmission slots are allocated in the bottom-up order, 
to observe Constraint (iii) in Section 4.1.  In addition, 
Procedure 2 does not allocate the transmission slots to 
the children until the parent receives all of the applicable 
transmission slots (ATS) from its children or CTimeout 
is decreased to 0.  Two reasons are involved.  First, it 
enables the children to receive their allocated 
transmission slots in a single message to save the 
communication cost.  Second, it allows the parent to 
allocate consecutive transmission slots to its children.     

Procedure 2. AllocateChildrenTransmissionSlots
 Input:  NbrTbl , LocalInf, and CATS 
 Output: CTS if successful; otherwise null 
1:   PTimeout - - 
2:   if PTimeout > 0 
3:       for (i =0; i< NbrTbl.Size; i++) do 
4:          if IsLowHopNonChildNbr(NbrTbl[i]) & !NbrTbl[i].TSI
5:              return null    
6:   CTimeout - - 
7:   if not received ATS of all children and CTimeout> 0  
8:       return null       
9:   CTS = FindAvailableChildrenSlots (CATS, LocalInf) 
10: return CTS 

The function FindAvailableChildrenSlots in 
Procedure 2 allocates all children of a node with 
transmission slots in consideration of their applicable 
transmission slots and the allocated transmission slots of 
the neighbors of the node.  The constraints are observed 
during the search for available slots.  Figure 7 shows an 
example of searching available slots for a child.  In 
Figure 7, the applicable transmission slots of the child 
are 8-12 and the child needs two transmission slots.  The 
parent starts searching from 8 and finds that slots 8 and 
9 are occupied by the neighbors of the node.  Therefore, 
the node allocates slots 10-11 to its child.   

Slot sequence number

1
8

Transmission slot of neighbors

Applicable transmission slot of the child

3 4 5
9 10

6 72 8 9
11 12

Figure 7.  Transmission slots of a child 

4.2.2. Timeouts in the Sub-Procedures   
Because a node waits for some nodes to be allocated 

transmission slots in Procedure 1 or 2, deadlocks may 
occur due to node failure or circular waiting between 
neighbors.  To break deadlocks, we use four timeouts in 
these two procedures.  Table 1 shows these timeouts.   

HTimeout and NTimeout in Table 1 are used in 
Procedure 1.  HTimeout is designed for breaking the 

deadlocks in waiting for lower hop nodes.  Its value is 
calculated using the hop count of the node and the 
maximum number of hops (MaxHop).  MaxHop is 
obtained by making nodes broadcast their newest 
knowledge about the maximum number of hops in the 
network.  With this initialization, the difference between 
the HTimeouts of nodes at two consecutive hops is 
MAX_NBR_NUM.  This difference allows lower hop 
nodes to receive sufficient information from neighbors 
so that they can finish their schedule construction before 
upper hop nodes start the schedule construction.  

Table 1.  Timeout variables  
HTimeout (MaxHop - HopCount) * MAX_NBR_NUM 
NTimeout NodeID 
PTimeout NodeID 
CTimeout max (ChildrenNodeID) 

We set the value of NTimeout as the node ID.  The 
motivation is to make nodes time out at different times 
so that they do not compete with each other when they 
determine their applicable transmission slots.   

The two timeouts in Procedure 2 are PTimeout and 
CTimeout.  The value of PTimeout is also the node ID.  
Similar to NTimeout, this value enables the neighbors to 
start the allocation of transmission slots for their 
children at different times.  The value of CTimeout is the 
largest of the node IDs of the children.  This value 
allows the parent to wait for the child with the largest 
node ID, which has the largest NTimeout.   

In summary, the timeouts enable nodes to get 
allocated transmission slots at different times and to 
allow neighbors to exchange the information about their 
slots.  Hence, the transmission slots of nodes rarely have 
conflicts.   

4.3. Complete Schedule for Query Processing  
With the allocated transmission slots, the procedure 

ConstructSchedule arranges the time slots for PL/R, 
Q/M, and sleeping of a node.  The PL/R slots are 
arranged to be sooner than the transmission slots so that 
the query result is ready for transmission.  The Q/M 
slots are located before the end of every sample interval.  
This arrangement of Q/M slots is to allow the nodes to 
finish the transmission of the query results before they 
receive new queries.   

