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Abstract. DNA sequence alignment and single-nucleotide
polymorphism (SNP) detection are two important tasks in genomics
research. A common genome resequencing analysis workflow is to first
perform sequence alignment and then detect SNPs among the aligned
sequences. In practice, the performance bottleneck in this workflow is
usually the intermediate result I/O due to the separation of the two
components, especially when the in-memory computation has been ac-
celerated, e.g., by graphics processors. To address this bottleneck, we
propose to integrate the two tasks tightly so as to eliminate the I/O of
intermediate results in the workflow. Specifically, we make the following
three changes for the tight integration: (1) we adopt a partition-based
approach so that the external sorting of alignment results, which was
required for SNP detection, is eliminated; (2) we perform customized
compression on alignment results to reduce memory footprint; and (3) we
move the computation of a global matrix from SNP detection to sequence
alignment to save a file scan. We have developed a GPU-accelerated sys-
tem that tightly integrates sequence alignment and SNP detection. Our
results with human genome data sets show that our GPU-acceleration of
individual components in the traditional workflow improves the overall
performance by 18 times and that the tight integration further improves
the performance of the GPU-accelerated system by 2.3 times.

Keywords: data management for e-science, GPGPU, genomic data
analytics.

1 Introduction

The second-generation DNA sequencing devices have been widely used for the
past few years. They produce short DNA fragments, or short reads, at an ultra-
high throughput. For today’s genomics research based on short reads, two
fundamental data analysis tasks are sequence alignment and single-nucleotide
polymorphism (SNP) detection. Sequence alignment matches input reads to a ref-
erence sequence. SNP detection takes the output of alignment as input, and finds
genetic variation information. In practice, these two tasks are typically performed
in sequence as a basic workflow for genome resequencing analysis. Furthermore,

A. Ailamaki and S. Bowers (Eds.): SSDBM 2012, LNCS 7338, pp. 124-[[40] 2012.
© Springer-Verlag Berlin Heidelberg 2012



GPU-Accelerated Genome Resequencing Analysis 125

the output of this workflow is usually adopted as input for a number of higher level
applications, such as minor allele frequency (MAF) computation [4][20].

Traditionally, such a genome resequencing analysis workflow is implemented
using multiple software packages, each performing a task in isolation. For exam-
ple, 2BWT [6], SOAP2 [11], or Bowtie [9] can be used for the sequence alignment,
and SOAPsnp [10] is used to detect SNPs. Moreover, as required by the SNP
detection software, additional data processing tools are adopted between the
alignment and SNP detection to sort the alignment results. Due to the large
amount of data to process, this workflow may take an extremely long running
time, e.g., around a week for the human genome. To improve the performance,
previous studies have adopted graphics processors (GPUs) to speed up individ-
ual tasks, such as SOAP3 [13] and GSNP [14] for alignment and SNP detection,
respectively. With the GPU acceleration, the evaluation based on operational
genomics data sets have shown that the speedup is significant, e.g., up to 50
times. However, considering the alignment and SNP detection as a workflow,
few previous studies further optimize it systematically.

We observe that, with the state-of-art GPU-accelerated tools, the overall per-
formance of the workflow is dominated by the disk I/O, especially that incurred
in the intermediate data processing between the alignment and SNP detection.
Therefore, it is imperative to address the intermediate data processing in order
to improve the overall performance of the workflow. In this work, we develop
a GPU-accelerated genome resequencing analysis system tightly integrating the
alignment and SNP detection for a higher overall performance. Our focus in
this paper is on the integration techniques; details about GPU-acceleration for
individual tasks can be found in previous studies [14][13].

We propose three techniques for the integration of alignment and SNP detec-
tion. Note that, although our system is based on the GPU for high efficiency,
these techniques are applicable to both CPU- and GPU-based implementations.

1. To avoid the external sorting for SNP detection, we propose a partition-
based approach. The partitioning is integrated in the alignment component.
As a result, the intermediate result processing between the alignment and
SNP detection is eliminated.

2. We move the computation of a global matrix that is originally calculated in
the SNP detection to the component of sequence alignment. This move saves
one scan of the alignment results in the workflow.

