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ABSTRACT
The computation of minor allele frequency (MAF) is at the
core of a Genome-Wide Association Study (GWAS). Due to
the high computation intensity and high precision require-
ment, so far the scale of MAF computation analysis is up
to hundreds of individuals. To enable the computation for
thousands of individuals, we have developed GAMA, a high
performance MAF computation program with GPU acceler-
ation. Specifically, we design a parallel reduction algorithm
that matches the GPU’s data-parallel architecture. To im-
plement the new algorithm efficiently on the GPU, we utilize
the fast, on-chip local memory shared within each GPU mul-
tiprocessor effectively. To avoid user-level thread synchro-
nization, we exploit the GPU thread-warp based scheduling.
Furthermore, we address the floating point underflow issue
through a logarithm transformation. As a result, GAMA en-
ables MAF computation for up to a thousand individuals for
the first time. On a server equipped with an NVIDIA Tesla
C2070 GPU and two Intel Xeon E5520 2.27 GHz CPUs,
GAMA outperforms a state-of-the-art single-threaded MAF
computation tool and our optimized parallel implementa-
tion (16-threaded) on the CPU by around 47 and 3.5 times,
respectively.

1. INTRODUCTION
With the rapid progress of DNA sequencing techniques,

large-scale genome-wide association studies (GWAS) have
become practical. These studies investigate DNA variations
among a group of individuals to identify causes of complex
traits, such as diseases. In these studies, the computation of
minor allele frequency (MAF) is a fundamental data analysis
task [2, 4, 8].
Due to the high intensity, the MAF computation usually

takes an excessively long running time. For example, the
state-of-the-art MAF computation tool realSFS [3] (single-
threaded), is estimated to take around nine months to pro-
cess the whole human genome for a data set of 1,024 individ-
uals on a server with two Intel Xeon E5520 2.27 GHz CPUs.
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Another complication is that, floating point underflow may
occur when the number of individuals is large, e.g., 1,024.

In this work, we develop an efficient MAF computation
tool named GAMA (GPU-Accelerated Minor Allele frequency
computation), adopting the graphics processing unit (GPU)
as a hardware accelerator. Specifically, we make the follow-
ing contributions.

1. We propose a new parallel reduction algorithm for the
site frequency spectrum (SFS) construction, which is
the most expensive component in MAF computation.
Compared with the original construction algorithm,
our new algorithm can better utilize the GPU hard-
ware resource.

2. We implement the new SFS construction algorithm on
the GPU efficiently through two techniques. First, we
implement it in a block nested-loop style utilizing the
small on-chip GPU shared memory. Second, we avoid
the user-level thread synchronization overhead by ex-
ploiting the GPU’s thread-warp based scheduling.

3. We transform the computation to logarithm space to
solve the floating point underflow issue.

On a server equipped with an NVIDIA Tesla C2070 and
two Intel Xeon E5520 2.27GHz CPUs, GAMA outperforms
realSFS [3] (single-threaded) by 47 times on a human genome
data set of 1,024 individuals. Compared with our optimized
parallel CPU implementation (16 threads), GAMA has a
speedup of 3.5 times.

The remainder of the paper is organized as follows. In
Section 2, we introduce the background. We present the
GPU-based implementation and numerical optimization in
Section 3 and 4, respectively. We evaluate GAMA in Section
5 and conclude the paper in Section 6.

2. BACKGROUND

2.1 Minor Allele Frequency and Site Frequency
Spectrum

A chromosome contains a large number of sites (posi-
tions), and each site stores one of four base types (known
as A, T , C, and G). For diploid creatures, e.g., human,
there are two almost identical copies for each chromosome
(known as homologous chromosome). However, a single
nucleotide mutation (known as single-nucleotide polymor-
phism, or SNP) may happen on one of the paired homol-
ogous chromosomes. In most cases, we only consider two



alleles (two possible types of bases) for a site. For a given
population with N individuals, there are 2N bases in to-
tal for each site. For a given site, the less common allele
is called a minor allele, otherwise a major allele. The fre-
quency of minor allele occurring in a given population is
called minor allele frequency (MAF). MAF is important for
GWAS, which has been studied in various genomics research
projects [2, 4, 6, 8].
Given a population with N individuals, for each site, we