For reliability, ConstructSchedule is equipped with 
the following two mechanisms.  First, there are two 
buffer slots before the PL/R slots in the schedule.   
These buffer slots are used to accommodate 
synchronization inaccuracy in query processing.  Second, 
the sink is allowed to be always active or to have a 
schedule similar to other nodes, depending on if it is 
powered by an external outlet or by battery.  This 
differentiation is to allow other nodes to receive a query 
from the server as soon as possible with the sink’s 
power consumption considered.   
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An example of complete schedules for a simple data 
collection query in a 4-node and 3-hop WSN is 
illustrated in Figure 8.  Nodes 1 and 2 are leaf nodes at 
the same hop count.  Node 3 is the parent of nodes 1 and 
2, and needs three transmission slots to transmit the 
query results of nodes 1 and 2 and its own.  The sink is 
always active since it is powered by an external outlet.     

Time 
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af
   

 L
ea
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Si

nk
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TransmissionPL/R

Q/M Active (sink only)

SleepingRouting
tree

1 2

3

0

Node 1
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H
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H
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H
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H
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Figure 8.  An example of complete shedules   

In addition to constructing a single query schedule as 
shown in Figure 8, our scheme can construct schedules 
for multiple queries.  The multi-query construction 
process runs query by query.  After the schedule for one 
query is constructed, the nodes will construct the 
schedule for the next query, until the schedules of all 
queries are constructed. During this process, the 
algorithm will consider only the sleeping slots in the 
existing schedules as applicable slots for transmission 
and receiving.     

5. Schedule Execution  

After schedules are constructed on nodes involved in 
query processing, the sink starts time synchronization.  
The nodes begin to execute their schedules as soon as 
they finish the time synchronization.  The execution of a 
schedule involves the timing control of all layers in a 
WSN.  

We adopted the query layer of TinyDB and modified 
the service scheduler of TinyDB so that the scheduler 
can roughly control the timing of query result 
transmission.  This timing control is necessary because 
the MAC layer of a WSN does not allow long delays.   

In our scheme, the MAC layer first checks whether it 
is time for transmission when it receives a packet from 
the query layer through the routing layer.  If the time is 
earlier than the allocated transmission time, the MAC 
layer copies the message to a memory buffer, and sets 
up a timer to automatically transmit the message when it 
is time for the transmission.  Note that, the interval of 
waiting should be shorter than the interval between two 
transmissions.  Otherwise, the buffer may be overwritten 
by another message.  Therefore, the query layer is 
designed to roughly control the transmission timing.  
With this rough timing control in the query layer, the 

delay in the MAC layer will not cause the overwriting 
problem in the memory buffer.   

The task of the routing layer in the schedule 
execution is to control the timing of transmission and 
receiving the route maintenance messages.  The timing 
control process in the routing layer is similar to that in 
the query layer.   

6. Evaluation 

To evaluate our scheme, we first used simulation to 
compare the schedules of our scheme (denoted as DCS)
with those of Flexible Power Scheduling (FPS) [9] and 
Sichitiu’s Scheduling (SS) [16].  Choosing simulation is 
for a fair comparison of the schemes since Sichitiu’s 
scheduling scheme is not applicable to the MICA2 
motes [6] due to the memory limitation of the motes.   

We then used a real MICA2 sensor network and an 
emulated network to measure the performance of our 
scheme.  The real sensor network enabled us to study 
the applicability and power consumption of our scheme 
in real world in-network query processing.  VMNet, on 
the other hand, can provide us detailed runtime 
information about the neighbors of each node, the 
routing tree, and the schedules in a network.  

Our scheme was implemented into TinyDB, a well-
known query processing system [12][13].  We denote 
TinyDB with our scheme Optimized TinyDB and the 
original version of TinyDB Original TinyDB.  FPS and 
SS are not applicable to query processing systems, as 
they do not support queries but only schedule the 
communication from sensor nodes to the sink.  Hence, 
we studied the performance improvement on query 
processing for our scheme only.   

6.1. Scheme Comparison  

6.1.1.  Simulation Setup 
To compare the schemes, we used the same 

experimental setup as that Sichitiu used [16].  The 
simulated network consisted of 100 nodes randomly 
deployed in an 80m*80m rectangular area and the 
transmission range was 25m.  Although the nodes were 
randomly deployed, there was at least one path from 
each node to the sink in the simulated network.  For 
fairness, we used the same slot length in FPS and SS as 
in ours.  In our measurement, the time required for 
transmission the largest data packet on MICA2 motes 
was about 80ms.  Therefore, we set the slot length to be 
120ms, which is sufficient to tolerate a time difference 
of ± 20ms in synchronization.      

Since FPS and SS are inapplicable to query 
processing, we ran the three schemes to construct 
schedules for a simple data collection application that 
sampled the temperature of each node every 60 seconds.  
In this application, we disabled the allocation of slots for 
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the computation of query processing in our scheme since 
this application did not have a query layer.     

