
Distrib Parallel Databases (2012) 30:385–399
DOI 10.1007/s10619-012-7099-x

High-performance short sequence alignment with GPU
acceleration

Mian Lu · Yuwei Tan · Ge Bai · Qiong Luo

Published online: 10 August 2012
© Springer Science+Business Media, LLC 2012

Abstract Sequence alignment is a fundamental task for computational genomics re-
search. We develop G-Aligner, which adopts the GPU as a hardware accelerator to
speed up the sequence alignment process. A leading CPU-based alignment tool is
based on the Bi-BWT index; however, a direct implementation of this algorithm on
the GPU cannot fully utilize the hardware power due to its irregular algorithmic struc-
ture. To better utilize the GPU hardware resource, we propose a filtering-verification
algorithm employing both the Bi-BWT search and direct matching. We further im-
prove this algorithm on the GPU through various optimizations, e.g., the split of a
large kernel, the warp based implementation to avoid user-level synchronization. As
a result, G-Aligner outperforms another state-of-the-art GPU-accelerated alignment
tools SOAP3 by 1.8–3.5 times for in-memory sequence alignment.

Keywords Sequence alignment · GPGPU · Parallel systems

1 Introduction

The second-generation DNA sequencing devices have been widely used since 2007.
They produce short DNA fragments, or short reads, at an ultra-high throughput.

Communicated by Judy Qiu and Dennis Gannon.

M. Lu (�) · Y. Tan · G. Bai · Q. Luo
Hong Kong University of Science and Technology, Hong Kong, China
e-mail: lumian@cse.ust.hk

Y. Tan
e-mail: ytan@cse.ust.hk

G. Bai
e-mail: gbai@cse.ust.hk

Q. Luo
e-mail: luo@cse.ust.hk

mailto:lumian@cse.ust.hk
mailto:ytan@cse.ust.hk
mailto:gbai@cse.ust.hk
mailto:luo@cse.ust.hk


386 Distrib Parallel Databases (2012) 30:385–399

Sequence alignment is a fundamental genomics application, where input reads are
matched to a reference sequence. Short sequence alignment is challenging due to the
large number of input reads. We propose G-Aligner, a short sequence alignment tool
accelerated by graphics processors, or GPUs.

A number of short sequence alignment tools have been developed, including
2BWT [4], Bowtie [5] and Bowtie2 [1], BWA [6], SOAP2 [7], SOAP3 [9], WHAM
[8], and BarraCUDA [3]. These tools employ various kinds of indexing techniques
to speed up the alignment process. Additionally, some of them also take advantages
of modern processors, such as multi-core CPUs and GPUs. In comparison with this
collection of work, we make the following contributions.

First, we propose a hybrid algorithm employing a filtering-verification framework
on the GPU. On the CPU, Bi-directional Burrows-Wheeler Transform (Bi-BWT) [4]
based index search is the most efficient algorithm due to its low computation com-
plexity. However, due to its high irregularity in algorithmic structure and memory
access pattern, this algorithm cannot fully utilize the GPU hardware resource. There-
fore, we combine this Bi-BWT search and the direct matching. The Bi-BWT search
first generates matched position candidates, and then the original reads are directly
compared with the reference based on the position candidates. As the direct matching
is efficient on the GPU, the overall performance is improved significantly.

Second, we carefully optimize the GPU-based implementations through various
techniques. Our GPU-based filtering phase is similar to SOAP3, but with more tech-
niques considered, such as the split of large kernels, ordered reads, and the utilization
of cached memory. For the direct matching, we implement it based on GPU thread
warps, to avoid user-level synchronization.

Finally, we conduct fair comparison for G-Aligner and state-of-the-art alignment
tools, including 2BWT [4], WHAM [8] and SOAP3 [9]. We consider the both align-
ment quality and speed. Our evaluation results show that G-Aligner outperforms all
existing tools on human genome data sets.

The paper is organized as follows. We introduce the background in Sect. 2. We
describe our algorithm and GPU-based implementation in Sect. 3. We perform eval-
uations in Sect. 4 and conclude in Sect. 5.