define a vector h. h[i] indicates the likelihood when the
MAF is equal to i. Suppose for a given site, the major and
minor allele are denoted as M and m, respectively. For one
individual, there are three possible combinations of bases in
homologous chromosomes, which are {MM}, {Mm}, and
{mm}. Then for two individuals, there are five possible
combinations of alleles, which are {MMMM}, {mMMM},
{mmMM}, {mmmM}, and {mmmm}. As a result, for N
individuals, the length of the likelihood vector h is (2N+1).
The set of all h vectors for all sites is called the site frequency
spectrum (SFS) for the population. Based on SFS, the useful
information of MAF can be produced after postprocessing.
Since the MAF computation relies on a probability model,

the result is more accurate when there are more individuals.
The latest genomics studies report analysis results based on
data sets of up to hundreds of individuals [2, 4, 8]. The
goal of this work is to enable the processing of thousands of
individuals efficiently. Such a data scale can produce much
more accurate results, and our work will be a significant
enabler for genomics research.

2.2 MAF Computation
We adopt the MAF computation model that is imple-

mented in realSFS [3, 7], as well as adopted in genomics
projects [2, 8]. Overall, the same algorithm is applied to
every site independently. There are four steps to process a
site, which are data parsing, SFS construction, SFS normal-
ization, and result post-processing.
In this paper, we focus on the GPU acceleration for SFS

construction (Section 3). Suppose the number of individuals
is N . The computation complexity of SFS construction is
O(N2), and those of the other three components are O(N).
In our experiments, SFS construction dominates the perfor-
mance of MAF computation. To the best of our knowledge,
there is no previous work accelerating the SFS construction
algorithm using GPUs. We also address the floating point
underflow issue that occurs in the component SFS normal-
ization (Section 4).

3. SFS CONSTRUCTION ON THE GPU

3.1 Per-Thread-Per-Site SFS Construction
Algorithm 1 shows the SFS construction algorithm for one

site. Given the likelihoods of three MAF for each individ-
ual (PMM [i], PMm[i] and Pmm[i] represent the likelihoods
for the i-th individual), SFS (the array h) is constructed
through an iterative-update approach.
The straightforward implementation of the SFS construc-

tion on the GPU is to make one thread handle one site. The
major performance issue is the large number of memory ac-
cesses on h, as the small cached shared memory on the GPU
cannot be utilized effectively. Suppose there are N individ-
uals. The size of h for one site takes

(
8× (2×N +1)

)
bytes

(h is double precision). The size of shared memory per GPU

Algorithm 1: The iterative-update SFS construction for
one site: construct sfs(h, N , PMM , PMm, Pmm)

Input:
N : the number of individuals
PMM , PMm, Pmm: three arrays, each of which has N
double-precision numbers.
Output:
h: the array with (2N + 1) doubles.

1 h← 0
2 for i← 1 to N do
3 pMM = PMM [i− 1]; pMm = PMm[i− 1];

pmm = Pmm[i− 1];
4 if i = 1 then
5 h[0] = pMM ; h[1] = pMm; h[2] = pmm;

6 else
7 h[2i] = pMM · h[2i− 2];
8 h[2i− 1] = pMM · h[2i− 3] + pMm · h[2i− 2];
9 for j ← 2i− 2 to 2 do

10 h[j] = pMM ·h[j−2]+pMm ·h[j−1]+pmm ·h[j];
11 h[1] = pMm · h[0] + pmm · h[1];
12 h[0] = pmm · h[0];



pimm 0 0 0 0 . . . 0
piMm pimm 0 0 0 . . . 0
piMM piMm pimm 0 0 . . . 0
0 piMM piMm pimm 0 . . . 0
0 0 piMM piMm pimm . . . 0
...

...
. . .

. . .
. . .

. . . 0
0 0 . . . piMM piMm pimm 0
0 0 0 . . . piMM piMm pimm


Figure 1: The super-band matrix Fi for the i-th in-
dividual. The matrix size is (2N + 1)× (2N + 1).

multiprocessor is up to 48 KB. Therefore, if we store h us-
ing the shared memory, when N = 1, 000, the number of
active threads on each multiprocessor is only three, out of
1,536 concurrent threads that are supported per GPU mul-
tiprocessor. Additionally, this algorithm is not suitable for
buffering a sub-array of h in the shared memory at a time, as
may introduce quite a few data transfers between the GPU
global and shared memory.

In view of the drawbacks of the straightforward GPU im-
plementation, we design a new SFS construction algorithm
that matches the GPU architecture better. The basic idea is
that we further parallelize the SFS construction algorithm
for a single site. This way, we can make multiple threads
handle a site with effective shared memory usage.