3. To further reduce I/O, we develop customized data compression techniques
for alignment results.

With these techniques, our system is optimized for the genome resequencing
analysis. Compared with a traditional workflow with individual components ac-
celerated by the GPU, our integrated, GPU-accelerated workflow achieves a
speedup of 2.3X. As a result, the new system improves the overall performance
of a traditional CPU-based workflow by around 43 times.
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The remainder of the paper is organized as follows. We introduce the back-
ground and related work in Section 2. We describe our integration techniques
in detail in Section 3. We evaluate our system in Section 4 and conclude in
Section 5.

2 Background and Related Work

In this section, we first briefly introduce the sequence alignment and SNP de-
tection. Then we present the genome resequencing analysis workflow including
these two functionalities.

2.1 Sequence Alignment

The second DNA generation sequencing devices can generate short DNA frag-
ments, or reads, at an ultra-high throughput. The typical length of short reads
is up to around one hundred base-pair (bp). For a given reference sequence and
a large number of short reads, sequence alignment is to match each read against
the reference. Mismatches are allowed for the alignment, e.g., typically two mis-
matches. The output file of sequence alignment contains multiple lines, and each
line has a few attributes, such as the DNA base, the aligned position on the ref-
erence, the number of mismatches, and so on. We call such a line an alignment.
Note that, one input read may have multiple alignments, as it may be matched
to multiple positions on the reference. For the whole human genome, there are
typically tens of billions of input short reads, and can generate an even larger
number of alignments for the SNP detection.

Short read alignment algorithms can be categorized as hashing-based and
Burrows-Wheeler transform (BWT) based. A hashing-based algorithm, such as
WHAM [12], constructs a hash index containing the positions of all subsequences
of the reference. In comparison, a BWT index is constructed with all suffixes of
the reference and stored in suffix arrays. Alignment tools employing BWT index
are Bowtie [9], 2BWT [6], SOAP2 [1I], and SOAP3 [13]. Overall, a hashing
based algorithm is efficient when the number of alignments is small, and the
disadvantage is that the memory consumption is high. Therefore, in practice,
the majority of sequence alignment tasks are done through the BWT index.

To improve the performance of sequence alignment, the GPU has been studied
as a hardware accelerator, such as SOAP3 [13], and shown successful to speed
up the processing significantly. When building this genome resequencing analysis
system, we adopt our home-made GPU-accelerated sequence alignment tool for a
tight integration. Our tool adopts a BWT-based sequence alignment algorithm.
Additionally, compared with SOAP3, our tool adopts GPU-CPU coprocessing
and customized data compression techniques. The measured performance of our
sequence alignment component is slightly better than SOAP3.

2.2 SNP Detection

SNP detection is to find DNA variations for a single nucleotide between differ-
ent members of a species. It calculates the likelihood and other information to
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indicate whether a site (the position holding a base) is a SNP. For example, if the
corresponding DNA fragments from two persons are ATCGGC and ACCGGC,
respectively, then the second position is probably a SNP site.

A widely used SNP detection tool based on short reads is SOAPsnp [10] em-
ploying a Bayesian-based method. Due to the large size of input data, SOAPsnp
reads and processes data window by window. A window is defined as a fixed
number of consecutive sites on the reference. For a window of sites, the software
loads the data related to the window (the corresponding alignments) from disk
to memory to perform the computation and outputs SNP results.

To speed up the process of SNP detection, our previous work GSNP [I4] im-
plements the same functionality as SOAPsnp but adopts the GPU acceleration.
With various optimization techniques, GSNP can achieve a speedup of around
50X over the CPU-based single-threaded SOAPsnp. This resequencing analysis
system adopts GSNP as the component of SNP detection, with modifications
for a tight integration.

2.3 The Workflow of Genome Resequencing Analysis

Overall, the genome resequencing analysis consists of the sequence alignment
and SNP detection. Although the alignment result is the input of SNP detec-
tion, in practice, an additional data processing step is required between the
alignment and SNP detection tools. This step is to sort the alignment result as
well as data format conversion for the SNP detection tool. Therefore, tradition-
ally, three separate software tools are used in the workflow, such as SOAP2 [I1],
msort [2][15], and SOAPsnp [I0] for the alignment, sorting, and SNP detection,
respectively. Figure [Il shows the overview of such a workflow. We describe the
input and output of each software component in detail. Note that, as they are
separate software packages, the input and output data are both stored on disk.