2 Background and related work

2.1 Short sequence alignment

A short read is typically tens of base-pair (bp) long. For a given reference sequence
and a large number of reads, sequence alignment is to match each read against the
reference. Mismatches are allowed for the alignment, e.g., typically up to two mis-
matches per read. As one read may be matched to multiple positions on a reference
sequence, we call each match an alignment. We focus on the alignment for human
genome data sets with up to two mismatches. The reference of human genome con-
tains around three billion base pairs.

Popular short sequence alignment algorithms are based on either hashing or
Burrows-Wheeler transform (BWT). A hashing-based implementation, such as



Distrib Parallel Databases (2012) 30:385–399 387

WHAM [8], constructs a hash index containing the positions of all subsequences
of the reference. In comparison, a BWT index is constructed with all suffixes of
the reference and stored in suffix arrays (SA). Alignment tools employing BWT are
Bowtie [5] and Bowtie2 [1], BWA [6], 2BWT [4], SOAP2 [7] and SOAP3 [9], and
BarraCUDA [3]. Particularly, a significant optimization for BWT is to have a reverse
index to support bi-directional search (Bi-BWT), which is adopted in 2BWT, SOAP2,
and SOAP3, as well as our G-Aligner.

The hashing-based algorithm is efficient when the number of alignments is small.
When there are more alignments, the search space increases linearly and there are
more hashing conflicts. Moreover, the hashing index is too large (tens of GBs) to fit
into the GPU memory. In contrast, Bi-BWT is more efficient to find all valid align-
ments. The size of major data structures of the Bi-BWT index is around 2.6 GB,
which can fit into the GPU memory. Therefore, we adopt Bi-BWT as our alignment
algorithm in this work.

2.2 Burrows-Wheeler transform (BWT) and bi-directional BWT (Bi-BWT)

As this paper does not focus on the detail of BWT algorithm, we only present the
algorithm outline that is helpful to understand our filtering-verification framework.
We refer readers to the paper of Bi-BWT for details [4].

We first introduce the BWT index, which supports the backward search only. The
major index structures of BWT are a suffix array (SA) and an occurrence array. An
SA element stores the matched position of a subsequence on the reference sequence.
In general, the BWT search works backward on a given short read, and the output is
a pair of positions on the suffix array (denoted as l and u, and l ≤ u). There are n

steps of BWT search for a n-bp long short read. It starts from the suffix with size 1.
Then each step increases the suffix by 1 and calculates the SA pair for the new suffix
with the computation complexity O(1). We abstract this process in Algorithm 1.
We ignore the detail of SA computation in the functions update_l and update_u.
After the BWT search, the final matched positions on the reference are collected
from SA[l],SA[l + 1],SA[l + 2], . . . ,SA[u]. This step is called SA conversion.

For the BWT search with mismatches, for each possible position, it replaces the
original base with the other bases (there are four base types in total: A, T, C, G) and
continues the BWT search. Two-mismatch search is similar but more complex. Note

Algorithm 1: BWT_exact(string s, int l, int u)
Input: string s[1,2, . . . , n]
Output: int l, int u

l = 0, u = 0, n = s.size()1

for i = n to 1 do2

l = update_l(s[i], l), u = update_u(s[i], u)3

if l > u then4

return false5

return true6



388 Distrib Parallel Databases (2012) 30:385–399

Algorithm 2: BWT_1MisBackward(string s, vector〈pair〉 sa)
Input: string s[1,2, . . . , n]
Output: vector〈pair〉 sa

l = 0, u = 0, n = s.size()1

if BWT_exact(s[n
2 , n

2 + 1, n
2 + 2, . . . , n], l, u) = false then2

return3

for i = n
2 − 1 to 1 do4

if l > u then5

foreach other bases B different from s[i] do6

l = update_l(B , l), u = update_u(B , u)7

if l ≤ u and BWT_exact(s[1,2, . . . , i − 1], l, u) then8

sa.push_back(l, u)9

l = update_l(s[i], l), u = update_u(s[i], u)10

that, the alignment with mismatches allowed may produce multiple SA pairs for an
input read.

To improve the performance of BWT search with mismatches, Lam et al. [4] have
proposed Bi-Directional BWT (Bi-BWT). A reverse BWT index is constructed to
support the forward search. Furthermore, various mismatch positions are categorized
into different cases for efficiency. For example, for one-mismatch search, backward
and forward searches are used when the mismatch occurs in the left and right half of
the input read, respectively. Algorithm 2 outlines the backward one-mismatch search,
in which the mismatch occurs in the left half. For two mismatches, the algorithm
contains four cases [4]. To simplify the presentation, we refer the four cases as case
A, B, C and D.