3.2 Parallel Reduction Algorithm for SFS Con-
struction

In this section, we first show that the iterative-update
on h (line 4 to 12 in Algorithm 1) is parallelizable through
a representation of matrix multiplication. To remove the
redundant computation in matrix multiplication, we further
improve it as a reduction algorithm. Finally, we introduce
the parallel implementation of the reduction.
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Figure 2: Multiplication of two super-band matrices
when N = 4. Empty cells indicate zero values.

We define a super-band matrix. N is the number of total
individuals throughout this paper.
Definition 1: Super-band matrix. Given an (n × n)

lower triangular band matrix and an integer C, where n ≥
C ≥ 1, the matrix is a super-band matrix iff: (1). For each
integer k, where C ≥ k > 0, cells at positions (i, i−k), where
N > i ≥ k, have the same value. (2). All other cells are
zeros.
The parameter C is called cardinality. In a super-band

matrix with parameter C, the number of unique non-zero
values is up to C, and all these unique non-zero values ap-
pear in each column (except the last (C − 1) columns).
For a given site, for the i-th individual (i starts from 1),

suppose the likelihoods of three MAF for this individual are
denoted as pimm, piMm, and piMM , we can define a super-
band matrix Fi with the size of (2N +1)× (2N +1) and the
cardinality of 3, which is illustrated in Figure 1.
For a given site, suppose the computation for the first

(k − 1) individuals has been done. The iterative-update on
h for the k-th individual (line 7 to 12 of Algorithm 1) can
be equivalently represented as a matrix-vector multiplication
(the vector size is (2N + 1)):

Fk ×



hk−1[0]
hk−1[1]

...
hk−1[2k − 2]

0
0
...
0


(2N+1)

=



hk[0]
hk[1]
...

hk[2k − 2]
hk[2k − 1]
hk[2k]

...
0


(2N+1)

Note that, in Algorithm 1, the input and output arrays are
the same one. However, we represent them separately as
hk−1 and hk in the matrix-vector multiplication. Now for
N individuals, we have:

hN = FN ·hN−1 = FN ·FN−1 ·hN−2 = FN ·FN−1 ·FN−2...·h1

Note that as the matrix multiplication is associative, we have
removed the original association among matrices (the origi-
nal association is from right to left). Such a representation
confirms that the original iterative-update SFS construction
algorithm for a single site is parallelizable due to the matrix
multiplication representation.
The matrix multiplication based SFS construction con-

tains redundant computation. Figure 2 illustrates the pro-
cess of multiplication on two super-band matrices when N =
4. This shows that the number of unique values in the result
matrix is only five. To simplify the presentation, in the re-
maining of this section, the matrix multiplication specifically
refers to the multiplication on two same size (n× n) super-
band matrices with the same cardinality C (n ≥ 2C − 1),



a[0]b[0]
a[0]b[1] + a[1]b[0]

a[0]b[2] + a[1]b[1] + a[2]b[0]
...∑C−2

i=0 a[i]b[C−2−i]∑C−1
i=0 a[i]b[C−1−i]∑C−1
i=1 a[i]b[C−i]∑C−1

i=2 a[i]b[C+1−i]

...
a[C−3]b[C−1] + a[C−2]b[C−2] + a[C−1]b[C−3]

a[C−2]b[C−1] + a[C−1]b[C−2]

a[C−1]b[C−1]

0
...
0


Figure 3: The first column of the result matrix for
the multiplication on two super-band matrices A and
B. The cardinality of input matrices is C. a and b
represents the first columns of A and B, respectively.

unless otherwise specified.
We have two important observations for the matrix mul-

tiplication: First, the result matrix is a super-band matrix.
Second, the cardinality of the result matrix is (2C−1). The
observations can be proved through directly generating the
result matrix following the definition of matrix multiplica-
tion. Therefore, the proof is ignored here.

For a super-band matrix, the first column stores all unique
values. Therefore, we focus on representing the first column
of result matrix using the first columns from the two input
matrices, in order to eliminate the computation and storage
redundancy. Suppose a and b are the first columns of two
input super-band matrices A and B respectively, then the
first column of the result matrix can be represented in Figure
3. Note that, the vector of Figure 3 is obtained through
replacing the element not in the first column of matrix A or
B using the corresponding element with the same value in
the first column of A or B. For example, the second element
of Figure 3 in fact is (A[1][0]B[0][0] + A[1][1]B[1][0]). Since
A[1][1] = A[0][0], the result is represented as (a[1]b[0]+a[0]b[1])
using all elements from the first columns of A and B.

