2011 International Conference on Parallel Processing

GSNP: A DNA Single-Nucleotide Polymorphism
Detection System with GPU Acceleration

Mian Lu*, Jiuxin Zhao*, Qiong Luo*, Binggiang WangT, Shaohua Fuf, Zhe Lint
*Hong Kong University of Science and Technology
Email: {lumian, zhaojx, luo} @cse.ust.hk
Beijing Genomics Institute, Shenzhen
Email: {wangbingqgiang, fushaohua, linzh} @genomics.org.cn

Abstract—We have developed GSNP, a software package with
GPU acceleration, for single-nucleotide polymorphism detection
on DNA sequences generated from second-generation sequenc-
ing equipment. Compared with SOAPsnp, a popular, high-
performance CPU-based SNP detection tool, GSNP has several
distinguishing features: First, we design a sparse data repre-
sentation format to reduce memory access as well as branch
divergence. Second, we develop a multipass sorting network to
efficiently sort a large number of small arrays on the GPU.
Third, we compute a table of frequently used scores once to avoid
repeated, expensive computation and to reduce random memory
access. Fourth, we apply customized compression schemes to the
output data to improve the I/O performance. As a result, on a
server equipped with an Intel Xeon E5630 2.53 GHZ CPU and
an NVIDIA Tesla M2050 GPU, it took GSNP about two hours to
analyze a whole human genome dataset whereas the CPU-based,
single-threaded SOAPsnp took three days for the same task on
the same machine.

I. INTRODUCTION

Single-nucleotide polymorphism (SNP) detection is one of
the most fundamental genomics applications, which is used to
find DNA sequence variation for a single nucleotide. The SNP
detection usually takes an excessively long running time, e.g.,
several days, due to the large amount of data to be processed
and the high intensity of computation. As graphics processing
units (GPUs) successfully accelerate various scientific appli-
cations, we propose to adopt the GPU to improve the SNP
detection performance.

We focus on SNP detection on second generation DNA
sequencing data, which are very short DNA fragments and
may contain errors. We adopt the algorithm employing a
Bayesian model, which has shown high accuracy in prac-
tice [1]. Our GPU-accelerated SNP detection system, GSNP,
provides the same functionality as the popular CPU-based
SNP detection tool SOAPsnp [2]. GSNP achieves a high
performance through both algorithmic optimization and GPU
acceleration. In particular, we make the following technical
contributions.

1) We propose a sparse data representation format for a
matrix central to the computation. This representation
reduces memory access as well as matches the GPU’s
processing feature.

2) We develop a multipass sorting algorithm on the GPU
to sort a large number of small arrays efficiently.

0190-3918/11 $26.00 © 2011 IEEE
DOI 10.1109/ICPP.2011.51

592

3) To avoid repeated computation and reduce random mem-
ory access, we compute a table of frequently used
scores once and store them in the memory for access
throughout the entire process.

To improve I/O performance, we apply customized
compression schemes for the output data on the GPU.
They provide a higher compression ratio and faster
performance than general data compression algorithms
for SNP results.

We evaluate our GSNP on a server equipped with an
NVIDIA Tesla M2050 GPU and an Intel Xeon E5630 2.53
GHz CPU at the Beijing Genomics Institute (BGI) in Shen-
zhen, China, using the operational genomic data sets there.
Compared with CPU-based SOAPsnp, GSNP achieved a per-
formance speedup of around 40X. GSNP is being integrated to
the production pipeline by BGI. The source code of GSNP can
be downloaded from http://www.cse.ust.hk/™ lumian/gsnp.html

4)

The remainder of this paper is organized as follows. In
Section 2, we introduce the background and related work. We
overview our implementation in Section 3. Section 4 and 5
focus on optimization techniques for likelihood computation
and data compression, respectively. The experimental results
are reported in Section 6. We conclude the paper in Section
7.

II. BACKGROUND AND RELATED WORK
A. Single-Nucleotide Polymorphism Detection

Second generation DNA sequencing produces a large num-
ber of short DNA fragments (called reads) at a high through-
put, with an error rate of around 2%. Each read is a string
of characters A, T, C, and G. Each of these four characters
represents a nucleotide base (or base for short). Base A
complements 7', and C' does G. Two bases connected via
hydrogen bonds in two reverse complementary DNA strands
are called a base pair (bp). As each read is sampled from one of
the two reverse complementary DNA strands, we can calculate
the corresponding reverse complementary read. The length of
a read is measured in number of base pairs, or essentially
the number of bases in the read. The sequencing depth is
calculated as the total length of all short reads divided by
the length of the original sequence. Since reads are randomly

IEEE
computer
® psouety

sampled, the original sequence may not be completely covered.
The coverage ratio is the percentage of sampled base pairs
in the sequence. Due to the dramatically reduced time and
economic cost compared with the first generation sequencing,
short reads DNA sequencing has been widely used since 2007.

Single-nucleotide polymorphism (SNP, pronounced [snip])
detection is one of the most important genome applications.
It finds DNA sequence variations for a single nucleotide
between different members of a species. Specifically, for each
site (position) in multiple sequences, it finds whether the
position holding different bases in the sequences is a SNP. For
example, given two corresponding DNA fragments ATCGAG
and ACCGAG from two individuals, the second site may be
a SNP since T and C are two different nucleotides. T and C
are called two alleles. For human being, there are around ten
million known SNPs. SNPs contribute to different phenotypes
and respond to drugs and environment. A well-known example
is that the SNP of the genetic disorder Haemophilia has been
identified in the X chromosome.

We focus on detecting SNPs on data generated from the
second-generation sequencing equipment. The adopted algo-
rithm is based on a Bayesian model [2], which has shown a
high accuracy in practice [1].

B. Graphics Processing Unit

We use a GPU to improve SNP detection performance
utilizing its massive thread parallelism and high memory
bandwidth. The GPU architecture consists of hundreds of
cores and can run thousands of concurrent threads in the
SIMD style. The GPU global memory is several gigabytes. The
access latency of the global memory is high. However, threads
within a multiprocessor can employ coalesced access to group
accesses on consecutive memory addresses to utilize the high
GPU memory bandwidth. Additionally, there is a small but
fast on-chip shared memory within each multiprocessor, and
tens of kilobytes of constant memory that is cached.