2.3 Alignment result reporting schemes

Various alignment tools support different result reporting schemes. Considering such
a difference is significant when conducting fair performance comparison. If all valid
alignments can be found, such a scheme is called all-valid. However, some tools
have the all-valid option, but in fact they miss alignments due to their design, such as
WHAM. We denote such a nominally all-valid scheme all-valid∗. Additionally, an-
other useful scheme in practice is random-best. For a given read, the best alignments
are those that can be matched with fewest mismatches. The random-best scheme re-
ports one alignment from all best alignments for each read. 2BWT [4], WHAM [8]
and SOAP3 [9] are used in our evaluations, thus we briefly describe their reporting
schemes.

2BWT It can directly supports all-valid and random-best reporting schemes.
WHAM When building the index, WHAM discards the subsequences that appear

more than m times (m is 100 by default). Therefore, it only supports all-valid∗. Al-
though all valid alignments can be found using a large m, the performance will be



Distrib Parallel Databases (2012) 30:385–399 389

Fig. 1 The example of filtering-verification framework for exact alignment. After the filtering, the
matched positions are {3, 7} for the suffix TC. Then we can convert the positions to {1, 5} for the read
ATTC. Finally, the original read is directly compared to the reference based on the positions of 1 and 5

slowed down remarkably. The random-best reporting scheme is not directly sup-
ported either. However, the same result can be achieved through combining two
parameters.

SOAP3 It can support both all-valid and random-best reporting schemes.

Our G-Aligner supports all-valid and random-best reporting schemes. We also
provide a parameter for users to specify the number of passes to support all-valid∗,
which can generate similar results as WHAM.

3 Implementation

3.1 Filtering-verification alignment framework

The basic parallelization strategy for Bi-BWT is to make one thread handle one in-
put read. The Bi-BWT search is inherently sequential, thus it is difficult to further
parallelize the search for one input read. GPUs are able to run thousands of con-
current threads in the SIMD style to fully utilize the hardware resource. However,
the Bi-BWT algorithm contains a large number of branches and is easy to introduce
divergences among threads. As a result, the GPU hardware resource will be under-
utilized. We propose a new filtering-verification framework to better utilize the GPU
resource. In the filtering phase, the Bi-BWT search generates SA pairs for suffix or
prefix. In the verification phase, SA pairs are converted to matched position candi-
dates, and then the reads are directly compared to the reference based on the position
candidates.

Recall that in the BWT search, for each step, we update a SA pair (l and u) for
the new suffix. Therefore, if we stop the search at a certain step, we can obtain the
matched positions for the current suffix. Suppose the set of matched positions for a
given read is A, and the set of matched positions for its suffix is B , obviously we
have A ⊆ B . In the verification phase, with a given l-bp read and one of its possi-
ble matched positions p on the reference R, we directly compare the read with the
subsequence R[p,p + 1,p + 2, . . . , p + l) through checking every base. Figure 1
demonstrates an example for exact match. For sequence alignment with mismatches,
the framework is the same.

Particularly, we have a threshold t for the filtering stage. For a given suffix, when
its SA pair satisfies (u − l) < t , where l and u are the lower and upper bound of SA
for that suffix, we stop the BWT search and record the suffix and its SA pair. This
way, we limit the number of candidates for each SA pair smaller than t . Note that,



390 Distrib Parallel Databases (2012) 30:385–399

Algorithm 3: filter_BWT_exact(string s, int l, int u, int t)
Input: string s[1,2, . . . , n], int t

Output: int l, int u

l = 0, u = 0, n = s.size()1

for i = 1 to n do2

l = update_l(s[i], l), u = update_u(s[i], u)3

if u − l < t then4

return true5

if l > u then6

return false7

return true8

Fig. 2 The components and workflow of the filtering-verification algorithm on the GPU

some reads may finish the entire BWT search with (u − l) ≥ t . In that case, these
SA pairs are not required to be verified. Algorithm 3 shows the modified BWT exact
search that works as a filter.