To abstract the computation of Figure 3, we first define an
operator ⊗ in Algorithm 2. The defined operator is associa-
tive as well. Now we can introduce the reduction algorithm
for a single site. For every individual, there is an initial
vector (denoted as vi for the i-th individual) holding three
elements to store its pmm, pMm and pMM . Then we perform
a vector-based reduction on all vectors:

h = v1 ⊗ v2 ⊗ ...⊗ vN (1)

, where h is the final SFS with (2N +1) elements for a given
site for N individuals. We can verify that the result of this
formula is equivalent to the vector shown in Figure 3.

On the GPU, we parallelize this reduction algorithm. The
parallel reduction consists of a few levels, and each level has
several merges using the operator ⊗ on two successive vec-
tors. The merges at the same level can be performed in
parallel. Recall that the purpose of this algorithm is to par-



Algorithm 2: The definition of operator ⊗.
Input:
a: an array with the size of n.
b: an array with the size of m.
Output:
c: an array with the size of (m+ n− 1)

1 c← 0;
2 for i← 0 to n− 1 do
3 for j ← 0 to m− 1 do
4 c[i+ j] += a[i]× b[j];

allelize the construction algorithm for a single site. Addi-
tionally, the parallelization among different sites is straight-
forward based on this algorithm.

3.3 Analysis and Optimizations of the Parallel
Reduction

We have converted the original iterative-update SFS con-
struction to a parallelizable reduction algorithm. Before
introducing its GPU-based implementation, we analyze its
performance and propose further optimizations.
Computation complexity. The complexity analysis is

for the sequential implementations of both algorithms. We
assume the number of individuals is a power of two. For an
⊗ operator, the computation complexity is (n×m) as it is a
nested-loop computation. Therefore, for the reduction, the
complexity Creduction is calculated as:

Creduction =

logN2∑
i=1

[(2i + 1)2
N

2i
]

After the simplification, the result is:

Creduction = 2N2 + 2NlogN2 −N − 1

For the iterative-update (Algorithm 1), the complexity is
calculated as the number of multiplications (such a measure-
ment is consistent with the one of nested-loop computation).
Therefore, the complexity Citerative is:

Citerative =

N−1∑
i=1

(3× (2i+ 1))

After the simplification, the result is:

Citerative = 3N2 − 3

Two algorithms have the same complexity upper bound
O(N2). However, the concrete numbers are different. The
workload of the reduction is around 67% of the iterative-
update algorithm theoretically.
The nested-loop optimization. The nested-loop com-

putation (Algorithm 2) has an additional advantage. That
is, as long as an element in the outer input array (a[i] in
line 4 of Algorithm 2) is zero, the entire scan on the inner
input array (line 3 to 4 of Algorithm 2) for that element
is unnecessary. This is essentially similar to the computa-
tion on sparse data structures, which skips the computation
on zero numbers. Though the sparse data representation
is not adopted, the performance improvement of our tech-
nique should be similar to that with the sparse data format
employed. Such an optimization is difficult to be employed

L

2L - 1 2L - 1 2L - 1

L L L L L... ...

... ...

Input arrays

Output arrays

Figure 4: The primitive binaryMerge. The size of
each input and output array are L and (2L − 1), re-
spectively.

by the iterative-update construction. In practice, this im-
provement can save the computation workload significantly
due to the characteristic of real-world data sets. Therefore,
before each ⊗ operation, we scan the two input arrays once,
and make the one with more zeros as the outer input array.

3.4 SFS Construction with the Reduction Al-
gorithm on the GPU

We implement the optimized parallel reduction algorithm
on the GPU. We first define a primitive binaryMerge to pro-
cess multiple ⊗ operations in parallel. The primitive is il-
lustrated in Figure 4, in which all input arrays have the
same length L. Then each two successive input arrays are
merged into an output array with the size of (2L− 1) using
the operator ⊗. With such a primitive, it is straightfor-
ward to implement the SFS construction on the GPU. Note
that, to fully utilize the hardware resource, multiple sites
are processed in parallel, which also can be done through
the primitive.

