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Abstract. De Bruijn graph construction is a basic component in de novo
genome assembly for short reads generated from the second-generation
sequencing machines. As this component processes a large amount of
data and performs intensive computation, we propose to use the GPU
(Graphics Processing Unit) for acceleration. Specifically, we propose a
staged algorithm to utilize the GPU for computation over large data sets
that do not fit into the GPU memory. We also pipeline the I/0, GPU,
and CPU processing to further improve the overall performance. Our
preliminary results show that our GPU-accelerated graph construction
on an NVIDIA S1070 server achieves a speedup of around two times over
previous performance results on a 1024-node IBM Blue Gene/L.

1 Introduction

Genome assembly refers to the process of reconstructing a genome sequence from
a large number of sequence fragments (known as reads). These reads are gener-
ated by sequencing machines through randomly sampling the original sequence.
The De Bruijn graph based genome assembly algorithms have been shown ef-
fective for assembling a large number of short reads and have been adopted in
state-of-the-art assemblers [1-4]. In this paper, we focus on the bidirected De
Bruijn graph construction, which is the first as well as one of the most expensive
steps in genome assembly. We propose to utilize the GPU (Graphics Processing
Units) to accelerate this process, in particular, the construction of a bidirected
De Bruijn graph from a large set of short reads.

The bidirected De Bruijn graph construction is expensive in both memory
consumption and running time. A previous study [2] has shown that the graph
construction for human genome took around 8 hours on a 16-core machine with
2.3GHz AMD quadcore CPUs and consumed 140GB main memory. With lim-
ited GPU memory (up to 6 GB per GPU in the market), the first challenge
in GPU-based De Bruijin graph construction is to develop algorithms that can
handle data larger than the GPU memory. Second, given the superb computa-
tion power of the GPU, the overall performance is likely to be dominated by disk
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I/O and CPU processing. Therefore, we study how to utilize the hierarchy of
disk, main memory, and GPU memory to pipeline processing and to involve the
CPU for co-processing. These issues are essential for the feasibility and overall
performance on practical applications; unfortunately, they are seldom studied in
current GPGPU research.

Specifically, we address the GPU memory limit by developing a staged al-
gorithm for GPU-based graph construction. We divide the reads into chunks
and load the data chunk by chunk from disk through the main memory to the
GPU memory. To estimate the chunk size that can fit into the GPU memory,
we develop a memory cost model for each processing step. We further utilize the
CPU and main memory to perform result merging each time the GPU finishes
processing a chunk. Finally, we pipeline the disk I/O, GPU processing, and CPU
merging (DGC') to improve the overall performance. We expect this pipelined-
DGC processing model to be useful for a wide range of GPGPU applications
that handle large data.

We have implemented the GPU-based bidirected De Bruijn graph construction
and evaluated it on an NVIDIA Tesla S1070 GPU device with 4 GB memory. Our
initial results show that this implementation doubles the performance reported
on a 1024-node IBM Blue Gene/L and is orders of magnitude faster than state-
of-the-art CPU-based sequential implementations.

The remainder of this paper is organized as follows. In Section 2, we briefly
introduce the graph construction algorithm and related work. We present our de-
sign of the staged algorithm in Section 3. We describe the details of the pipelined-
DGC model in Section 4. The experimental results are reported in Section 5. We
conclude in Section 6.

2 Preliminary

2.1 Genome Assembly

The second generation of sequencing produces very short reads at a high through-
put. Popular algorithms to reconstruct the original sequence for such a large
number of short reads are based on the De Bruijn [4] or bidirected De Bruijn
graph [6]. The graph is constructed through generating k-mers from reads as
graph nodes. For example, suppose a short read is ACCTGC and k = 4, then
this read can generate three 4-mers, which are ACCT, CCTG, and CTGC. The
major difference between the two graph models is that for each k-mer, its re-
verse complement is represented by a separate node (De Bruijn) or the same
node (bidirected De Bruijn).

At the beginning of assembly, each Il-length read generates (I — k + 1) k-
mers. Then the De Bruijn graph is constructed using information about overlap
between k-mers. Next, the graph is simplified and corrected by some heuris-
tic algorithms. After the simplification and correction, several long contigs are
generated. Finally, if reads are generated through paired-end sequencing, these
contigs are joined to produce scaffolds using relevant information. Another al-
ternative of joining contigs is through Eulerian paths. The detailed algorithms
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of these steps can be found in previous work [2, 4]. In this work, we focus on the
De Bruijn graph construction.