Alignment. The input for sequence alignment are the reference sequence and a
large number of short reads, which are stored in plain text files. In practice, as
the data size may not fit into the memory, multiple passes are performed for the
alignment. The alignment result file can be very large, e.g., tens of gigabytes.

Sorting. The alignments should be sorted according to their matched positions
on the reference before performing SNP detection. The purpose of sorting is to
make the SNP detection tool process sites window-by-window. Figure [2 illus-
trates the sorting and the process of window-based SNP detection. As the data
size is very large, this step is implemented using external sorting algorithms,
which are expensive. The GNU msort [15] can be used to sort alignments. There
are also other more efficient implementations, such as a dedicated alignment sort-
ing tool [2]. By default, in this paper, the sorting program refers to this improved
alignment sorting tool rather than GNU msort, unless otherwise specified.

SNP Detection. Overall, there are two steps in this task. The first step is to
calculate a global matrix, which requires to access all alignment results. Based
on the global matrix, the second step calculates likelihood for each site, which
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Fig.1. The traditional workflow of genome resequencing analysis, which consists of
sequence alignment, sorting, and SNP detection. These components adopt separate
software packages.
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Fig. 2. Sorting and window-based SNP detection. Suppose that there are three win-
dows, each of which contains four sites. A circle represents an alignment at a given
aligned position on the reference. The color of a circle indicates which window an
alignment or a site belongs to.
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accesses all alignments again. Note that, in the second step, the computation
for each site is independent. Therefore, with the sorted alignment results, the
likelihood computation can adopt a window-based approach. This way, each
window of sites and its related data that can fit into memory are loaded from
disk to the main memory for the computation.

In summary, a traditional workflow employing three separate software pack-
ages contains an expensive external sorting step as well as redundant I/O ac-
cesses. Particularly, with the GPU acceleration for the in-memory computation,
the I/O dominates the overall performance. We analyze the I/O cost in de-
tail in Section 3.1. In our system, we address these issues through a tighter
integration for the sequence alignment and SNP detection components. More-
over, we eliminate the external sorting through an inexpensive partition-based
approach.

2.4 Related Work

Existing work on sequence alignment and SNP detection rarely considers inte-
gration techniques for a workflow. One exception is work by Wegrzyn et al. [19],
which proposes a sequence alignment and SNP detection pipeline that utilizes
machine learning algorithms to improve the speed and accuracy. However, their
work is not based on short reads and practical algorithms used today. To the
best of our knowledge, our study is the first to propose effective optimizations
to tightly integrate state-of-the-art alignment and SNP detection algorithms to
improve the overall performance systematically.

In addition to a single-machine solution, cloud computing solutions are in-
vestigated to improve the performance and scalability of sequence analysis.
CloudBurst [16] is a parallel short sequence alignment program developed using
Hadoop [1], whose running time scales near linearly with the number of nodes.
Myrna [7] targets at gene expression calculation from large-scale RNA data sets,
which combines Bowtie [9] and Bioconductor [3]. Crossbow [§] is a system that
is built on Bowtie [9] and SOAPsnp [I0] to perform the genome resequencing
analysis in cloud computing using Hadoop. It first performs sequence alignment
in the map phase on each node, then sorts the alignment result across all nodes,
and finally detects SNPs on each node.

Compared with Crossbow as well as other cloud computing based systems,
in addition to the GPU acceleration adopted in our system, we further consider
optimizations for a tight integration on a single node. These single node opti-
mizations can be applied on each node in the cloud computing environment.
Furthermore, with our optimizations applied, the sorting phase in the MapRe-
duce framework can be avoided.

Finally, there are a few studies for the GPU-accelerated sequence alignment,
such as GPU-BLAST [I8] and MUMmerGPU [I7], which are designed for long
reads. For the short read alignment, both SOAP3 [13] and BarraCUDA [5] im-
plement the BWT-index based sequence alignment algorithm.
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3 System Implementation

In this section, we describe the details of our integration techniques. Note that,
as our system is built on the components with the GPU acceleration, by default,
the sequence alignment and SNP detection components referred to in this paper
are the GPU-based implementations, unless specified otherwise. Specifically, the
sequence alignment is our home-made implementation, and the SNP detection
is based on our previous work GSNP [14]. However, our integration techniques
are applicable to both GPU- and CPU-based systems.