To implement the primitive binaryMerge on the GPU ef-
ficiently, overall, multiple threads are used to handle one ⊗
operator, and multiple ⊗ operators are processed concur-
rently as well. We focus on how to use multiple threads
to handle an ⊗ operator. It is easy to parallel multiple ⊗
operators as they have the same operations.

The basic strategy to parallelize a ⊗ operator is that,
each thread first holds an element from the outer array
a, and then scans the entire inner array b sequentially to
perform the computation. There are two major techniques
adopted, which are shared memory utilization and the au-
tomatic thread-warp based synchronization.

Shared memory utilization. To utilize the small size
shared memory effectively, we implement Algorithm 2 in a
block nested-loop scheme. There are two data buffers in
the shared memory, which are used to hold the inner input
array b (denoted as bufb) and output array c (denoted as
bufc) block by block. The inner array b is loaded into the
shared memory block by block. For each block of b, there
are several computation stages, and each stage will access
a fixed number of elements in a to do the nested-loop com-
putation. Within a stage, the output results are stored in
bufc. Suppose bufb and bufc can hold nb and nc elements
respectively, then the number of elements accessed for a in
each stage is (nc − nb + 1). Note that for the nested-loop
computation on a block of b, each element of a stored in
the global memory is just accessed once by a thread, as a is
the outer input array. The purpose of accessing the input
array a through multiple stages is to utilize the small shared
memory for bufc to hold output elements.

Figure 5 illustrates an example of the shared memory us-
age. In the first step, the elements b[0], b[1], b[2] are buffered
in the shared memory. Then for the first stage, elements
a[0], a[1], a[2] are accessed, and each of which accesses b[0],
b[1], b[2] that are stored in the shared memory to perform



input a

input b
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input b

output c
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Step 1: load the first block of b into the shared mem.

Step 2: load the second block of b into the shared mem.

{

{
{
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{

Stored in the global memory

Buffered in the shared memory

Accessed by threads

Stage 1: access the first block of a

{

{
{

Stage 2: access the second block of a

{
{

{
Stage 2: access the second block of aStage 1: access the first block of a

0   1  2   3  4   5

0   1  2   3  4   5

0   1  2   3  4   5   6  7   8  9  10

0   1  2   3  4   5   6  7   8  9  10

0   1  2   3  4   5   6  7   8  9  10

0   1  2   3  4   5   6  7   8  9  10

0   1  2   3  4   5

0   1  2   3  4   5 0   1  2   3  4   5

0   1  2   3  4   5

0   1  2   3  4   5

0   1  2   3  4   5

Figure 5: The shared memory usage for one ⊗ oper-
ation implemented on the GPU. Suppose the lengths
of two input arrays are both 6, and the block size
for the input array b and output array c are 3 and
5, respectively. Then the number of elements in a
accessed for each stage is 3.

the computation. The output position on c of this stage is
from 0 to 4. Therefore, the elements c[0], c[1], ..., c[4] are
buffered in the shared memory. Next, in the second stage
of step one, a[3], a[4], and a[5] are accessed, and c[3], c[4],
..., c[7] are buffered in the shared memory. The second step
will perform the similar operations with the second block
of b buffered in the shared memory. Note that, since there
is overlap of the output elements buffered between different
stages or steps, the data transfer between the global and
shared memory for the output array is unnecessary for the
overlapped elements.
Warp based implementation. Recall that we make

each thread fetch one element of the outer array a, and then
access all elements sequentially in the inner array b to per-
form the nested-loop computation. For the computation on
i-th element in a and j-th element in b, the output position
on c is (i+ j). There may be write conflict without synchro-
nization. Figure 6 illustrates an example for two threads.
Without the synchronization, two threads may write to the
same position. With the synchronization, due to the se-
quential scan on the inner input array, it ensure the write
positions among different threads to be different.
However, such a large number of synchronization will in-

troduce considerable overhead. As threads in the same warp
are automatically synchronized, we use one warp to handle
one ⊗ operator. This is equivalent that there is a synchro-
nization before each write. This way, the write conflict is
solved without overhead.
Performance impact of the nested loop optimiza-

tion on the GPU. As introduced in Section 3.3, an im-
portant technique for the reduction algorithm is the nested-
loop optimization, which can greatly reduce the workload
for real-world data sets. However, for the GPU-based im-
plementation, such an optimization may introduce branch
divergence. As long as a branch divergence occurs, differ-
ent execution paths in a warp are serialized, which increases
the total number of instructions. Therefore, the nested-loop

(0, 1) → 1

(1, 0) → 1(0, 0) → 0

(1, 1) → 2

(1, 2) → 3

(1, 3) → 4

(0, 2) → 2

(0, 3) → 3

(0, 4) → 4

... ...