C. Related Work

Most SNP detection tools are based on a Bayesian model.
On the CPU, SOAPsnp [2] is one of the most successful
and widely used SNP detection tools for short reads [1]. In
the current release, SOAPsnp is single-threaded. SAMtools
[3] is an integrated package manipulating short reads, in-
cluding sorting, alignment, and SNP detection. Crossbow [4]
implements the same SNP detection algorithm as SOAPsnp,
but runs on Amazon EC2 to achieve a high performance.
Compared to the cloud-based implementation, GSNP utilizes
the GPU to improve the speed and has several key algorithmic
optimizations, including memory layout, pre-computation, and
compression.

Most GPU-accelerated genomics applications are on se-
quence alignment [5]. The work most relevant to ours is a
GPU-based x? test algorithm for SNP detection [6]. However,
that algorithm is not specifically designed for short reads and
x? test is rarely used in practice today. In contrast, our GSNP

593

aims at accelerating a commonly used SNP detection system
for real-world workloads.

III. OVERVIEW
A. SNP Detection Workflow

GSNP implements the same functionality as the CPU-based
SOAPsnp. Figure 1 illustrates the workflow of SNP detection
in SOAPsnp. There are seven function components. Input and
output data for components are shown in the ellipses. At
first, a global score matrix p_matrix is calculated, which is
used to adjust sequencing quality scores in a later step called
likelihood calculation. The next six components are processed
through multiple passes. The component read_site loads a
fixed number of sites (a window) from input files. Then per-
site SNP detection is performed site by site for all sites in
this window. Specifically, counting is to collect information
for each site, and then the likelihood and posterior probability
values are calculated. Results are output to a file. The recycle
component is used to re-initialize memory buffers for the next
window.

There are three input files for SNP detection, which are
stored as plain text in specific formats. The first file is the
main data file and contains a large amount (e.g., hundreds
of gigabytes) of short read alignment results ordered by their
matched positions in the reference sequence. Particularly, in
the alignment result, each site in the reference sequence has
none or a few corresponding bases, called aligned bases. Note
that, due to sequencing errors and SNPs, aligned bases may
not be identical to the base at the same site in the reference
sequence. The second file contains the reference sequence. The
third file contains the prior probability for known SNPs. The
first file is obtained from sequence alignment software. The
reference sequence and prior probability files can be obtained
from public resources. The result of SNP detection is a table,
in which each row records SNP related information for a site.
The result will be output to a text file in a specific format.

TABLE I
TIME BREAKDOWN (SEC) BY COMPONENTS IN SOAPSNP.

cal_p.| read. | count. | likeli. | post.| output| recycle | Total
Ch. 1 258 101 376 12267 | 113 | 550 8214 21879
Ch.21 | 31 12 55 1854 | 17 103 1603 3675

To identify the performance bottleneck in the CPU-based
SOAPsnp, we evaluate it on a server at BGI. The hardware
setting and data sets are described in Section VI. Table I shows
the time breakdown of the seven components of SOAPsnp.
Ch. 1 and Ch. 21 are two data sets used in our evalu-
ations. Likelihood calculation is the most time-consuming
component, which takes around 56% of the overall time.
Memory recycle is the second most expensive component.
Our further investigation reveals that, the performance of both
the likelihood calculation and memory recycle are limited by
the memory bandwidth, since a dense matrix representation
is adopted, which introduces large memory access overhead.
The third time-consuming component is the result output,

—> Data input and output

=P Control flow

I Pper-site computation

input files :

T |

|

|

base_occ
cal_p_matrix P read_site

|
T |
|

T |
|

|

> \ikenhood/';p\rm’—ﬂ
X

output }i". recycle ‘

process next site H

A
p_matrix

process next window

Fig. 1.

—> Data input and output <> Data stored in the GPU memory

=P Control flow [] Component accelerated by the GPU

Workflow of SNP detection in SOAPsnp.

! PN e iha)
@:H Ioadjable}:){ readislte} § | counting P | likelihood |===—=—==F | posterior output):* recycle

process next window

p input files
newﬁpm

log_table

Fig. 2. Workflow of GSNP.

which is dominated by disk I/O. Outputing is more expensive
than inputing due to the larger size (around 50% larger)
and more complex data type parsing and conversion to plain
text. The first component cal_p_matrix includes both I/O and
computation with each taking around one half of the time. The
second component read_site includes I/O and a number of flow
control instructions. The I/O in read_site is more efficient than
that in cal_p_matrix due to OS buffering.

B. GSNP Overview

Since per-site SNP detection is independent among sites, our
baseline parallelization strategy on the GPU is to let one thread
compute one site. Furthermore, we adopt various techniques
to enhance the performance.

Figure 2 illustrates the workflow of GSNP. The GPU is
used to accelerate most components, including cal_p_matrix,
counting, likelihood, posterior, output, and recycle. The first
component cal_p_matrix reads original input files once and
compresses the input data on the GPU in addition to generating
the p_matrix. An additional component in GSNP load_table
is used to generate two new tables that are used in likelihood
to improve the performance and to avoid any numerical incon-
sistency issues between the GPU and the CPU. Counting and
likelihood are based on the improved data structure base_word,
which adopts a sparse matrix representation method, while
the output component adopts GPU-accelerated compression
to improve the performance.

In the following, we present in detail our GPU-based
implementation and optimization of likelihood computation,
memory recycle, and result output. These three components
are the most time-consuming in SOAPsnp.