2.2 Bidirected De Bruijn Graph

The double-stranded structure of DNA sequences can be naturally mapped to
the bidirected De Bruijn graph [6]. For a birdirected graph, each edge has inde-
pendent directions at two ends. A valid path from node v; to vy is represented
as a sequence vie1vs€s...6x_1Vk, where e; is the edge connecting two node v; and
vit+1, and e;—1 and e; have different directions at the node v; for 1 < i < k.
Figure [[lshows an example of bidirected graph. A De Bruijn graph is a directed
graph, where each node represents an ordered sequence, and all sequences have
the same length. An edge from node A representing aias...a, to node B repre-
senting b1bs...b,, exists when asas...a, is identical to by1bs...b,_1.

Fig. 1. An example of bidirected graph

For genome assembly, each node in a bidirected De Bruijn graph represents
a k-mer containing k bases. Given the double-stranded structure of DNA se-
quences, each node also implicitly represents its reverse complementary k-mer,
i.e., the base on each position in one sequence is the complement (A to T, C to
G) of another sequence in the reverse order. For a given node v representing two
reverse complementary k-mers, we denote the lexicographically greater one as v
to be the canonical form of these two k-mers as well as the node representative,
and v~ the reverse complement of v*. Note that, when k is an odd number, vT
and v~ will never be identical.

Suppose an edge exists between nodes A and B. There are four cases when A
overlaps B.

— Case 1. A" overlaps BT = A >—>B
— Case 2. A~ overlaps B~ = A <—<B
— Case 3. A~ overlaps BT = A <—>B
— Case 4. A overlaps B~ = A >—<B

Note that duplicate edges are expected due to the high coverage of input reads.
However, only distinct edges and their frequency counts (known as multiplici-
ties) need to be maintained. The multiplicity is useful when removing errors from
graphs. After constructing all distinct edges and recording their multiplicities,
we generate an ordered pair <cx, cy > corresponding to an edge representing X
overlaps Y. cx and cy are the label to output when walking from node X to
Y and from node Y to X, respectively. The label is generated as follows corre-
sponding to the four cases of overlap. X 7[1] and X ~[1] denote the first character
of the canonical form and its reverse complement of node X, respectively.
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— Case 1. A" overlaps BT = <A'[1], B~[1]>
— Case 2. A~ overlaps B~ = <A~[1], BT[1]>
— Case 3. A~ overlaps BT = <A7[1], B7[1]>
— Case 4. AT overlaps B~ = <A™'[1], BT[1]>

Distinct canonical k-mers are collected as representatives for graph nodes, and
adjacency information is built for the graph representation for further manipu-
lation.

2.3 Related Work

There are several genome assembly tools for short reads on the CPU. Velvet
[4] is a pioneer software for short reads assembly, which is still one of the most
popular short reads assemblers today. SOAPdenovo |2] has been used successfully
for human genome projects. There are other similar assemblers, such as Euler-SR
[7], Shorty [8], Edena [9], ALLPATHS [10], SSAKE [11], SHARCGS [12], ABySS
[3], and YAGA [1]. These assemblers are different in implementation details, but
are all based on the (bidirected) De Bruijn graph model.

Among parallel short reads assemblers, ABySS [3] was implemented using
MPI. SOAPdenovo |2] has parallelized several key time-consuming steps. Jack-
son et al. [13] have reported their bidirected De Bruijn graph construction on
an IBM Blue Gene/L. Later, the authors implemented the complete genome as-
sembly procedure on the Blue Gene/L machine and reported the performance
scalability [1]. Kundeti et al. [14] have further improved the parallel graph con-
struction algorithm presented by Jackson et al. [13] to avoid a large amount
of message passing. However, to the best of our knowledge, the only work on
GPU-accelerated genome assembly is GPU-Euler [15], which implements a simi-
lar construction algorithm. The major issue of their work is that it cannot handle
large genome data, e.g., human genome, which cannot fit into the GPU memory.

3 Design and Implementation

In this section, we first present the in-memory implementation of GPU-based
bidirected De Bruijn graph construction assuming sufficient memory. Then, we
propose a staged algorithm for out-of-core processing.

3.1 In-Memory Implementation

We consider the graph construction as a component in de novo assembly, where
the program input is a plain text file storing short reads and the output is the
adjacency list representation of the bidirected De Bruijn graph stored in the
main memory. Overall, there are three steps for the graph construction.
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Step 1. Encoding. This step loads short reads from the disk to the main
memory and uses two bits per character to represent the reads.