... ...

(0, 1) → 1

(1, 0) → 1(0, 0) → 0

(1, 1) → 2

(1, 2) → 3

(1, 3) → 4

(1, 4) → 5

(0, 2) → 2

(0, 3) → 3

(0, 4) → 4

... ...

... ...

Time Time

without synchronization with synchronization

Thread 0 Thread 1 Thread 0 Thread 1

     Write conflict Synchronization

Figure 6: Write conflict without the thread synchro-
nization and the conflict-free output with a synchro-
nization before each write. The pair (i,j)→ i+j indi-
cates the position i in the outer input array, and the
position j in the inner input array. Then the output
position for the pair of (i, j) is (i+ j).

optimization is a performance tradeoff on the GPU, which
can reduce the computation workload as well as introduce
overhead. However, through our evaluations, for the overall
performance, the improvement from the nested loop opti-
mization is more significant. Therefore, in our GPU-based
implementation, we still adopt the nested loop optimization.

4. NUMERICAL OPTIMIZATIONS

4.1 Floating Point Underflow
The floating point underflow occurs in the SFS normal-

ization step. Algorithm 3 shows the major steps of the SFS
normalization for a site that are related to the floating point
underflow problem, where t, g, and p are scalars storing in-
termediate results. Specifically, at line 3 of Algorithm 3,
when the number of individuals is larger than around 400,
t will be less than around −800. As a result, the result of
exp(t) will be smaller than 10−308, which will be treated
as 0 in computers (double precision) due to the finite rep-
resentation of the exponent. Consequently, all elements in
the array a (a[i] = h[i] × exp(t)) may become 0 when t is
sufficiently small. In such a case, the sum of all elements in
the array a also becomes 0. If g is also 0 (it is quite possi-
ble), it makes b (line 5 of Algorithm 3) become 0. In such
a case, the program will crash due to the division by zero
error occurred in line 7 of Algorithm 3.

Algorithm 3: SFS normalization for a site.

1 ...
2 for i← 0 to 2N do
3 a[i] = h[i]× exp(t)

4 h sum = sum(a, 2N + 1);
5 b = p× h sum+ (1− p)× g;
6 for i← 0 to 2N do

7 h[i] = p×a[i]
b

8 ...

The key to avoid the floating point underflow is to rep-
resent small numbers correctly. A straightforward method
is to adopt extended precision libraries (either on the CPU
[1] or GPU [5]) to represent small numbers. We propose



another approach based on logarithm transformation to ad-
dress this issue, which is more efficient than the extended
precision solution.

4.2 SFS Normalization with Logarithm Trans-
formation

The based idea of this solution is that we transform the
computation into logarithm space. This way, very small
numbers can be represented correctly in logarithm space.

Algorithm 4: The new normalization algorithm with
logarithm transformation for a site.

1 ...
2 for i← 0 to 2N do
3 h[i] = log(h[i])

4 for i← 0 to 2N do
5 a[i] = h[i] + t

6 h max = max(a);
7 h sum = 0.0;
8 for i← 0 to 2N do
9 h sum += exp(a[i]− h max);

10 h sum = log(h sum) + h max;
11 b = addProtect(log(p) + h sum, log(1− p) + log(g));
12 for i← 0 to 2N do
13 h[i] = exp(a[i] + log(p)− b)

14 ...

Algorithm 5: addProtect(a, b)

1 m = max(a, b);
2 s = exp(a−m) + exp(b−m);
3 return log(s) +m;

Algorithm 4 and 5 shows the new normalization algorithm
with logarithm transformation. Note that the function ad-
dProtect (Algorithm 5) essentially is used to perform the
following computation:

addProtect(log(x)+ log(y), log(z)+ log(w)) = log(xy+ zw)

Moreover, the purpose of the max operation in line 6 of
Algorithm 4 and line 1 of Algorithm 5 is to further avoid
the floating point underflow.