The filtering for the alignment with mismatches is more complex. For example, for
the backward one-mismatch search (Algorithm 4), if the SA range becomes smaller
than the threshold in the right half of the read using the exact match, the backward
search for the entire read stops immediately (line 4–6 in Algorithm 4). In comparison,
if it occurs in the left half after an mismatch, the search only stops for that branch
(line 13–14 in Algorithm 4). The two-mismatch filtering is more complex, but with
the same idea. Note that, for forward search in Bi-BWT, the position candidates are
for prefix.

Figure 2 shows the workflow of our filtering-verification framework implemented
with the GPU acceleration. Note that, the SA conversion has to be processed on the
CPU, as SA is too large (12 GB) to fit into the GPU memory. In addition to SA,
the overall GPU memory consumption (the occurrence array, reference, and other
buffers) is around 5.6 GB.



Distrib Parallel Databases (2012) 30:385–399 391

Algorithm 4: filter_BWT_1MisBackward(string s, vector〈pair〉 sa, int t)
Input: string s[1,2, . . . , n], int t

Output: vector〈pair〉 sa

l = 0, u = 0, n = s.size()1

if filter_BWT_exact(s[n
2 , n

2 + 1, n
2 + 2, . . . , n], l, u) = false then2

return3

if u − l < t then4

sa.push_back(l,u)5

return6

for i = n
2 − 1 to 1 do7

foreach other bases B different from s[i] do8

l = update_l(B , l), u = update_u(B , u)9

if u − l < t then10

sa.push_back(l,u)11

continue12

if l ≤ u and filter_BWT_exact(s[1,2, . . . , i − 1], l, u) then13

sa.push_back(l, u)14

l = update_l(s[i], l), u = update_u(s[i], u)15

if l > u then16

return17

if u − l < t then18

sa.push_back(l,u)19

return20

3.2 Discussion of filtering-verification framework

For the filtering threshold t , it is difficult to build an accurate analytic cost model
to choose the best value due to the complexity of the algorithm and hardware envi-
ronment. From our experiments for data sets with various read lengths, the best or
close to best performance can be achieved when the threshold is 10. Thus we fix the
threshold parameter to 10 by default.

The major issue of pure GPU-based Bi-BWT search is many divergent branches
introduced, which lead to imbalanced workload among threads. Our framework es-
sentially reduces the branches in the filtering, and leaves the work for verification
without branches. In general, Bi-BWT search for longer reads should introduce more
branches. For a given threshold, and two reads with different lengths but a common
suffix (suppose filtering will stop on that suffix), the saved Bi-BWT search workload
of a longer read is more significant than a shorter read. Therefore, this algorithm
should be more effective to improve load balance for longer reads.

For the overall improvement, longer reads should also benefit more from our al-
gorithm. Considering two reads R1 and R2, suppose they have a common prefix with
length lc. The length of a shorter read R1 is (l + lc), and another R2 is (nl + lc), where



392 Distrib Parallel Databases (2012) 30:385–399

n > 1. Then we assume the pure Bi-BWT search time on R1 and R2 are (t1 + tc) and
(nt1 + tc), respectively, where tc is the time of search on the common prefix. Suppose
we have a suitable threshold that makes the Bi-BWT search stop on the common pre-
fix. Then the filtering time is tc for both reads. Suppose the verification time on R1 is
t ′1, and then it is nt ′1 for R2. In summary, the speedup of our algorithm compared with
pure Bi-BWT search for R1 is X1 = t1+tc

t ′1+tc
, and for R2 is X2 = nt1+tc

nt ′1+tc
. As we have

t ′1 < t1, we can have X1 < X2 after simplification. This indicates that our algorithm
should be more effective for longer reads.

Finally, we focus on the GPU-based implementation for this algorithm in this
study. The CPU-based implementation also slightly outperforms the CPU-based Bi-
BWT, but the performance advantage is insignificant due to slow verification on the
CPU.

3.3 Filtering: GPU-based Bi-BWT search

Our GPU-based Bi-BWT is similar to SOAP3 [9]. We describe the different tech-
niques we have investigated.