3.1 Analysis on the Traditional Workflow

As described in Section 2.3 the traditional workflow consists of three separate
software packages to perform the sequence alignment, sorting, and SNP detec-
tion. Table [ lists the time breakdown of a traditional workflow (with GPU
acceleration) using the hardware and data sets described in Section Il The
three I/O intensive components, namely Output, Sorting, and Matrix Compu-
tation, take a total of 60% of the overall time. The Output component contains
disk I/O operations only. In Matrix Computation, disk I/O takes around 92%
of elapsed time. Since the source code of the sorting program is unavailable, we
estimate the I/O in Sorting to be half of the elapsed time, assuming one read and
one write for each alignment in sorting. There are two major issues through our
further analysis. First, there are redundant I/O accesses. Each alignment record
is accessed multiple times across the three software packages. Second, there is
an expensive external sorting step. In our system, our target is to address these
two issues for efficiency through a tight integration.

Table 1. Elapsed time of the traditional workflow (with GPU acceleration)

Sequence alignment Sorting SNP detection
Input Computation Output Matrix comput. Likelihood comput.
Time (sec) 35 213 104 550 155 298
Percentage (%) 2.3 15.9 7.8 41 10.8 22.2

For the first issue, Figure [ illustrates the multiple data reads and writes
on alignment results. Note that, the sorting requires at least one read and one
write for each alignment. It may incur more I/O depending on the buffer size.
Additionally, as described in Section 23], there are two steps in the SNP detec-
tion (global matrix and likelihood computation), and each requires a full scan
on the alignment results. These two scans on the same alignment results can-
not be merged, as the likelihood computation relies on the result of the global
matrix computation. In summary, for each alignment, there are at least five
disk accesses: two reads and three writes (as shown in Figure ). In our system,
we optimize these multiple data accesses to only two necessary accesses: one
write when generating the alignment, and one read when performing the SNP
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Fig. 3. Five accesses for each alignment in the traditional workflow. (1) Result out-
put after the sequence alignment. (2) Input for the sorting. (3) Sorted result output.
(4) Data input for the global matrix computation. (5) Data input for the likelihood
computation.

detection. Note that, as the size of alignment file is usually large, e.g., tens of
gigabytes, and some other tools may use the alignment results, we consider it
necessary to store the alignment results as the intermediate data on disk. The
reference sequence is also accessed twice in the workflow. However, the reference
size (up to around 750 MB for the whole human genome) is much smaller than
the alignment result, and it is straightforward to eliminate the second access by
keeping it in memory.

For the second issue, we have presented the purpose of sorting in Section 231
Essentially, the sorting is used to arrange the alignments in the same SNP pro-
cessing window consecutively on disk. Within a window, the order of alignments
is not important for the SNP detection program, as there is a counting step to
extract summary information for each alignment. Based on this observation, we
propose to use range partitioning to achieve the same purpose, but with a low
time cost.

3.2 System Overview

Overall, our system consists of the sequence alignment and SNP detection com-
ponents, and works as follows. First, input reads are processed window-by-
window for the sequence alignment. Within each window, when an alignment
is produced, it is used immediately to update the global matrix that is used for
detecting SNPs later. Then the partitioning function is applied to that align-
ment, and the alignment is stored in an in-memory buffer. When the buffer is
full, its alignments will be compressed and written to the disk. After the sequence
alignment for all input reads is done, we start the SNP detection component. The
SNP detection component is also executed window-by-window. The window size
depends on the partitioning function. Note that, there is no dependence between
the window sizes of sequence alignment and SNP detection. Figure [ illustrates
the software components and the workflow in our system.
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Fig. 4. Components and workflow in our genome resequencing analysis system

3.3 Range Partitioning

For range partitioning, we keep a number of buffers in memory. When an align-
ment is produced, it is sent into one buffer according to its aligned position in the
reference. When a buffer is full, the alignments stored in that buffer are written
to the disk (we call the data of each buffer a block). In order to facilitate the
window-based processing in the SNP detection, the number of buffers and SNP
processing windows are the same. Specifically, we maintain B buffers in memory,
and each can hold up to m alignments. For the alignment that is matched to
site ¢ in the reference, it will be stored in the ULJ th buffer. If the buffer is full,
m alignments in that buffer (as a data block) are written to the disk. As one
window in the SNP detection may contain alignments from multiple data blocks,
there is an additional data structure maintaining the block IDs for each window.
Figure [l illustrates an example of the partitioning corresponding to the sorting
example (Figure [2).