6.1.2. Scheduling Overhead 
First, we measured the time of constructing a 

schedule in the three schemes.  We regard the schedule 
construction as finished when the schedule has been 
unchanged for 10 simulated days (i.e., the time in the 
simulated nodes elapsed 10 days).  The schedule 
construction time was the interval from the start time of 
the schedule construction to the time the schedule was 
last updated.  The results are shown in Table 2.     

Table 2 shows that SS took the longest time to 
construct a schedule whereas FPS the shortest.  This 
result is because a node running SS cannot get a 
schedule until the sink sends an ACK to the node, which 
takes a long time especially when the node is far from 
the sink.  As a node running our DCS needs to wait for 
some nodes, the construction time is also longer than 
that of FPS.  FPS is the simplest among the three and 
omits some constraints considered in our scheme.  
Consequently, it is the fastest in schedule construction.   

Table 2.  Scheduling overhead 
Scheme Schedule construction time (seconds) 

FPS 420 
SS 7140 

DCS 900 

6.1.3. Schedule Comparison 
To thoroughly compare the constructed schedules, 

we chose two metrics that are directly related to the 
performance of WSNs. 

The first metric is the number of dead nodes.  A
dead node is one from which the sink never receives 
packets, either directly or indirectly.  As sensory results 
are obtained from individual nodes in a network, the 
number of dead nodes affects the accuracy of query 
results.  Dead nodes can be further divided into two 
classes.  The first class is non-scheduled nodes, which 
have no allocated transmission slots in a schedule.  The 
second class is conflict-scheduled nodes, which have 
allocated transmission slots but these slots conflict with 
those of their neighbors.    

The second metric is the average frequency of 
switching between an active slot and a sleeping slot 
(AFS).  We chose this metric to evaluate the schemes 
because frequent switching between active and sleeping 
modes in a node increases power consumption [14].  
Given the number of switches between active and 
sleeping, Sas, within a sample interval ls, AFS is 
computed in Equation (2). 

ls
SAFS as=                            (2) 

Table 3 shows the number of dead nodes in the 100-
node network running the schemes.  It can be seen that 
the network running FPS had more conflict-scheduled 
nodes than running DCS.  The reason is as follows.  FPS 

only considers the collision avoidance among siblings.  
However, neighbors that have different parents may take 
the same transmission slots.  These nodes are the 
conflict-scheduled nodes.  In comparison, DCS may 
allocate conflict transmission slots to neighbors only 
when the transmission slot information of neighbors is 
lost.    

Table 3 also shows that SS had no conflict-
scheduled nodes whereas FPS and DCS had no non-
scheduled nodes.  The reason is rooted in the principles 
of the scheduling schemes.  In SS, after a node sends 
RSETUP packet, the node often fails to receive the 
ACK packet from the sink due to collisions.  When this 
happens, the receiving and transmission slots of the 
nodes along the path are all wasted since the source 
node will not send packets in these slots.  These wasted 
slots may in turn cause some nodes to have no slots to 
send or to receive and to become the non-scheduled 
nodes.  In contrast, FPS and DCS do not result in such 
wasted slots, and can always allocate schedules to nodes 
of sufficiently long sample intervals.      

Table 3.  Number of dead nodes 
 Scheme Conflict-schedule nodes Non-scheduled nodes

FPS 15 0 
SS 0 13 

DCS 4 0 

The average frequency of switching between an 
active slot and a sleeping slot (AFS) is shown in Table 4.  
It demonstrates that DCS has the lowest frequency of 
switching.  This is because our scheme makes effort to 
allocate consecutive transmission slots to nodes.    

Table 4.  Average frequency of switching 
Scheme AFS ( #switches / second )

FPS 0.203 
SS 1.318 

DCS 0.093 

6.2. Query Processing Performance  

6.2.1. Experimental Setup 
We used 10 Crossbow MICA2 motes [6] to run the 

optimized TinyDB and the original TinyDB.  The tool 
for measuring the power consumption of the motes was 
an HP- 4156 oscilloscope in an electronic lab (Figure 9).   

Figure 9.  The power measurement setup     
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We also used VMNet [22] to emulate the MICA2 
motes and evaluated our scheme on this realistic testbed.  
We chose VMNet because it can provide detailed 
runtime information of emulated nodes whereas a real 
WSN cannot due to the limitation of the real sensor 
nodes and the measuring equipment.  VMNet emulates 
networked sensor nodes at the CPU instruction level.  It 
directly executes binary code that is compiled for real 
sensor nodes.       

The configuration of the MICA2 motes that we used 
and that VMNet emulated were the same.  The sensor 
board was MTS300CA and the processor board 
MPR410CA.  The sink consisted of an MIB510 
interface board and an MPR410CA processor board.  
The transmission power of the radio circuit (CC1000) 
was 11.1mA [5] and the transmission range remained 
constant in the experiments.  The source code of TinyOS 
and TinyDB running on the motes or on the emulated 
nodes was version 1.1.0 [19].   