594

IV. LIKELIHOOD CALCULATION
A. Likelihood Calculation Algorithm in SOAPsnp

Algorithm 1: Compute likelihood for a site in SOAPsnp.

initialize type_likely to all zeros

for base < 0 to 3 do

initialize dep_count to all zeros

for score <+ (q_maxz — qg_min) to 0 do
for coord < 0 to read_len do

for strand < 0 to 1 do

for k£ + 0 to occ do
dep_count[strandxread_len+coord]++
q_adjust=adjust(score, dep_count)
for allelel <— 0 to 3 do

for allele2 « allelel to 3 do

L type_likelylallelel<2|allele2]

o 00N B W N -

11
12
13
+= likely_update(q_adjusted,
coord, base, allelel, allele2)

Algorithm 2: likely_update(q_adjusted, coord, base,
allelel, allele2)
1 p1 = g_adjusted K 12 | coord < 4 | allelel < 2 | base

2 po = q_adjusted < 12 | coord < 4 | allele2 < 2 | base
3 return log,, (0.5 X p_matriz[p1] + 0.5 X p_matriz[p2])

To simplify the presentation, we only describe the algorithm
for one site. Algorithm 1 outlines the likelihood calculation for
one site. Almost all existing CPU-based SNP detection tools

occ=base_occ[base<k 15|scorek9|coord<k1|strand]

for short reads adopt such an algorithm. The algorithm uses a
matrix (denoted as base_occ) with four dimensions (4 x 64 x
256 x 2, corresponding to base X score X coord x strand)
to store the number of occurrences (1 byte used) for each
uniquely aligned base. The four dimensions correspond to four
pieces of information about the aligned base: the base type, the
sequencing quality score, the coordinates on the read, and the
strand of the read. Accessing the information about all aligned
bases in this matrix in a canonical order (score-coord-strand),
the algorithm increments a counting array dep_count, adjusts
the sequencing quality score (line 10) and iteratively updates
the type_likely matrix. The type_likely matrix is finally output
consisting of ten likelihood values, which correspond to the
ten unique, unordered combinations of the two allele types
(each allele type can be A, T, C, or G.).

B. Aligned Base Representation in GSNP

In SOAPsnp, the aligned base matrix base_occ uses a dense
matrix representation. This representation allows sequential
access during likelihood calculation following the canonical
order (lines 4-7 in Algorithm 1) and direct updates to the
number of occurrences in the counting component (the third
component from left to right in Figure 1). However, this
representation introduces a large number of memory accesses,
and is the performance bottleneck according to our estimation
as follows.

Since the size of base_occ for each site is fixed, the
time for accessing base_occ can be estimated. Suppose the
total number of sites is .S, and the main memory bandwidth
for sequential read is By, bytes/sec. Then the time for
accessing base_occ for the likelihood calculation (also recycle)
is estimated as

)sec (1)

, where |base_occ| is the number of elements in base_occ
per site (4 x 64 x 256 x 2 = 131,072). We find that the
estimated time is around 70% of the measured likelihood
calculation time. Note that this estimation is simplistic in the
hardware features, in particular, out-of-order CPU execution
and prefetching, may improve or hide the memory access
latency to some extent. Nevertheless, this simple estimation
gives us a direct hint that the memory access time on base_occ
is significant.

As shown in line 8 of Algorithm 1, if occ is zero, the
computation (line 9 to 13) is not executed. Suppose the
sequencing depth is X, the average non-zero percentage for
base_occ can be estimated as

(S X |base_occ| x 1
Bcpu

x 100% (2)
A common sequencing depth is less than 100X, thus the non-
zero percentage is up to around 0.08%.

Based on our estimation of the memory access time and the
observation of the low non-zero element percentage, we adopt
a sparse matrix representation in GSNP. We pack all non-zero
elements into an array in the counting component. Since the

Pnonzero = M

595

O n

coord

observation order

Y

strand __|occ
34 1 1

base
o
1

Dense matrix representation

score
16]
16]

value 0| 1 | 0.

[1<<15[16<<9[10<<1|1]

~o[1]o..

base_occ
index

[1<<15]16<<9|34<<1[1]

Sparse matrix representation

value [1<<15[16<<gj32<<1]1 [1<<15[16<<9[10<<1]1 |

] (1]

base_word

index

Fig. 3. Sparse and dense matrix representation of aligned bases for a site.

maximum values of base type, strand, quality scores and coor-
dinate are 4, 2, 64, and 256, respectively, we use 32-bit word
to encode all four items for an aligned base, and store them in
the array denoted as base_word. We do not store the number
of occurrences to avoid searching existing base_word elements
to update the occurrence number in the counting component.
Instead, each base_word element represents one occurrence.
As the value for most non-zero elements in base_occ is one,
this method seldom stores an element multiple times. However,
the canonical order is not preserved since aligned bases for a
site are unordered. Therefore, we perform a sort after counting
all elements in base_word.

Figure 3 shows an example of the sparse representa-
tion base_word in comparison with the dense representation
base_occ. According to the canonical order in Algorithm 1,
the dark element in the matrix should be accessed before the
grey element. The sequential access on base_occ can naturally
keep such order. However, the grey element precedes the dark
element in base_word since it comes earlier in the input.

There are two advantages of employing the sparse repre-
sentation. First, it significantly reduces the number of memory
accesses since the non-zero percentage of the dense represen-
tation is only around 0.08%. Second, since non-zero elements
are packed together, threads can perform the same computation
task concurrently on these elements, matching the GPU feature
for SIMD style processing.

In SOAPsnp, memory recycle is the second time-consuming
component due to the large amount of data to initialize. With
the sparse data representation, the data to be recycled is only
around 0.08% of the dense representation (estimated as the
non-zero percentage in Formula 2). Furthermore, with the high
memory bandwidth on the GPU, the recycle time is negligible
compared with other components in GSNP, as is shown in our
evaluation.

C. Multipass Sorting Network

To maintain the canonical order in base_word, we need to
sort this array for each site. There are several studies on GPU-

accelerated sorting [7], [8], [9]. However, they are inefficient
to sort a large number of base_word arrays because they are
optimized to sort a single large array. In contrast, our task is to
sort a large number of arrays (up to billions), and each array
is small (tens of elements).

We first implement a batch sort primitive based on bitonic
sort to sort multiple equi-sized small arrays in parallel on
the GPU. We make each thread block in CUDA handle one
or multiple small arrays. If the array can fit into the shared
memory, the bitonic sort can be efficiently performed on the
shared memory. Otherwise, we use heuristics to utilize the
shared memory in multiple passes [9]. The primitive can
achieve a high performance since the bitonic sort maps to the
massive parallelism on the GPU very well.