5. EVALUATION

5.1 Experimental Setup
We first investigate the performance for the SFS construc-

tion and normalization, including the performance impact
of various techniques. We then show an end-to-end perfor-
mance comparison.
Hardware setup. We conduct experiments on a server

equipped with an NVIDIA Tesla C2070 GPU and two Intel
Xeon E5520 2.27 GHz quad-core CPUs (8 cores, 16 threads
in total). The GPU has 448 cores and 6 GB global memory.
The shared memory on each GPU multiprocessor is 48 KB.
The server has 32 GB main memory.
Data sets. We use a real-world human genome data set

provided by BGI-Shenzhen. It contains 2,674,654 sites, each
of which has 1,024 individuals.

Implementation details. All CPU programs are de-
veloped using C++. The parallel CPU implementation is
developed using OpenMP. The GPU implementation is de-
veloped using NVIDIA CUDA C 4.0. There are three im-
plementations used for evaluations as summarized in Table
1. The realSFS program adopted in this study has been im-
proved by us compared with the publicly released one [3].
The optimizations include numerical ones for the floating
point underflow issue as well as those on memory layout
and computation efficiency. As a result, the optimized re-
alSFS is already around three times faster than the original
one. The time of disk I/O is excluded in our evaluations,
which takes around 10% of the overall time in realSFS.

Table 1: Summary of different implementations.
realSFS
(improved)

GAMA-
CPU

GAMA

CPU/GPU CPU CPU GPU
Multi-threaded? No Yes N/A
SFS construction Iter.-update Reduction Reduction
Numerical opt. Logarithm Logarithm Logarithm

5.2 Performance of the SFS Construction
We first examine the performance of the reduction-based

SFS construction algorithm and its nested-loop optimiza-
tion. The CPU implementations in this group of experi-
ments are all single-threaded.

Performance impact of algorithms. As the iterative-
update algorithm cannot take advantage from the nested-
loop optimization, we first remove this technique from our
implementations to investigate the performance impact from
the reduction algorithm only. Figure 7(a) shows that on the
CPU, the reduction based algorithm is slightly faster than
the iterative-update algorithm. We consider this difference
is mainly from the computation complexity difference. In-
stead, Figure 7(b) shows that, on the GPU, the implementa-
tion with the reduction construction algorithm outperforms
the one with the iterative-update by around three times.
The more significant improvement on the GPU mainly ben-
efits from the effective GPU shared memory usage. To con-
firm this, Figure 7(b) further shows that if we remove the
shared memory optimization, reduction is only 24% faster
than iterative-update.
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Figure 7: Performance comparison between the
iterative-update and reduction based (without the
nested-loop optimization) SFS construction algo-
rithms on the CPU and GPU.

Performance impact of the nested-loop optimiza-



tion. Now we investigate the performance impact from the
nested loop optimization for the reduction based SFS con-
struction algorithm. Figure 8(a) shows that on the CPU, the
implementation with the nested-loop optimization is around
five times faster. However, the improvement is only around
two times on the GPU as shown in Figure 8(b). Through
our further study, the improvement on the CPU is consistent
with the saved workload from this optimization. However,
the less significant speedup on the GPU may be due to the
overhead introduced by branch divergence, as discussed in
the end of Section 3.4.
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Figure 8: Performance comparison for the reduc-
tion based SFS construction with and without the
nested-loop optimization on the CPU and GPU.

Hardware counters for the nested-loop optimiza-
tion. To understand the less significant speedup on the
GPU from the nested-loop optimization, we investigate the
GPU hardware counters. Figure 9(a) shows that, with the
nested loop optimization, the computation workload is re-
duced significantly in number of instructions. However, Fig-
ure 9(b) shows that this technique introduces additional di-
vergent branches. This confirms that the performance im-
provement of the nested-loop optimization on the GPU is
offset by branch divergence.
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Figure 9: The number of instructions and divergent
branches for the reduction-based SFS construction
on the GPU with and without the nested loop opti-
mization.

The shared memory utilization. We demonstrate the
performance with the shared memory size used per warp
varied. Figure 10(a) shows that the best performance is
achieved when the shared memory size per warp is around
2 KB. To understand this phenomenon, we further examine
the GPU multiprocessor occupancy in Figure 10(b). Note
that, when the shared memory per warp increases, the multi-
processor occupancy may decrease as there is limited shared
memory resource, which may hurt the overall performance.
Associating the two figures, when the shared memory size

varies from 504 to 2296 bytes, the occupancy remains un-
changed. Therefore, the performance improvement benefits
from the larger shared memory buffer. When the shared
memory used becomes larger than 2296 bytes, the occu-
pancy starts to decrease. As a result, although the used
shared memory per warp further increases, the overall per-
formance is slowed down significantly.
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Figure 10: The performance with the size of shared
memory used per warp varied for the reduction-
based SFS construction on the GPU. (a.) Elapsed
time. (b.) GPU multiprocessor occupancy.