The network topology of the emulated network in 
VMNet is shown in Figure 10.  An emulated network in 
VMNet is called a VMN.  There were three hops in this 
VMN.  This topology can be used to test Constraint (iii) 
of Section 4, the most complex one among the four 
constraints.  In addition, node 6 was the neighbor of 
nodes 8 and 9, and node 7 was the neighbor of nodes 1 
and 5.  These neighboring nodes were useful for testing 
constraint (i) of Section 4.  Finally, node 2 had two 
children, which can be used to test the other two 
constraints of Section 4.     

We attempted to deploy the 10 real motes to have 
the same topology as that of the VMN in Figure 10.  
However, the resulting real network topology was not 
exactly the same as that of the VMN.  In particular, the 
number of neighbors of a node in the real WSN may be 
different from the corresponding node in the VMN, 
because the transmission range of a real sensor node is 
irregular [5].  Nevertheless, the two topologies were 
similar enough for performance validation purposes. 

We ran Query 1 with three representative sample 
intervals - 2 seconds, 10 seconds and 60 seconds.  We 
chose this query to show whether the transmission slots 
enable partial aggregation at the parent, since it involves 
an aggregation function.    

Query 1: SELECT avg(light) FROM sensors

6.2.2. Schedule for In-Network Aggregation 
We examined the debugging messages in VMNet 

that show the schedule when running the Optimized 
TinyDB in the VMN.  The schedules constructed by our 
scheme on the emulated nodes are shown in Figure 10, 
with the sleeping slots omitted for simplicity.  The 
resulting schedules observed all four constraints of 
Section 4 and allowed the parent nodes to perform 
partial aggregation.  In particular, each parent node 
needed to transmit only one packet in every sample 
interval due to the partial aggregation.   
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Figure 10.  The VMN topology with schedules   

6.2.3. Power Consumption  
After the schedules were constructed and the nodes 

started query processing in the VMN, we measured the 
average one-minute power consumption of nodes 
running the Optimized TinyDB and the Original 
TinyDB.  Figure 11a shows the results.  It can be seen 
that the Optimized TinyDB reduces the average node 
power consumption by 42%, 67%, and 75% at the 
sample interval of 2s, 10s, and 60s, respectively.  The 
improvement is mainly due to scheduling: in each 
sample interval, a node keeps active only for a few slots, 
and sleeps in the other slots.  Note that the original 
TinyDB also made nodes sleep, but a node in the 
original TinyDB was put into sleep only after it had 
been active for at least 4096 milliseconds in a sample 
interval.  Due to this condition, even though such a node 
would be sleeping for the remainder of the interval, the 
total sleeping time in the original TinyDB was much 
shorter than that in the optimized TinyDB.  

Similarly, we measured the one-minute power 
consumption of nodes in the 10-node real WSN.  
Because it is slow to copy the measured power 
consumption information out of the oscilloscope, we 
picked nodes 2, 4, and 7 as the representative nodes and 
measured them.  The average power consumption of 
these nodes was improved by 53%, 67%, and 64% at the 
sample interval of 2s, 10s, and 60s, respectively, as 
shown in Figure 11b.  The difference between the power 
consumption measured in VMNet and that in the real 
WSN was within ±15%.  Possible reasons for this 
difference include the difference in the topologies and 
the measurement errors of the oscilloscope [22].       

    a.                                               b. 
Figure 11.  Power consumption improvement   
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7. Conclusion and Future Work  

We have presented the design and implementation of 
our distributed, cross-layer scheduling scheme for 
power-efficient in-network sensor query processing.  
This scheme requires interaction between neighbors 
only.  Moreover, our scheme utilizes cross-layer 
information: each node determines its slots from the 
information of both the network and the query; 
similarly, parents allocate slots to their children 
considering the requirements of the queries being 
processed.  With this distributed and cross-layer design, 
our scheme is able to reduce the number of dead nodes 
and the switching frequency between active and 
sleeping modes, and to support both data collection and 
aggregation queries with significant power saving.   

We have evaluated our scheme using simulation, 
emulation, and real sensor nodes.  The simulation results 
show that our scheme outperforms the other two existing 
schemes on both the number of dead nodes and the 
switching frequency in the resulting schedule.  The 
emulation and the real WSN results demonstrate that our 
scheme significantly reduces power consumption of in-
network sensor query processing.   

Although the schedule construction time is relatively 
short (at the minute level) for long-running queries, it is 
still inefficient to reconstruct a schedule from scratch 
when there is a change in the network topology or a new 
query arrives.  As one direction of future work, we are 
studying incremental schedule update.   
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