The computation complexity of such a partition-based approach is O(n),
where n is the number of alignments. Moreover, when an alignment is generated,
we can apply partitioning immediately without storing these original alignments
on disk. The memory space cost of partitioning is on the in-memory alignment
buffers and the block ID list. Suppose we have B buffers (or B SNP processing
windows), and each can hold m alignments. Suppose each alignment requires
b bytes, the total memory consumption is (B x m x b) bytes. As the SNP de-
tection is much more expensive than the partitioning, we mainly consider the
performance of SNP detection to tune these parameters. The typical window
size in the SNP detection is 256,000 sites [I4] with around 1.5 GB GPU memory
and 1 GB main memory consumed. A larger window size has little performance
impact on SNP detection but significantly increases the memory consumption.
Therefore, we set the SNP processing window size in our system as 256,000 sites
by default. This way, the number of buffers is up to 11,719 (B = 11, 719), when
evaluating the whole human genome consisting of three billion sites. If the size
of each buffer is 512 KB (m x b = 512 KB), which saturates disk bandwidth,
then each buffer can store around 2,000 alignments for 100-bp reads. As a result,
the total memory consumption for the whole human genome is around 6 GB for
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Fig. 5. An example of partitioning when handling the 9-th alignment with the aligned
position 5. There are three buffers, and each can hold up to two alignments. The first
eight alignments have been finished for the partitioning. Step 1: the alignment is stored
in the second buffer for aligned positions from 5 to 8. Step 2: the second buffer is full,
thus alignments are written to the disk as Block 4. Step 3: the block ID 4 is recorded
in the list for Window 2.

in-memory buffers. This is affordable on our server. Additionally, the number of
entries in the block ID list can be estimated as | , thus the memory consumption
is around (4 x ') bytes. Based on estimation, the memory consumption of the
block ID list is around tens of megabytes for the whole human genome. Note
that, in practice, the SNP detection is usually performed for a given individual
human chromosome rather than the whole human genome, which requires less
memory, allows larger buffers for efficiency.

3.4 Alignment Result Compression

Through partitioning and moving matrix computation forward, we have elimi-
nated redundant I/O accesses, however, the size of the alignment result may still
be very large. To further improve the performance of the workflow, we develop
customized data compression techniques. Note that, we do not adopt general
data compression algorithms or tools, such as gzip, as they introduce expensive
computation cost for both compression and decompression. Additionally, the
compression is applied before writing the alignment to the disk, and then the
SNP detection component can decompress these compressed result in-memory
directly, without additional disk I/O.

Recall that alignment tools output the result as multiple lines, and each line
corresponds to an alignment with multiple attributes. Although various align-
ment tools have slightly different output formats, almost all alignment tools
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contain these attributes required by the SNP detection tool: the read bases, the
quality scores, the number of alignments for the given read, the read length,
the reference name, the aligned position, the number of mismatches, and the
mismatch information (including the positions of mismatches occurred and their
substitution). Specifically, the read bases and quality scores together take more
than 90% of the total size. This is because each base has one quality score, and
each alignment represents multiple bases. Suppose the read length is [, then the
read bases and quality scores attributes both have [ values for an alignment.
In comparison, for other attributes, each of them only has one value for an
alignment.

For the read bases, we do not store them in the alignment result file. The
basic idea is that the read can be reconstructed based on the aligned position,
mismatch information, and the reference. Figure [l shows an example of such
an approach. The cost of such an approach is that we need to store the refer-
ence in memory and have computation overhead when reconstructing the read
bases. However, the SNP detection requires to access the reference anyway, and
the reference size is much smaller than the alignment result. Additionally, the
computation cost is negligible compared with the saved I/O cost.

ACTGCGACGATCCG...

Aligned pos.: 3 Step 1: copy the fragment.
Length: 4

TGCG
Mis_pos: 3

Mis_sub: A Step 2: handle the mismatch.