Lock-free multi-pass execution This is similar to that adopted in SOAP3. The pur-
pose is to avoid the write conflict when outputting results. The basic idea is to main-
tain a small buffer for each read. If the number of results of a read exceeds the buffer
size, the read will be further processed in the next pass. Furthermore, G-Aligner sup-
ports a parameter to specify the number of passes, which is used to support the all-
valid∗ reporting scheme.

Split of large kernel The major purpose of splitting a complex kernel to smaller
ones is to reduce register spilling. Recall that the Bi-BWT algorithm has different
cases for the alignment with mismatches. If we implement the entire Bi-BWT search
algorithm in a large kernel, registers have high pressure. Therefore, we split the large
kernel into seven smaller kernels (one for exact match, two for one-mismatch, and
four for two-mismatch). This way, each smaller kernel consumes fewer registers to
avoid or reduce register spilling.

Ordered reads Branch divergency happens due to different search paths among
threads. We propose to arrange similar input reads together through sorting. The
overhead of sorting is negligible compared with the total processing time. This way,
threads can have the same search path for input reads with the common suffix or
prefix. However, due to the randomness of reads, there still may be many divergent
branches after sorting.

L1/shared memory configuration On the GPU, the same on-chip memory is used
for both L1 cache and shared memory. They can be configured as either 16 KB or
48 KB. For G-Aligner, we make the L1 cache use 48 KB since a larger L1 cache is
expected to have a higher hit ratio, and 16 KB is sufficient for the shared memory
usage.



Distrib Parallel Databases (2012) 30:385–399 393

Additionally, we have also investigated other techniques, such as the shared mem-
ory and texture memory usage, kernel concurrent execution. However, these tech-
niques either have very limited impact or even slightly hurt the performance. There-
fore, we do not report them in the paper.

3.4 Verification: CPU-based SA conversion and GPU-based matching

As shown in Fig. 2, in verification, the SA pairs are first converted to the matched
positions on the CPU. Particularly, there are four steps for verification: (1) copying
SA pairs from the GPU, (2) converting SA pairs to matched position candidates on
the CPU, (3) copying candidates to the GPU, (4) direct matching on the GPU.

The direct matching on the reference should be efficient on the GPU. We make
one thread warp (32 threads) to handle a read. Thus the entire read is accessed by
multiple passes, and each pass is for 32 bases. Within each warp, we maintain an
array to indicate whether the corresponding position is a mismatch. In the end of each
pass, we perform a reduction on the array to calculate the number of mismatches.
Note that, the cached shared memory is used to hold the indicator array to reduce the
memory access latency. As the threads within a warp are automatically synchronized
by underlying hardware system, there is no user-level synchronization required in our
implementation.

3.5 Alignment result compression

Existing tools store alignments either in customized formats or SAM format [2].
However, various formats essentially record similar information, which include the
input read, the matched position, the mismatch information, and the quality score
string.

To reduce the disk I/O overhead, we also adopt customized output formats. G-
Aligner stores result in a binary file. We focus on compressing reads and quality
scores, as these two attributes are the largest ones among all alignment attributes.
We notice that for an alignment, if we record the matched position and mismatch
information, the read can be recovered according to the reference. As the reference
can reside in memory, the read attribute can be eliminated. For the quality score
string, those alignments that correspond to the same read have the identical quality
score string. Therefore, we only store the unique quality score strings in a table.
Furthermore, an extra ID is appended to each alignment to fetch its quality score
string from the table.

4 Evaluation

4.1 Experimental setup

We first study the performance of G-Aligner, and then compare it with state-of-the-art
alignment tools, including 2BWT [4], WHAM [8] and SOAP3 [9].



394 Distrib Parallel Databases (2012) 30:385–399

Hardware setup We perform the evaluations on a server equipped with an NVIDIA
Tesla C2070 GPU and two Intel Xeon E5630 2.53 GHz CPUs (8 cores, 16 threads).
The C2070 GPU consists of 448 cores and has 6 GB GPU memory. The server has
32 GB main memory.

Implementation details We develop and evaluate G-Aligner using NVIDIA CUDA
C 4.1 in 64-bit Linux system. All evaluations are based on the alignment with up
to two mismatches. By default, the filtering threshold t in G-Aligner is fixed to 10,
unless otherwise specified.