The thread-warp based automatic synchronization.
Figure 11 shows that with the warp-based synchronization,
the performance is around 2.5 timers faster than the user-
level explicit thread synchronization. Note that, without
the warp-based synchronization, it cannot benefit from the
nested-loop optimization. This is because the explicit syn-
chronization should be in the inner loop. As soon as a syn-
chronization occurs, no threads will be able to skip the in-
ner loop. This explains why the performance with explicit
thread synchronization is even worse than the implementa-
tion without the nested loop optimization.

Performance comparison among different SFS con-
struction implementations. We summarize the perfor-
mance comparison of the SFS construction using the iterative-
update and reduction-based algorithms on the GPU and
CPU in Figure 12. We have three observations: (1) The
GPU-based implementations employing the iterative-update
and reduction-based outperform their CPU counterparts by
around 7 and 10 times, respectively. (2) The reduction im-
plementations outperform the iterative-update algorithms
on the CPU and GPU by around 5.7 and 9 times, respec-
tively. (3) Compared with the original iterative-update con-
struction on the CPU (shown in Figure 12(a)), our optimized
GPU-accelerated reduction-based SFS construction (shown
in Figure 12(b)) has a speedup of around 60 times.

5.3 Performance of the SFS Normalization

Warp-based sync. Explicit sync.
0

50

100

150

200

250

300

E
la

ps
ed

 ti
m

e 
(s

ec
.)

Figure 11: Performance comparison between the
GPU implementations with and without the warp-
based automatic thread synchronization.
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Figure 12: Performance comparison among the
iterative-update and reduction-based SFS construc-
tion algorithms on the CPU and GPU.

We compare the performance of SFS normalization using
the logarithm transformation with that using the CPU- [1]
or GPU-based [5] extended precision libraries.
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Figure 13: Performance comparison between the ex-
tended precision and logarithm transformation on
the CPU and GPU for the SFS normalization.

Figure 13 shows that the normalization based on the log-
arithm transformation is around 3 and 4.6 times faster than
that using extended precision on the CPU and GPU, respec-
tively. This indicates that the overhead introduced by the
extended precision is much higher than that introduced by
the logarithm transformation. Moreover, on the GPU, the
computation with extended precision usually has a smaller
speedup than that with native precision due to algorithmic
complexity [5]. This also explains that the speedup of log-
arithm transformation over extended precision on the GPU
is more significant than that on the CPU.

5.4 Overall Performance Comparison
Finally, we compare the end-to-end performance of MAF

computation including all four components. Figure 14(a)
shows that for different components, GAMA is around 15-
60X faster than realSFS. Compared with the optimized 16-
thread GAMA-CPU, the GPU-based implementation is around
2-7 times faster. For the overall computation time, Figure
14(b) shows that the speedup of GAMA over realSFS is
around 47 times. Additionally, GAMA outperforms GAMA-
CPU using 16 threads (around 7 times faster than the single-
threaded GMAM-CPU) by around 3.5 times.

6. CONCLUSION
The state of the art in genomics research reports MAF

results based on data sets of up to hundreds of individu-
als due to the high computation intensity and floating point
underflow issue. We develop a fast GPU-accelerated MAF
computation tool GAMA, which successfully performs the
MAF computation for 1024 individuals for the first time.
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Figure 14: Computation performance compari-
son among realSFS, GAMA-CPU and GAMA. (a.)
Components. (b.) Overall performance comparison.

To achieve the high performance, we first design a new SFS
construction algorithm to match the GPU architecture effec-
tively. We implement the optimized algorithm on the GPU
efficiently through effective shared memory utilization and
warp based thread synchronization. Furthermore, we ad-
dress the floating point underflow issue efficiently through
logarithm transformation. As a result, on a server equipped
with an NVIDIA Tesla C2070 GPU and two Intel Xeon
E5520 2.27 GHz CPUs, compared with the optimized single-
threaded MAF computation tool realSFS, GAMA acceler-
ates the computation performance by around 47 times on a
human genome data set of 1,024 individuals.
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