However, the sizes of base_word arrays vary among differ-
ent sites. Modifying the primitive to the sort arrays of different
sizes cannot directly achieve a high performance since the
workloads are imbalanced among the threads. To utilize the
batch sort primitive, a straightforward method is to set the
largest array size as the batch array size. However, as time
may be wasted on sorting useless data and smaller arrays may
not be processed efficiently. Therefore, we adopt a multipass
method, in which for each pass, we only sort arrays of a similar
size.

D. New Score Table

Most computation and memory accesses for likelihood
calculations are in likely_update (Algorithm 2). In Algorithm
1, likely_update is performed ten times for each aligned base.
For a human genome data set, the total number of invocations
of likely_update is around one trillion.

Algorithm 3: coord,
base, 1)

1 idz = (¢_adjusted < 10 | coord < 2 | base) x 10 + ¢

2 return new_p_matriz[idz]

opt_likely_update(q_adjusted,

The likely_update function contains a logarithm function
and two non-coalesced memory reads on p_matrix. p_matrix
is allocated as a four-dimension array corresponding to the
adjusted score, coordinate on the read, allele type, and base
type. The matrix is 8 MB in size, and can be stored in neither
shared memory nor contant memory. Additionally, although
the new generation GPU has L1 and L2 caches for the global
memory, which are up to 48 KB and 768 KB respectively, the
L1/L2 caches may not improve the performance significantly
due to their small sizes. Fortunately, the number of combina-
tions of the two allele types from the two levels of loops at
line 11 and 12 in Algorithm 1 is only ten.

In GSNP, we introduce a new data structure denoted as
new_p_matrix storing values of p_matrix for all combinations
of allelel and allele2. Specifically, for the ith element in
p_matrix, we calculate ten values corresponding to ten combi-
nations of the two alleles and store them at [10 x ¢, 10 x 7+ 9]
of new_p_matrix. Based on this optimization, Algorithm 2 is

596

optimized to Algorithm 3, where ¢ is the ¢th combination
of allelel and allele2. The size of the new score table
(new_p_matrix) is ten times larger (80 MB), which is still
affordable for the GPU, but repeated logarithm function calls
are avoided and two memory accesses on p_matrix (line
3 in Algorithm 2) are reduced to one on new_p_matrix
(line 2 in Algorithm 3) for each function call. We compute
new_p_matrix once and store them in a table in the GPU
memory before all likelihood calculation.

E. Shared Memory Usage

We make the shared memory hold the likelihood result
(type_likely) since it is frequently updated (line 13 in Algo-
rithm 1). There are ten reads and ten writes on fype_likely for
each aligned base. At the end of the likelihood calculation, the
data stored in the shared memory is transferred to the global
memory through coalesced writes. This way, twenty memory
accesses on type_likely for each aligned base are performed on
the shared memory. Additionally, we leave the counting array
dep_count on the global memory since it cannot fit into the
shared memory and the number of accesses is only one-tenth
of that of type_likely.

F. Summary of Likelihood Calculation in GSNP

With the sparse data representation, shared memory usage
and the new score table, Algorithm 1 is optimized to Algorithm
4. Particularly, the function opt_likely_update is defined in
Algorithm 3.

Algorithm 4: Optimized likelihood calculation for a site.

1 likelihood_sort(base_word)
2 likelihood_comp(base_word)

3 function likelihood_comp(base_word) {

4 initialize dep_count and s_type_likely to all zeros
last_base = 0
for i<« I to #non_zero do

5

6

7 extract(base_word|[i],base, score, coord, strand)

8 if base > last_base then

9 initialize dep_count to all zeros

10 last_base=base

11 dep_count[strand X read_len + coord] += 1

12 q_adjust=adjust(score, dep_count)

13 n=20

14 for allelel < 0 to 3 do

15 for allele2 < allelel to 3 do

16 s_type_likelylallelel<2|allele2] +=
opt_likely_update(q_adjusted, coord, base, n)

17 n+=1

18 copy s_type_likely to the global memory

G. The Consistency of GPU and CPU Results

Finally, we discuss the numerical inconsistency issue be-
tween the CPU and the GPU based implementations, which
affects the likelihood calculation result. This issue is important.
Genomists at BGI suggest that it is critical to keep the results

consistent for their research, especially for SOAPsnp, which
has accumulated a large amount of experimental data.

Modern GPUs support IEEE-compliant floating point num-
bers as CPUs. Thus arithmetic operators on the GPU are
guaranteed to produce the same result as on the CPU. How-
ever, several mathematical functions may not produce the same
result on the GPU and CPU due to different implementation
details [10]. In our experiments, we found that around 0.1% of
the results were different between a SNP detection algorithm
implemented on the CPU and on the GPU.

Fortunately, the only mathematical function in adjust is a
base-10 logarithm on the sequencing scores and each score
is an integer between 0 and 64. Thus we calculate all base-
10 logarithm results of the 64 integers on the CPU once
(log_table) and store them into the constant memory of the
GPU. Similarly, for the other logarithm in the algorithm, which
is used in likely_update, we also generate a new score table
(new_p_matrix) on the CPU. Consequently, GSNP produces
exactly the same result as that of SOAPsnp. The overhead
of CPU-based computation for these two tables is negligible
compared with the overall time.

V. 1/0 AND DATA COMPRESSION
A. Data Input and Output

With the improved algorithm and the GPU hardware ac-
celeration, the in-memory computation of the GSNP becomes
very efficient. As a result, data input and output becomes the
performance bottleneck due to slow disk I/O, which takes
around 60% of the time when all the other components are
accelerated using the GPU.

To improve the I/O performance in the GSNP, we consider
the following constraints. First, since input files are stored
in specific formats widely used by scientists, GSNP uses the
same file format as SOAPsnp. Second, the disk access pattern
for both read and write is already optimized to sequential in
SOAPsnp. Third, the first two components of SOAPsnp read
input files twice but they cannot be combined. Specifically,
in Figure 1, the first component cal_p_matrix calculates a
score matrix p_matrix on the input data. The input data is
read again in the second component read_site. These two data
inputs cannot be merged since the score matrix calculation in
the first read requires all the data, and the second read is done
window by window interleaved with the processing on each
window. However, data read by the first component can be
temporally stored with compression in the disk for the second
component of read_site to read at a smaller size due to the
compression. Finally, in the original cal_p_matrix, the I/O and
computation time is roughly equal. We do not adopt the GPU
to accelerate the computation due to quite a few branches and
its inherent algorithmic sequentiality.