Data sets The reference sequence is the human genome NCBI 37.1. We choose
three real-world data sets. The first one is NCBI SRR003092, and is 51-bp long. The
second and third data sets are 67-bp and 100-bp long, respectively, provided by the
genome institute BGI-Shenzhen. For each data set, we first randomly sample one
million reads for performance studies. Finally, we use the complete 51-bp data set
(around 16 million reads) for performance comparison.

Time metric The index loading time (from the disk to the main memory) is excluded
in all evaluations. The read input and disk-based result output time will or will not be
included, which will be specified in context. The in-memory alignment time of exist-
ing tools can be obtained either directly or through modifying the code by ourselves.

Software for comparison We compare G-Aligner with state-of-the-art alignment
tools, including 2BWT [4], WHAM [8] and SOAP3 [9]. Particularly, SOAP3 em-
ploys the GPU-CPU coprocessing. 2BWT and WHAM are CPU-based and can sup-
port multi-threading. Furthermore, we also compare with a single-threaded CPU-
based filtering-verification implementation (denoted as G-Aligner(CPU)), which is
developed in-house.

4.2 Performance study of G-aligner

All experiments in this section are based on the all-valid reporting scheme. We focus
on in-memory performance studies in this section, which exclude the disk-based read
input and result output time.

Performance impact of filtering threshold t We vary the filtering threshold t to study
its performance impact. Figure 3 shows the overall time as well as the time for the
filtering and verification phases with t varied. It shows that the overall time is signif-
icantly reduced when t increases from 0 to 6. After that, the elapsed time maintains
almost a constant or becomes slightly longer. Note that, when t = 0, the filtering
can generate all correct results, which is equivalent to the pure Bi-BWT search. As
a result, on the GPU, our filtering-verification framework outperforms the pure Bi-
BWT search by 1.3X, 1.8X, and 2.7X for the 51-bp, 67-bp, and 100-bp data sets,
respectively.

Figure 3 also implies that longer reads take more advantage from our new al-
gorithm. We further study this observation. Figure 4(a) shows that three data sets



Distrib Parallel Databases (2012) 30:385–399 395

Fig. 3 Elapsed time of filtering and verification with the filtering threshold (t ) varied

Fig. 4 Comparison of the filtering-verification framework for various read lengths

produce comparable number of candidates for the same t . Then when t is fixed to 10,
Fig. 4(c) shows that the verification takes similar time for three data sets. However,
Fig. 4(b) shows that, compared with the pure GPU-based Bi-BWT search (t = 0), the
speedup of the filtering for 100-bp reads is 5.3X, while only 2.8X for 51-bp reads.
In summary, as the time saving from the filtering is greater than the verification time,
and this time saving is greater for longer reads, the overall performance improve-
ment for longer reads is also more impressive. These results confirm the discussion
in Sect. 3.2.

Performance impact of filtering-based optimizations We investigate the perfor-
mance impact from our techniques for the filtering phase. Figure 5(a) shows that
through splitting the large kernel, the filtering performance can be improved by up
to 26 %. However, either the ordered reads (Fig. 5(b)) or larger L1 configuration
(Fig. 5(c)) only slightly improves the filtering performance by up to 8 %. The in-
significant improvement is due to the high irregularity of the algorithm structure and
memory access pattern.

Performance impact of verification-based optimizations Figure 6(a) shows that the
warp-based automatic thread synchronization can improve the verification perfor-
mance by up to 13 %. Recall that the verification phase contains four steps (Sect. 3.4).
Figure 6(b) shows that even though the optimization is effective for the GPU-based
direct matching (around 1.5X speedup), the overall performance improvement is
moderate as this step does not dominate the overall performance.



396 Distrib Parallel Databases (2012) 30:385–399

Fig. 5 The performance impact of filtering-based optimizations when t = 10

Fig. 6 The performance impact
of verification-based
optimizations when t = 10.
(a) Performance impact of the
warp-based synchronization for
the verification phase.
(b) Elapsed time of different
steps of verification for 51-bp
reads

4.3 Comparison with existing software

2BWT, SOAP3 and G-Aligner can produce identical results for both all-valid and
random-best schemes. WHAM cannot find all valid alignments. Therefore, we adopt
all-valid∗ for its comparison. In G-Aligner, all-valid∗ is supported through specifying
the number of passes (Sect. 3.3) (denoted as p). In our experiments, p is set to 1, in
order to generate similar numbers of alignments as WHAM. Additionally, SOAP3
supports GPU-CPU coprocessing (at least one CPU thread used for coprocessing).
As we focus on comparing the GPU-based implementation with SOAP3, we make
SOAP3 use one CPU thread for coprocessing. Even though such a comparison is
still unfair, it is sufficient to show the efficiency of G-Aligner. In this section, we
first focus on the in-memory sequence alignment time. Then we study the end-to-end
performance comparison, which includes the disk I/O time.