TGAG

Fig.6. An example of extracting the read bases based on the aligned position and
mismatch information. Step 1: according to the aligned position and read length, we
copy the fragment from the reference. Step 2: according to the position of mismatch
occurred (mis pos) and its substitution (mis sub), we perform the mismatch on the
copied fragment.

On the compression of the quality scores, the observation is that one read
usually has multiple alignments. These alignments have the same quality score
string. Therefore, we keep a table of all unique score strings, and append an
additional ID attribute to each alignment for fetching the correct quality score
string for a given alignment. To further compress this table, we apply dictionary
encoding and run-length encoding.

4 Evaluation

In this section, we first study the performance impact of our integration tech-
niques. Then we compare the end-to-end performance of our system with the
original workflow, including the GPU- and CPU-based implementations.
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4.1 Experimental Setup

Hardware Setup. We conduct the experiments on a server equipped with an
NVIDIA Tesla C2070 and two Intel Xeon E5520, 2.27 GHz quad cores (8 cores,
16 threads in total). C2070 consists of 448 cores and 6 GB GPU memory. The
server has 32 GB main memory.

Implementation Details. Our system is built using the GPU acceleration.
Specifically, the alignment component is implemented by ourselves based on the
Bi-BWT algorithm [6]. The alignment results are reported with up to two mis-
matches. The SNP detection component is modified based on our previous work
GSNP [14]. By default, the window size of the alignment and SNP detection are
fixed to 1,000,000,000 reads and 256,000 sites, respectively, and the buffer size
in the range partitioning is 1024 KB, unless otherwise specified. Additionally,
the time of loading the alignment index from the disk to the main memory is
excluded from measurement, as the index can reside in memory. We compare our
system with the traditional GPU-based and CPU-based workflows. Recall that
the traditional workflow consists of three separate software packages. The tradi-
tional GPU-based workflow adopts our home-made GPU-accelerated alignment
tool, msort developed by BGI-Shenzhen [2] (denoted as msort), and GSNP [14].
The traditional CPU-based workflow adopts 2BWT [6], msort [2], and SOAP-
snp [10]. We use 2BWT rather than other alignment software as it outperforms
other tools in our evaluation. Additionally, all CPU-based implementations are
single-threaded.

Data Sets. We use a data set for human chromosome 1 (Ch. 1), which is
provided by our collaborator, BGI-Shenzhen. This data set contains 15 million
short reads in total, and each is 100 bp long. The file of short reads is around
3.3 GB. The number of alignments for this data set is 38,584,511. Without
compression, the alignment result file is around 9.4 GB. The reference contains
around 247 million base pairs. The final SNP detection result file is around 800
MB.

4.2 Performance Impact of Integration Techniques

We first study the performance impact of three integration techniques. For each
group of experiments, we compare the implementation without a specific tech-
nique with the optimized implementation. Note that, in each group, only the
investigated technique will be removed and other optimizations are still em-
ployed. Overall, for performance comparison, we divide our system into two
components: sequence alignment, and SNP detection. Note that, for our sys-
tem, the alignment component performs alignment, global matrix computation,
partitioning, and compression, and the SNP detection component contains the
likelihood calculation step of the SNP detection (as shown in Figure H).

Range Partitioning. If we do not use partitioning, the system works as follows:
we first perform alignment and store all alignments on disk; then we perform
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the external sorting; finally the SNP detection is used based on the sorted align-
ments stored on disk. Note that, if we use sorting, the compression becomes
inapplicable, as the sorting tool can only be used to sort the file stored in spe-
cific formats. Figure shows that with partitioning, the system is around 2X
faster than that using the sorting. Figurecompares the elapsed time of three
components when the system adopts the partitioning and sorting. As the data
compression cannot be used when sorting is adopted, the sizes of the alignment
output and SNP input both become larger, which slows down the performance
of both components.

Data Compression for Alignment Results. Without the compression, the
alignment result that is stored on disk as intermediate data will be larger. Figure
compares the overall elapsed time of the system with and without the data
compression techniques for alignment results. The figure shows that with the
compression, the overall performance is improved by around 20%. Figure
shows that, due to the reduced size of the alignment result file, the alignment
and SNP detection components are around 22% and 13% faster than their coun-
terparts without the compression, respectively. Figure shows that the size
of the compressed alignment result is only around 23.4% of that without the
compression.