B. Output Compression Algorithms

In the GSNP, customized compression algorithms are de-
veloped for both temporary input files and output data. We
describe the output compression in detail since it is more

597

expensive. Similar algorithms are also applied to the input
files.

To compress the data, GSNP does not adopt general com-
pression algorithms, such as gzip, for two considerations.
First, these algorithms are heavyweight and most of them are
not suitable for GPU acceleration because of their inherent
algorithmic sequentiality. Second, they may miss special char-
acteristics of genome sequence data and cannot achieve a high
compression ratio due to their general-purpose nature.

The output is a table containing 17 columns. Column-based
compression is applied for each window. Most columns can be
compressed using simple but effective algorithms. The first and
second columns contain the name of the reference sequence
and site ID. For sites in the same sequence, we only need
to store the sequence name and the number of sites. For the
three columns containing four base types, two bits are used to
encode each type. Several columns related to SNPs are similar
due to the low probability of SNPs. We only need to store
differences for them. A certain number of columns related
to the second allele are sparse. Then we only store non-zero
elements for these columns.

The remaining six columns are related to sequencing quality,
e.g, the average quality score. We have two observations. First,
the number of distinct values is fewer than 100. Second, there
are usually around tens of repeats for consecutive sites. The
reason is that bases on a short read usually have the same
sequencing quality. Based on these two observations, we apply
two levels of compression, which is denoted as RLE-DICT
compression. We first apply run-length encoding (RLE) to
compress repeats, which produces two arrays storing the value
and length for each run. Next, we use the dictionary-based
encoding (DICT) to compress both run value and length arrays.

Our compression/decompression algorithms are lightweight
and efficient on the CPU and GPU. Most algorithms only
need a sequential scan of the data. We only implement
RLE-DICT compression on the GPU for six quality related
columns, which is more expensive than our other compression
algorithms. RLE is implemented using the primitive reduction
on the GPU. For DICT, we first use primitives sort and unique
to build the dictionary. Then a binary search is performed
for multiple elements in parallel to find their index in the
dictionary. The dictionary is loaded into the constant memory
if it fits. Next, we encode the index using least bits through a
map.

Higher level applications based on the SNP detection result
are to query sites satisfying certain conditions. A common
operation is a sequential read on the SNP output data. The
compressed output supports such operations efficiently since
the compressed SNP result can be decompressed in memory
by multiple passes. We also have developed decompression
tools and APIs for GSNP output for further use.

VI. EVALUATION
A. Experimental Setup

We evaluate GSNP using the platform at the Beijing
Genomics Institute (BGI) in Shenzhen, including hardware

and the operational genomic data sets. We first study the
performance of CPU-based SOAPsnp. Then we investigate
the performance impact of optimizations for GSNP, including
sparse matrix representation, the new score table, and shared
memory usage. We further study the effectiveness and effi-
ciency of compression algorithms. Finally, we show the end-
to-end performance comparison for all 24 sequences.
Hardware setup. We evaluate GSNP in a Dell PowerEdge
M610x server equipped with an NVIDIA Tesla M2050 GPU
and Intel Xeon E5630 2.53 GHz CPUs (8 cores, 16 threads
in total). M2050 consists of 448 cores and has 3GB memory.
The measured GPU memory bandwidths for coalesced and
random accesses are 82GB/sec and 3.2GB/sec, respectively.
The global memory of M2050 has L1 and L2 caches sized
48 KB and 768 KB, respectively. The server has 64GB main
memory with a measured bandwidth 4.2GB/sec for sequential
access. The sequential disk I/O is around 90MB/sec.
Implementation details. We develop GSNP using NVIDIA
CUDA C 3.2 in 64-bit SUSE Linux Enterprise 11. SOAPsnp
1.03 (http://soap.genomics.org.cn/soapsnp.html) is adopted as
our CPU counterpart, which is developed using a single thread.
We have developed a multi-threaded version of SOAPsnp
and it achieved a 3-4 times speedup using 16 threads on
the CPU over the original single-threaded SOAPsnp. This
limited speedup is mainly because the algorithm is bounded
by memory bandwidth. In our evaluation, we still adopt the
official single-thread SOAPsnp as the CPU-based counterpart.
We also report the results of the optimized sequential CPU im-
plementation (denoted as GSNP_CPU) in a few experiments,
which adopts the same algorithm as GSNP but without GPU
acceleration. We set the default window size for GSNP and
GSNP_CPU as 256,000, and for SOAPsnp as 4,000. For such
a setup, GSNP_CPU and SOAPsnp both consume around 2
GB main memory, and GSNP consumes around 1 GB main
memory and 1.5 GB GPU memory. The performance is nearly
unchanged if the windows become further larger for all three.

TABLE II
HUMAN CHROMOSOME 1 AND 21.

#sites Seq. dep | #reads | Coverage| Input Output
Ch.1 247M | 11X 44 M 88% 12GB | 17 GB
Ch.21 47 M 9.6X 6 M 68% 2 GB 3 GB

Data sets. We have a complete human genome data set
stored in 24 separate files, each corresponding to one of the
24 DNA sequences. The total number of reads is around 500
million with a length of 100 base pairs each. The total size of
input data is around 142 GB. We mainly use Chromosome 1
(Ch. 1) and 21 (Ch. 21) for performance study, which are the
largest and smallest sequence, respectively. Table II shows the
characteristics of the two data sets. The output size is for the
file generated by SOAPsnp.