In-memory sequence alignment: G-Aligner vs. 2BWT and SOAP3 Figure 7(a)
shows that for the all-valid scheme, G-Aligner is up to 8 and 2 times faster than the
single-threaded and parallel 2BWT, respectively. On the other hand, G-Aligner(CPU)
has comparable performance with single-threaded 2BWT. It also shows that SOAP3
employing the pure Bi-BWT search on the GPU only achieves a speedup of around
2-3X compared with single-threaded 2BWT. This confirms our conclusion that the
original Bi-BWT algorithm is not suitable for GPU. Instead, our G-Aligner outper-
forms SOAP3 by up to 3.5 times. This speedup mainly benefits from the filtering-
verification framework (as shown in Fig. 3), which reduces the time of GPU-based
Bi-BWT search, but utilizes the fast GPU-based direct matching. For the random-
best scheme, as only one alignment to be reported for each read, more reads will be
processed in the filtering phase only. This may make the speedup less significant than



Distrib Parallel Databases (2012) 30:385–399 397

Fig. 7 Performance comparison among G-Aligner, 2BWT, and SOAP3.

Fig. 8 Comparison between G-Aligner and WHAM

that of all-valid. Nevertheless, Fig. 7(b) shows that G-Aligner outperforms single-
threaded and 16-threaded 2BWT by 9X and 2-3X, respectively, and is still faster than
SOAP3.

In-memory sequence alignment: G-Aligner vs. WHAM. Figure 8(a) shows the num-
ber of alignments generated by G-Aligner and WHAM. It shows that WHAM(all-
valid∗) only produces 3–7 % of all valid alignments. They are fewer than that gen-
erated by G-Aligner(all-valid∗) as well. Figures 8(b) and 8(c) show that G-Aligner
outperforms single-threaded WHAM significantly in all cases. However, the single-
threaded WHAM is faster than our G-Aligner(CPU) for longer reads. As the under-
lying alignment algorithms of G-Aligner and WHAM are significantly different, we
consider WHAM is better for longer reads with the all-valid∗ scheme. Therefore, the
performance improvement of G-Aligner mainly benefits from the GPU acceleration.

End-to-end performance comparison We show the output file size, as it affects the
I/O performance. For the software supporting multiple output formats, we choose the
format that is smallest. Specifically, 2BWT, SOAP3, and WHAM store their results
in binary, plain text, and SAM respectively. Figure 9(a) shows their output sizes. Note
that, both 2BWT and SOPA3 require original input read files when extracting com-
plete information of alignments. Instead, our output file already contains all necessary
information and does not need the original input file for decompression. Moreover,
2BWT does not record the quality scores, which makes its output file much smaller
than SOAP3 and G-Aligner. Although we consider the quality scores are necessary.

Figure 9(b) shows that the parallel 2BWT is slightly faster than G-Aligner due to
its smaller output file size. Compared with SOAP3, either the alignment or I/O time



398 Distrib Parallel Databases (2012) 30:385–399

Fig. 9 End-to-end performance comparison for 51-bp reads. (a) Output file size. (b) Overall elapsed time
of 2BWT, SOAP3 and G-Aligner(all-valid). (c) Overall elapsed time of WHAM and G-Aligner(all-valid*)

Fig. 10 Performance
comparison on the complete
51-bp large data set

of G-Aligner is faster than its counterpart of SOAP3. Figure 9(c) shows that due to
the GPU acceleration and smaller output size, the overall performance of G-Aligner
is faster than either single- or 16-threaded WHAM.

4.4 Performance comparison on a real-world data set

In this section, we evaluate G-Aligner on a complete real-world data set (51-bp NCBI
SRR003092). This data set contains around 16 million reads, and produces around 1
billion alignments for all-valid. As this paper mainly focuses on in-memory align-
ment, we only demonstrate in-memory alignment time.