Step 2. Canonical Edge Generation. We adopt an edge-oriented building
method to avoid validating edges [1]. For an I-length short read, we generate
(k+1)-mers, and the number of (k+1)-mers is (I — k). Each (k+1)-mer corre-
sponds to an edge connecting two overlapping k-mers. The two k-mers represent
two nodes connected by the edge. We do not extract the two k-mers in this step
since there are many redundant edges and nodes at this time. A 64-bit data
type, such as long, is sufficient to hold a (k+1)-mer since (k+1) is usually set to
less than 32 in practice. Similarly, we do not extract edge directions and output
labels in this step due to the redundancy.

In the GPU-based implementation, generating edges is done through a map
primitive efficiently. Each thread takes charge of one encoded read and generates
corresponding (I — k) edges. In our implementation, the encoding and edge gen-
eration are done in one kernel program. We use the fast shared memory on the
GPU to hold encoded reads, and bitwise operations to generate all (k+1)-mers.
Duplicate elimination can be implemented through either sorting, or hashing.
In our evaluation, the two methods have a similar performance. Considering
the merging step in out-of-core processing, we have adopted the sorting-based
approach to perform the duplicate elimination.

Step 3. Adjacency List Representation After edges are generated, we can
extract two corresponding k-mers, edge directions, and output labels from each
(k+1)-mer. This step can be implemented as a map on GPUs. To keep the
adjacency information, we use a pair (k-mer, edge id) to represent a node. An
additional duplicate elimination step on the field k-mer is performed for all pairs
to obtain distinct nodes as well as associated edges.

3.2 The Staged Graph Construction Algorithm

The in-memory implementation assumes unlimited GPU memory for the graph
construction. In practice, a staged graph construction algorithm is necessary
for the GPU-based implementation to handle data that cannot fit into the GPU
memory. In common cases, the most memory consumption occurs in Step 2, when
edges are generated from encoded reads before the duplicates are eliminated.
Suppose there are n short reads of length [ each, for a user-defined £, the total
size of (k+1)-mers is 8 x n x (I — k) bytes, e.g., several hundreds of gigabytes for
the human genome. Step 3 is executed using a similar staged algorithm when
all distinct edges are produced. Therefore, we focus on introducing the staged
algorithm for Step 1 and 2.

The basic idea in our staged algorithm is to load and process the input reads
through multiple passes. In each pass, only a subset of input reads, denoted
as a chunk of reads, is loaded from the disk to the memory for processing.
Figure 2 shows the workflow of chunk-based processing. The chunk size is set so
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Fig. 2. The workflow of one chunk based processing of GPU-accelerated bidirected De
Bruijn graph construction. The color coding of black, grey, and white indicates the
data is stored in the disk, GPU memory, and CPU main memory, respectively

that the memory required for the chunk-based processing does not exceed the
GPU memory size. Specifically, there are three processing steps for one chunk:

1. C-1: I/0O. n' (n’ < n) short reads are loaded from the disk to the main
memory as a chunk of data.

2. C-2: GPU processing. We transfer the data chunk to the GPU memory.
The GPU performs the encoding and generates n’ x (I — k) edges. Duplicates
are eliminated through a sorting-based method for these n’ x (I — k) edges.
After the duplicate elimination, there are m distinct edges for this chunk.

3. C-3: CPU merge. These m distinct edges are copied from the GPU mem-
ory to the main memory, and merged with the distinct edges generated from
previously processed data chunks. Since both the newly generated edges and
the existing edges are ordered, the merge step is efficient. The m’ distinct
edges after merging will be used for the next chunk. The multiplicity infor-
mation are also updated in this step. Due to the high coverage of input reads,
the number of distinct edges is around tens of times smaller than that of all
generated edges. Therefore we assume that the main memory is sufficient to
hold these distinct edges.

3.3 The Memory Cost Model

Given the GPU memory size M, we estimate the memory consumption for each
step to decide the suitable chunk size. Suppose each chunk contains n’ reads,
and each read is I-length. Then the memory size of input reads is n’ x | bytes
(one byte per character). After encoding, the memory size for encoded reads is
"/4” bytes. Thus the total GPU memory consumption for this encoding step is:

(n x1+ ”/4”) bytes. Next we use encoded reads in the memory for generating
edges. The number of edges generated for one chunk is n’ x (I — k), and each
edge is represented using a 64-bit word type. Thus the memory size required for
all generated (k+1)-mers in one chunk is 8 x n’ x (I — k) bytes. Therefore the
total GPU memory consumption of this edge generation step for one chunk is:

(”/4” +8xn' x (I— k:)) bytes. We perform the sorting-based duplicate elimina-

tion algorithm on n’ x (I —k) edges. The memory consumption of the GPU-based
radix sort is an output buffer with the same size of the input array. Thus the total
memory consumption for the radix sort can be estimated as (2 x 8 x n’ x (I — k))
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bytes. Finally, we remove duplicates from these sorted edges. The memory con-
sumption for this operation is at most (2 x 8 x n’ x (I — k)) bytes. Therefore,
the maximum value of n’ can be estimated as follows:

C(AM, M, M,
T 51 8250 — 8k 16 % (1 — k)

4 The Pipelined Processing Model

4.1 The DGC Model

Our staged algorithm can be generalized as a processing model, which can be
adopted in many GPGPU applications to handle the data set that cannot entirely
fit into the GPU memory or of which some steps are not suitable to be processed
on the GPU. We call it the DGC (Disk-GPU-CPU) model.

The DGC model is defined as follows. There are three components: 1/0, the
computation on GPUs, and the processing on CPUs. Suppose the total size of
input data is D, the chunk size d, there are [g] passes. For each pass: (1) A
chunk of data is loaded from the disk to the main memory. (2) The in-memory
chunk is transferred from the main memory to the GPU memory, and processed
by the GPU. (3) The result is transferred back to the main memory, and a merge
(or other post-processing) step is performed on the CPU.

In the DGC model, at least three memory buffers are required: b; is the
CPU memory buffer to hold the data from the disk, b, is the GPU memory
buffer used to store the input data, and b, is the CPU memory buffer used to
hold the computation result transferred from the GPU memory. To simplify the
presentation, we assume the computation result on the GPU is also stored in
the input buffer, that is b,.

4.2 The Pipelined-DGC Model

The DGC model can be improved using pipelining. Since b, is the GPU memory
buffer independently accessed from b; and b., the DGC model can be pipelined
without additional memory allocated for data exchange. Without loss of gener-
ality, we assume that during processing, by and b. will not be released by the
GPU and CPU programs, respectively.

We maintain three threads to independently take charge of the I/0O, GPU,
and CPU processing. The I/O thread will be blocked when b; is full and also
when the memory copy to by is ongoing. The GPU thread may be blocked in
two cases. First, the data is not ready, i.e., by is not full. Second, the processing
on the GPU has been done, but the data is being copied to b.. The CPU thread
may be blocked only when the data is not ready in b,.

At the beginning, we load the first data chunk to b;. When b; is full, a memory
copy from b; to by is executed. The I/O is blocked when performing the memory
copy. As long as the data has been uploaded to by, b; becomes available to
load the next chunk of data until it is full again. However, the second memory
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copy from b; to b, (and all following memory copies) should wait until the GPU
processing for the previous chunk is done to release the use of b,. Similarly,
we pipeline the GPU and CPU processing. A memory copy from the GPU to
CPU is performed when the computation on the GPU is finished. The GPU
processing is blocked when coping the data to b.. After the memory copy, the
CPU can perform the merge step for the data in b., and the the next chunk of
data can be copied from b; to b, if the data is ready in b;, otherwise the GPU
thread is blocked to wait for the data in b; becoming ready. We can see that
with pipelining, the I/O, GPU processing, and CPU merge can overlap in time.

5 Experiments

5.1 Experimental Setup

Hardware Configuration. We conduct our experiments on a server machine
with two Intel Xeon E5520 CPUs (16 threads in total) and an NVIDIA Tesla
S1070 GPU. The NVIDIA Tesla S1070 has four GPU devices. In our current
implementation, we only utilize one GPU device, and the CPU merge step also
only uses one core on the CPU. This computation capability is sufficient for the
overall performance as the I/O is the bottleneck. The main memory size of the
server is 16 GB.

Data Sets. We use a small and a medium sized data set for the evaluation. As
the previous research [13], we randomly sample known chromosomes to simulate
short reads. Two data sets are sampled from Arabidopsis chromosome 1 (denoted
as Arab.) and human chromosome 1 (denoted as Human), which can be accessed
from the NCBI genome databases |[16]. The details of the two data sets are shown
in Table [l Additionally, we fix the k-mer length k to 21, which is a common
value for most genome assemblers.