B. Performance Study of CPU-based SOAPsnp

Estimated memory access time on base_occ. The time
for accessing the matrix in dense representation base_occ in

598

likelihood calculation and memory recycle in SOAPsnp can
be estimated using Formula 1 in Section IV-B. Figure 4(a)
shows that from the estimation the majority of the likelihood
calculation (65-70%) and memory recycle (89-92%) is spent
on the memory access on base_occ. In other words, if the
memory access on zeros can be eliminated, the speedup for
the optimized CPU-based implementation is at least three and
ten times for the likelihood calculation and memory recycle,
respectively.

I est. memory accesses time| m Chr. 1
[measured recycle time A Chr.21
[measured likelihood time

[

A

5 1

[]
A

C)
=)
1S3
1S3
=]

[
A

=)
1S3
S

Elapsed time (sec)

=)
S

B
oD 0B BBy o

Ch. 1

Ch.21 #non-zero in base_occ per site

(a) Memory access time. (b) Sparsity for base_occ matrix.

Fig. 4. (a) Comparison of the estimated memory access time on base_occ and
the measured likelihood calculation and memory recycle time. (b) Percentage
of sites with different numbers of non-zero elements in base_occ matrix.

Sparsity of base_occ. Figure 4(b) shows the sparsity of
base_occ. The vertical axis is the percentage of sites, and the
horizontal axis is the number of non-zero elements in base_occ
per site. This shows that most sites have only tens of non-
zero elements. Since the total number of elements stored in
base_occ is 131,072, the non-zero elements are up to around
0.08% in base_occ matrix for most sites, which is consistent
with our estimation using Formula (2) in Section IV-B.

C. Performance of Likelihood Calculation in GSNP

In the CPU-based implementation SOAPsnp, the likeli-
hood computation is the performance bottleneck, which takes
around 56% of the overall time. We first study the performance
impact of specific optimizations for the likelihood computa-
tion.

10000

C,
5]
5]
3

b @
2 1000 E 100
= o
B 2
2 &
& 100 Y
ol ’\?sﬂve o0 /“nseo o /o?\l 05\“’ o 3 S“po?\) fdenieg‘b‘““, /c?“ GS“‘?
(a) Ch. 1 (b) Ch. 21
Fig. 5. Time of likelihood calculation: dense representation on the CPU

(SOAPsnp), dense representation on the GPU (GPU_dense), sparse represen-
tation on the CPU (GSNP_CPU), sparse representation on the GPU (GSNP).

Sparse matrix representation. We first show the perfor-
mance comparison of the likelihood calculation employing
different data representation methods for aligned bases on
both the GPU and CPU. Figure 5 shows that the GSNP_CPU
outperforms SOAPsnp by around 4-5 times. With the GPU
acceleration, GSNP is two orders of magnitude faster than
SOAPsnp, and around 30X faster than GSNP_CPU. Moreover,

the GPU-based implementation employing dense representa-
tion is around 14-17X slower than GSNP, which shows the
efficiency of using sparse representation.

Time of likelihood_sort and likelihood_comp. Figure 6
shows the elapsed time of two steps (likelihood_sort and like-
lihood_comp) in likelihood calculation employing the sparse
representation. It shows that the speedup for the sorting and
computing on the GPU is around 22X and 40X, respectively.
Bitonic sort has a higher complexity than quick sort adopted
in GSNP_CPU, thus the speedup is less significant.

I GSNP
[_GSNP_CPU

I GSNP
[_GSNP_CPU

1=}

S

S
o
=}

1=}
S
o

Elapsed time (sec)

=)

Elapsed time (sec)

likelihood_sort likelihood_comp

likelihood_sort likelihood_comp

(a) Chrl. (b) Ch. 21

Fig. 6. Elapsed time of likelihood_sort and likelihood_comp for the likelihood
calculation employing sparse representation on the GPU and CPU.

Batch sort primitive performance. We first measure the
throughput (as defined in Formula 3) of the batch sort primitive
through randomly generated data. We compare the perfor-
mance of three implementations: (1) OpenMP based parallel
CPU quick sort (16 threads), which uses one thread to sort one
array. (2) Our batch sort primitive on the GPU. (3) GPU-based
radix sort [11], which sorts multiple arrays sequentially. Figure
7(a) shows that the third one underutilizes GPU hardware
resources and has very low throughput. Our GPU-based batch
sort has around 1.5 timers higher throughput than the parallel
CPU sort. Additionally, the throughput decreases when the
batch array size becomes larger due to the higher sorting cost.

-3
S

[F=—CPU sort (16 threads)
|—— GPU bitonic
|-4— GPU radix seq.

©
S
=

See

=
S
=)
@
=)

~—

—e

N
S

M elements per sec.
N £
S o
o o

N
=)

Elapsed time (sec)

=)

Ve S
0 50 100 150 200 250 300

Array length

Ch. 1

Ch. 21

(a) Batch sort throughput. (b) Multipass v.s single pass.

Fig. 7. Performance of likelihood_sort on the GPU and CPU
Multipass sorting. We study the performance of multipass
sorting for base_word. The size of a base_word array is close
to the number of non-zero elements in base_occ. The single
pass uses the largest array size in the batch as the batch array
size. The multipass adopts six passes, which are for array size
[0, 11, (1, 8], (8, 16], (16, 32], (32, 64], and larger than 64.
We also compare with the implementation sorting different
size arrays directly using bitonic sort on the GPU. Figure 7(b)
shows that the multipass bitonic sort (bitonic_MP) is around
five times faster than the single pass (bitonic_SP). Through
further investigation, we find that most arrays are sorted using

599

size 128 and 256 in the single pass, which are larger than their
real size. The total number of elements sorted for single pass
is around four times larger than multipass through calculation.
With a higher sorting throughput for smaller arrays, the overall
speedup is around five times. The multipass is also more effi-
cient than sorting different size arrays directly (bifonic_noneq)
due to more balanced workloads.

< 120

2 316
8100 S 14
Py
g e £
3 60 = 8
2 40 20
k<3 © 4
& 20 w2
0 s s 0 s S
i e @ . \e @
RN CLE L PN SRS &
o\)\\“\ & \‘\G‘H w° o\’\\«\ & \x\e‘ﬂ o
R R
(a) Ch. 1 (b) Ch. 21
Fig. 8. Performance comparison of likelihood_comp on the GPU for the

optimized implementation (optimized), only with the new score table (w/
new table), only with the shared memory used (w/ shared), and the baseline
implementation without two optimizations (baseline).