Figure 10(a) shows that for all-valid, G-Aligner outperforms the single-threaded
2BWT by 7.2X and is slightly faster than the 16-threaded 2BWT. Compared with
SOAP3, it achieves a speedup of 2.1X. For all-valid* shown in Fig. 10(b), G-Aligner
is 4.3X faster than single-threaded WHAM, but is slower than the 16-threaded
WHAM. However, we should notice that WHAM only produces around 28 % align-
ments of that produced by G-Aligner(all-valid*).

5 Conclusion

We present the design and optimization of our GPU-accelerated short DNA sequence
alignment tool G-Aligner. G-Aligner is based on a new filtering-verification align-
ment framework, which combines the traditional Bi-BWT index search and direct
matching. Our new algorithm can better utilize the GPU hardware resource than the



Distrib Parallel Databases (2012) 30:385–399 399

pure GPU-based Bi-BWT implementation. We further optimize G-Aligner through
various techniques, such as the split of a large kernel and warp-based implemen-
tation to avoid user-level synchronization. As a result, on a server equipped with an
NVIDIA Tesla C2070 GPU and two Intel Xeon E5630 CPUs, compared with SOAP3,
a leading sequence alignment system with GPU acceleration, G-Aligner is up to 3.5
times faster for in-memory alignment. The source code of G-Aligner is available at
http://www.cse.ust.hk/gallop.

References

1. Bowtie 2. http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
2. The SMA Format Specification: http://samtools.sourceforge.net/SAM1.pdf (2011)
3. Klus, P., Lam, S., Lyberg, D., Cheung, M.S., Pullan, G., McFarlane, I., Yeo, G., Lam, B.: BarraCUDA—

a fast short read sequence aligner using graphics processing units. BMC Res. Notes 5(1), 27+ (2012)
4. Lam, T.W., Li, R., Tam, A., Wong, S., Wu, E., Yiu, S.M.: High throughput short read alignment via

bi-directional bwt. IEEE Int. Conf. Bioinform. Biomed. pp. 31–36 (2009)
5. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.: Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome. Genome Biol. 10, 3 (2009)
6. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinfor-

matics 25(14), 1754–1760 (2009)
7. Li, R., Yu, C., Li, Y., Lam, T.W.W., Yiu, S.M.M., Kristiansen, K., Wang, J.: SOAP2: an improved

ultrafast tool for short read alignment. Bioinformatics 25(15), 1966–1967 (2009)
8. Li, Y., Terrell, A., Patel, J.: Wham: A high-throughput sequence alignment method. In: ACM SIGMOD

(2011)
9. Liu, C.M., Wong, T., Wu, E., Luo, R., Yiu, S.M., Li, Y., Wang, B., Yu, C., Chu, X., Zhao, K., Li,

R., Lam, T.W.: SOAP3: Ultra-fast GPU-based parallel alignment tool for short reads. Bioinformatics
28(6), 878–879 (2012)

http://www.cse.ust.hk/gallop
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://samtools.sourceforge.net/SAM1.pdf

	High-performance short sequence alignment with GPU acceleration
	Abstract
	Introduction
	Background and related work
	Short sequence alignment
	Burrows-Wheeler transform (BWT) and bi-directional BWT (Bi-BWT)
	Alignment result reporting schemes

	Implementation
	Filtering-verification alignment framework
	Discussion of filtering-verification framework
	Filtering: GPU-based Bi-BWT search
	Lock-free multi-pass execution
	Split of large kernel
	Ordered reads
	L1/shared memory configuration

	Verification: CPU-based SA conversion and GPU-based matching
	Alignment result compression

	Evaluation
	Experimental setup
	Hardware setup
	Implementation details
	Data sets
	Time metric
	Software for comparison

	Performance study of G-aligner
	Performance impact of filtering threshold t
	Performance impact of filtering-based optimizations
	Performance impact of verification-based optimizations

	Comparison with existing software
	In-memory sequence alignment: G-Aligner vs. 2BWT and SOAP3
	In-memory sequence alignment: G-Aligner vs. WHAM.
	End-to-end performance comparison

	Performance comparison on a real-world data set

	Conclusion
	References