Move of Matrix Computation. Recall that, compared with the original work-
flow, our system eliminates a data scan on the alignment result when detecting
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Fig. 8. Performance comparison between with and without alignment result compres-
sion
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Table 2. End-to-end performance (seconds) comparison. OLD-CPU and OLD-GPU
indicate the traditional workflow using the CPU- and GPU-based software, respectively.

Alignment Sort SNP detection Overall

OLD-CPU 1562 550 22321 24433
OLD-GPU 330 550 453 1333
Our system 278 - 290 568

SNPs due to the change of matrix computation. Figure shows the overall
elapsed time of the system with and without the move of the global matrix com-
putation. With this technique, the overall performance is improved by around
18%. This improvement is from the elimination of additional disk I/O on the
alignment result when detecting SNPs. Figure further shows that, as the
global matrix is calculated in the alignment component in our system, this com-
ponent is slightly slowed down. However, the overall elapsed time is reduced due
to the significant performance improvement from the SNP detection component.

In summary, the range partitioning is the most significant optimization, which
can eliminate the expensive external sorting. With the range partitioning, the
system is around 2X faster than that without the optimization. The data com-
pression technique and move of matrix computation can further improve the
performance by around 20% and 18%, respectively.

4.3 End-to-End Performance Comparison

We show the end-to-end performance comparison in Table 2l Note that, in our
system, the partitioning, compression, and matrix computation are all included
in the alignment component. This table shows that, the traditional workflow with
the GPU acceleration for individual components outperforms its CPU counter-
part by around 18 times. Furthermore, with the integration techniques, our sys-
tem further improves the performance by around 2.3 times. This improvement
is from all three components. First, for the alignment, the compression reduces
the alignment size to save the I/O time. Second, the original expensive sorting is
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Fig. 9. Performance comparison between the systems with the move of global matrix
computation (new-matrix) and the original global matrix computation (old-matrix)



138 M. Lu et al.

—a— Alignment 400 —&— Alignment
--® - SNP detection --® - SNP detection

= anu—u—* n
z 16 8 300
=12 Y
E, £ 200
8 °
€ 2 100
£ 4 ©
= ol ee-e--—- @ -cocooiaan- ° Yo
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Size of each buffer (KB) Size of each buffer (KB)
(a) Memory consumption. (b) Elapsed time.

Fig. 10. The memory consumption and elapsed time with the buffer size in the range
partitioning varied

eliminated in our system. Third, for the SNP detection, one data scan on align-
ment results is also eliminated in our system. Compared with the traditional
CPU-based workflow (without the tight integration techniques), our system is
around 43X faster.

Finally, we investigate the performance and memory consumption impact with
the partitioning buffer size varied. The windows sizes of alignment and SNP de-
tection are set according to the performance of alignment and SNP detection
components. We only show the main memory consumption as the buffer size
does not affect the GPU processing. Figure shows that the memory con-
sumption slightly increases when the buffer becomes larger for the alignment.
This is because another data structure (a suffix array) dominates the overall
memory usage for the alignment, which consumes around 12 GB. For the SNP
detection, a larger partitioning buffer results in a smaller block ID list, which
is insignificant in the overall memory consumption. Figure shows that the
alignment can benefit from a larger buffer, since the disk I/O throughput is
higher when writing a larger data block. This parameter is less significant for
the performance of SNP detection.

5 Conclusion

We have developed a GPU-accelerated system with a tightly integrated work-
flow optimized for genome resequencing analysis: the sequence alignment is used
first for short reads, and then the SNPs are detected based on the alignment
result. To reduce the I/O overhead in the traditional workflow, we propose three
techniques for a tight integration of the alignment and SNP detection. We first
use range partitioning to avoid the external sorting for alignment results. We
also develop customized data compression techniques to further reduce the size
of the alignment result. Finally, we calculate the global matrix computation
when generating alignments, which is originally performed in the SNP detection
component. As a result, compared with the traditional GPU- and CPU-based
workflow consisting three separate software packages, our system can achieve a
speedup of around 2.3X and 43X, respectively.
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