New score table and shared memory usage. We study the
performance impact of two optimizations for the likelihood
computing step (likelihood_comp) in GSNP: (1) the new
score table (new_p_matrix), and (2) shared memory usage.
The performance numbers exclude the sorting step since the
optimizations are not applicable to it. Figure 8 shows that the
optimized GSNP is around 2.4 times faster than the baseline
implementation. Using shared memory or new score table
individually reduces the time of baseline implementation to
around 55% and 78%, respectively. Shared memory improves
the performance more since it directly eliminates twenty non-
coalesced memory accesses on the global memory for each
base_word (line 16 in Algorithm 4). The new score table re-
duces twenty non-coalesced memory reads on p_matrix to half,
and eliminates ten logarithm functions for each base_word.
Due to the high latency for non-coalesced access, the shared
memory contributes more to improve the overall performance.

System information for likelihood calculation. To further
understand the performance impact of the two optimizations,
we investigate GPU system information (CUDA Visual Pro-
filer [12]). Table III shows the number of instructions issued
(#inst. PW), number of global memory loads (#g_load) and
stores (#g_store), number of shared memory loads (#s_load
PW) and stores (#s_store PW) for different implementations
for Ch. 1 (Ch. 21 has similar conclusions). PW indicates that
the counter is for a warp (32 threads) on a multiprocessor.
This shows that using the shared memory reduces the number
of global memory loads and stores to around 70% and 68% of
the baseline, respectively. The number of memory accesses on
the shared memory is close to the number of reduced memory
accesses on the global memory. With the new score table, the
number of instructions and global memory loads are reduced to
around 73% and 64% of the baseline, respectively. Combining
two techniques, the numbers of instructions and total number
of global memory accesses are reduced to around 70% and
51%, respectively, for the optimized implementation.

TABLE III
HARDWARE COUNTERS FOR likelihood_comp WITH OPTIMIZATION
TECHNIQUES ON THE GPU (CH. 1).

baseline w/ shared w/ new table | optimized
#inst. PW 3.3x10™0 | 3.1 x 10" | 2.4 x 10™ 2.3x1010
#g_load 3.3x 10 2.3 x 108 2.1 x 108 1.2 x 108
#g_store 3.7x 10% | 2.5 x 10% | 3.6 x 10® 2.4 x 108
#s_load PW | 0 1.1x10% [0 1.1 x 108
#s_store PW | 0 11x10% [0 1.1 x 108

D. Effectiveness and Efficiency of Data Compression

With the improved data structure and GPU acceleration for
the likelihood computation and memory recycle, the disk I/O
for result output becomes the performance bottleneck in GSNP,
which takes around 60% time when all the other components
are accelerated by the GPU. We study the compression ratio
and speed to show the performance improvement from our
customized compression techniques.

SOAPsnp
SOAPsnp + gzip|
GSNP

[SOAPsnp
[_1SOAPsnp + gzip
[GSNP_CPU
GSNP

o
S
1=}

o
=)

File size (GB)

=)

Elapsed time (sec)

Ch. 1 Ch.21

(a) Output size

(b) Output speed

Fig. 9. The output file size and speed of SOAPsnp, SOAPsnp with gzip
compression, and GSNP with customized compression algorithms.

Compression ratio. We study the compression ratio for the
output. The gzip algorithm is utilized through its programming
API zlib [13] (the same for following evaluations). Figure 9(a)
shows the size of SOAPsnp output, SOAPsnp output with gzip,
and GSNP. It shows that the SOAPsnp output and with gzip
are around 14-16X and 1.5X larger than GSNP, respectively.
This indicates that our algorithms take more advantage of the
data characteristics.

Output speed. The time for output speed includes com-
pression (if any) and output. Figure 9(b) shows that gzip
is around three times slower than GSNP_CPU due to more
expensive computation. GSNP further accelerates the output
by around three times using the GPU acceleration. Compared
with SOAPsnp, the GSNP output is around 13-15 times faster.

Decompression speed. The measurement of decompression
performance is to sequential read the original data once. For
the compressed data, it is loaded from the disk and decom-
pressed in-memory. Otherwise a sequential read is performed
on the SOAPsnp output without compression. The GPU is not
adopted since the decompression algorithms are simple and
efficient on the CPU. Disk I/O dominates the decompression
time. Figure 10(a) shows that reading compressed results of
GSNP is around 40 times faster than SOAPsnp, and also
outperforms gzip by around 6 times.

Compressed input data. We also study the size of the
temporary file generated from cal_p_matrix, which is read by

600

read_site to improve the data input. Figure 10(b) shows that
the compressed data is around one-third size of the original
input, and is comparable to gzip. Since the input data is more
general than the output, gzip achieves a better compression
ratio. There is overhead for cal_p_matrix generating temporary
files, however, the overall performance of cal_p_matrix and
read_site together are improved (summarized in Table IV).

1000 [l SOAPsnp 12 Il Original input
s [—_1SOAPsnp + gzip| [1GSNP Temp files
8 [C—IGSNP 10 [Original input + gzip
o 100 (A}
g g
=t N
g 10 °
=% 2 4
e 2
] w
2
1
0

Ch. 1

Ch. 21

Ch. 1

Ch. 21

(a) Decompression speed (b) Temporary inpute file size.

Fig. 10. (a). Output decompression speed for SOAPsnp, SOAPsnp with gzip,
and GSNP. (b). Data size of compressed input files generated by cal_p_matrix.

E. Overall Performance Comparison

Time of GSNP components. Table IV summarizes the
elapsed time for different components in GSNP, and the
corresponding speedup (the number in parentheses) compared
with SOAPsnp (shown in Table I). This shows that for the
two most time-consuming components likelihood and recycle
on the CPU, GSNP accelerates them by two to three orders of
magnitude. Due to the compression, the output performance is
also improved by 13-15 times. The speedup of counting and
posterior are less significant due to the data transfer overhead
between the main and the GPU memory. The first component
is slightly slowed down due to temporary files generated.
However, the first and second components cal_p_matrix and
read_site together save around 42 and 3 seconds for Ch. 1 and
21, respectively. cal_p_matrix here includes the time for the
table new_p_matrix and log_table generation and loading to
the GPU memory, which take around 2 seconds. The overall
speedup is around 42-50X compared with SOAPsnp on the
CPU. The speedup for Ch. 21 is more significant since a higher
percentage of sites have no aligned bases (around 30%), and
can benefit more from our algorithms.