Table 1. Data sets

Arabidopsis chromosome 1 Human chromosome 1

F#nucleotide 30 million 247 million
Read length 36 36
Coverage 17 36

#read 12 million 230 million
File size (FASTA) 800 MB 13 GB

5.2 Performance Results

Time Breakdown without Pipelining. We first study the performance bot-
tleneck of our GPU-based graph construction without the pipeline optimization.
FigureBlshows the time breakdown of our GPU-accelerated bidirected De Bruijn
graph construction. In this figure, the I/O, the encoding and edge generation on
the GPU, the duplicate elimination for each chunk on the GPU, and the merge
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Fig. 3. The time breakdown of GPU-based bidirected De Bruijn graph construction
without pipelining

step on the CPU together take around 90% of the execution time. The DGC
model is applied to these four components. Particularly, among these four com-
ponents, I/O takes around 50%, and both the GPU processing (including encod-
ing and generating edges) and CPU processing take around 25% of the elapsed
time. Since the efficiency of the pipeline is limited by the most time-consuming
component, we expect that the overall performance of these four components
can be improved by around two times through pipelining.
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(b) With pipelining
Fig. 4. Executions of the staged algorithm without and with pipelining for GPU-based

bidirected De Bruijn graph construction. The solid black rectangles represent the busy
time of a component.

The Pipelining Optimization. We focus on the four steps (I/O, Encod-
ing+Edge gen., Duplicate elimination, Merge) which as shown in Figure Bl that
consume around 90% of the overall elapsed time. We take the larger data set
human chromosome 1 to demonstrate the result. There are 33 passes in the
staged algorithm for this medium size data set. Figure shows the execution
of the staged algorithm without pipelining. The I/O, GPU and CPU process-
ing are done sequentially in each pass. As a result, the disk is idle around half
of the overall time, and the utilization of the GPU and CPU is only around
25%. Figure shows the execution status of the staged algorithm when
pipelining optimization is adopted. With pipelining, I/O is nearly non-blocking.
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Even though the GPU and CPU processing cannot completely overlap, their
utilization is improved considerably. As a result, the overall execution time for
these four steps are reduced from around 250 seconds to 128 seconds.

Comparison to Existing Implementations. There are four CPU-based im-
plementations for comparison: Velvet [4], SOAPdenovo |2], ParBidirected [14],
and Jackson’s implementation |13]. We only compare the performance of graph
construction. We perform the evaluation on the same machine for all these soft-
ware except the Jackson’s implementation. Note that SOAPdenovo, ParBidi-
rected, and Jackson’s implementation are parallel implementations.

Table 2. Comparison of the elapsed time in seconds

Arab. Human 1
GPU-accelerated 18 177
Velvet |4] 86 -
SOAPdenovo |2] 78 1,245
ParBidirected [14] 1,740 32,400
Jackson2008 [13] 15 327

Table [21 shows the comparison result for the running time of four different im-
plementations. The memory required by preprocessing in Velvet for the Human
data set exceeds our main memory limit and takes excessively long time, thus
we do not report the performance number for the Human data set in the table.
SOAPdenovo has parallelized the hash table building. In the evaluation, it con-
sumes a similar main memory size (around 8 GB for the Human data set) to our
implementation. However, the GPU-accelerated graph construction is around
4-7x faster than SOAPdenovo for the similar functionality. Since ParBidirected
adopts a more conservative method to handle the out-of-core processing, inter-
mediate results need to be written into the disk in most steps, which results in
a slow execution time, but the memory consumption is stable and very low. In
our experiments, we have already modified the default buffer size used in the
external sorting to improve the performance. The published performance results
from Jackson’s implementation [13] is based on a 1024-node IBM Blue Gene/L.
The input and output are the same as our program. However, they have adopted
a node-oriented graph building approach, and the message passing is very ex-
pensive. In summary, compared with existing implementations, our GPU-based
graph construction is significantly faster. Specifically, compared with the mas-
sively parallel implementation on the IBM Blue Gene/L, our implementation is
still around two times faster.

6 Conclusion

In this paper, we have presented the design and implementation of our GPU-
accelerated bidirected De Bruijn graph construction, which is a first step to build
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a complete GPU-accelerated genome assembler. We have addressed the GPU
memory limit issue through a staged algorithm, and the overall performance can
be further improved by around two times through pipelining 1/O, GPU and CPU
processing. Furthermore, such optimized processing flow can be generalized as
a pipelined-DGC model, which can be applied to other GPGPU applications to
handle large data sets. Compared with existing implementations on CPUs, the
performance of our implementation is up to two orders of magnitude faster. In
particular, our GPU-accelerated graph construction is around 2X faster than the
published performance numbers for a parallel implementation on a 1024-node
IBM Blue Gene/L.
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