TABLE IV
TIME BREAKDOWN (SEC) OF GSNP AND THE SPEEDUP COMPARED WITH
SOAPSNP ON THE CPU.

cal_p| read. | count.| likeli. | post. | output| recycle | Total
Ch.1 297 | 20(5)| 87(4)| 60(204) 16(7)| 44(13)| 3(2738)| 527(42)
Ch.21 | 37 3(4) | 14(4)| 8(231) | 3(6) | 7(15) | 1(1603)| 73(50)

Performance impact of window size. We also show the
time and memory efficiency with the window size varied.
Figure 11(a) shows that the time slightly increases when
the window size decreases from 450,000 to 128,000, and
that it increases more dramatically when the window size
is less than 128,000. Such a performance slowdown is from
the overhead introduced by more windows and under-utilized
hardware for small windows. Additionally, the time nearly

1000

T 8001 4 < 2500 GPU Memol

L] " S 2000 —

5 600 . 2 -

S 400 o " £ 1500 X

3 £ 1000 ~

173 Q)(/

& 200 > 500

i} o ‘g‘
0 100 200 300 400 500 2 6 100 200 300 400 500
#sites per window (thousands) #sites per window (thousands)
(a) Elapsed time (b) Memory consumption

Fig. 11. Elapsed time and memory consumption with the number of sites

per window varied in GSNP for Ch. 1.

I SOAPsnp
[1GSNP_CPU

Elapsed time (min.)

3 O 0 M A

6 A ® > N
o o o e Mo Ve Ve Ve

o
ooV

SRS
o o“\ 5

S
oot

NS
e e

n
o“‘\ o‘\lo“%o‘\ o o™ Qx*

Fig. 12. Performance comparison of SOAPsnp, GSNP_CPU, and GSNP.

remains a constant if the window becomes larger than 256,000.
Figure 11(b) shows the memory consumption with window
size varied. Associating two figures, when the window size is
set to 128,000, the speedup is still around 32 times, but both
the GPU and CPU memory consumption are less than 1 GB,
which are available for most hardware configurations today.

End-to-end performance comparison. Finally, we com-
pare the performance for all human chromosomes. Figure 12
shows that GSNP has a speedup of at least 40 times compared
with SOAPsnp. The total time to finish this whole human
genome workload for SOAPsnp is around three days on the
CPU. Our GSNP only takes around two hours.

VII. CONCLUSION

Since 2007, second generation DNA sequencing has become
popular and also made the computation more challenging due
to larger amounts of data to process. We have developed
GSNP, an efficient GPU-accelerated SNP detection tool for
second generation DNA sequencing. Our GSNP achieves a
high performance through algorithm improvement and GPU-
specific optimization. We adopt a sparse matrix representation
to reduce memory access. We implement a multipass sorting
algorithm on the GPU to sort a large number of small arrays
efficiently. Random memory access on the GPU are reduced
through shared memory and a new table storing frequently
used values. Additionally, we have developed a set of high
performance compression algorithms to improve the I/O per-
formance. With the operational data sets and the hardware
platform provided by genomists in BGI, our GSNP achieves
a speedup of around 40 times compared with the popular
SNP detection tool SOAPsnp [2] on the CPU. GSNP will be
released soon as an updated version for SOAPsnp. We believe
it will have a significant impact on genomics research.

601

ACKNOWLEDGMENT

This work was supported by grants 617509 from the Hong
Kong Research Grants Council and MRA11EGO1 from Mi-
crosoft SQL Server China R&D.

REFERENCES

[1]
[2]

“YanHuang Project,” http://yh.genomics.org.cn/.

R. Li, Y. Li, X. Fang, H. Yang, J. Wang, K. Kristiansen, and J. Wang,
“SNP detection for massively parallel whole-genome resequencing,”
Genome Research, vol. 19, no. 6, pp. 1124-1132, June 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer,
G. Marth, G. Abecasis, R. Durbin, and 1000 Genome Project Data
Processing Subgroup, “The Sequence Alignment/Map format and SAM-
tools,” Bioinformatics, vol. 25, no. 16, pp. 2078-2079, August 2009.
B. Langmead, M. Schatz, J. Lin, M. Pop, and S. Salzberg, “Searching
for SNPs with cloud computing,” Genome Biology, vol. 10, no. 11,
November 2009.

A. Gharaibeh and M. Ripeanu, “Size Matters: Space/Time Tradeoffs to
Improve GPGPU Applications Performance,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, November 2010, pp. 1-12.

R. Jiang, F. Zeng, W. Zhang, X. Wu, and Z. Yu, “Accelerating Genome-
Wide Association Studies Using CUDA Compatible Graphics Processing
Units,” in Proceedings of the 2009 International Joint Conference on
Bioinformatics, Systems Biology and Intelligent Computing, August
2009, pp. 70-76.

N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “GPUTeraSort:
High Performance Graphics Co-processor Sorting for Large Database
Management,” in Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, 2006, pp. 325-336.

N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and
P. Dubey, “Fast Sort on CPUs and GPUs: A Case for Bandwidth Obliv-
ious SIMD Sort,” in Proceedings of the 2010 International Conference
on Management of Data, 2010, pp. 351-362.

B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander,
“Relational Joins on Graphics Processors,” in Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, 2008,
pp. 511-524.

NVIDIA, “Appendix C. Mathematical Functions,” NVIDIA CUDA C
Programming Guide.

[11] “Thrust Project,” http://code.google.com/p/thrust/.
[12] “NVIDIA Compute Unified Device
http://www.nvidia.com/cuda.

“ZLIB Library,” http://zlib.net/.

[6]

[8]

[9]

[10]

Architecture,”

(13]

