
Mars: A MapReduce Framework on Graphics Processors

Bingsheng He
HKUST

saven@cs.ust.hk

Wenbin Fang
HKUST

wenbin@cs.ust.hk

Qiong Luo
HKUST

luo@cs.ust.hk

Naga K. Govindaraju
Microsoft Corp., USA

nagag@microsoft.com

Tuyong Wang
Sina Corp., China

tuyong@staff.sina.com.cn

ABSTRACT
We design and implement Mars, a MapReduce framework, on graph-
ics processors (GPUs). MapReduce is a distributed programming
framework originally proposed by Google for the ease of develop-
ment of web search applications on a large number of commodity
CPUs. Compared with CPUs, GPUs have an order of magnitude
higher computation power and memory bandwidth, but are harder
to program since their architectures are designed as a special-purpose
co-processor and their programming interfaces are typically for
graphics applications. As the first attempt to harness GPU’s power
for MapReduce, we developed Mars on an NVIDIA G80 GPU,
which contains over one hundred processors, and evaluated it in
comparison with Phoenix, the state-of-the-art MapReduce frame-
work on multi-core CPUs. Mars hides the programming complex-
ity of the GPU behind the simple and familiar MapReduce inter-
face. It is up to 16 times faster than its CPU-based counterpart for
six common web applications on a quad-core machine.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Frameworks; I.3.1 [COMPUTER
GRAPHICS]: Hardware Architecture—Graphics processors, par-
allel processing

General Terms
Design, Performance

Keywords
MapReduce, Graphics Processor, GPGPU, Multi-core processors,
Web Analysis, Data parallelism

1. INTRODUCTION
Search engines and other web server applications routinely per-

form data processing tasks, for example, indexing web pages and
counting access frequency. Due to the time criticalness of these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’08, October 25–29, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-60558-282-5/08/10 ...$5.00.

tasks in day-to-day operations and the vast amount of data, high
performance is essential [9]. For instance, www.sina.com.cn de-
ploys tens of high-end Dell servers just to serve hourly updates of
web stats such as the top ten hottest web pages. Furthermore, the
complexity of these tasks and the heterogeneity of available com-
puting resources makes it desirable to provide a generic framework
for developers to implement these tasks correctly, efficiently, and
easily.

The MapReduce framework is a successful paradigm to support
such data processing applications [9]. It was originally proposed by
Google for the ease of development of web search applications on
a large number of machines. This framework provides two primi-
tive operations (1) a map function to process input key/value pairs
and to generate intermediate key/value pairs, and (2) a reduce func-
tion to merge all intermediate pairs associated with the same key.
With a MapReduce framework, developers can implement their ap-
plication logic using the two primitives. The MapReduce runtime
will automatically distribute and execute the task on multiple ma-
chines [9] or multiple processors in a single machine [27]. Thus,
this framework reduces the complexity of parallel programming so
that the developer can easily exploit the parallelism in the underly-
ing computing resources for complex tasks. Encouraged by the suc-
cess of the CPU-based MapReduce frameworks, we develop Mars,
a MapReduce framework on graphics processors, or GPUs.

GPUs can be regarded as massively parallel processors with 10x
faster computation and 10x higher memory bandwidth than CPUs
[1]. Moreover, GPU performance is improving at a rate higher
than Moore’s law for CPUs. As the programmability of the GPU
improves, several GPGPU (General-Purpose computing on GPUs)
languages such as NVIDIA CUDA [24] are introduced so that de-
velopers can write GPU programs without the knowledge of the
graphics rendering pipeline. Nevertheless, since GPUs are tradi-
tionally designed as special-purpose co-processors for gaming ap-
plications, their languages lack support for some basic program-
ming constructs, e.g., variable-length data types, as well as more
complex functions such as recursion. Additionally, GPU architec-
tural details are highly vendor-specific and programmers have lim-
ited access to these details. All these factors make the GPU pro-
gramming a difficult task in general and more so for complex tasks
such as web data analysis. Therefore, we propose to develop a
MapReduce framework on the GPU so that programmers can eas-
ily harness the GPU computation power for their data processing
tasks.

Compared with CPUs, the hardware architecture of GPUs differs
significantly. For instance, current GPUs have over one hundred
SIMD (Single Instruction Multiple Data) processors whereas cur-
rent multi-core CPUs offer a much smaller number of cores. More-
over, most GPUs do not support atomic operations or locks. Due to

the architectural differences, we identify the following three techni-
cal challenges in implementing the MapReduce framework on the
GPU. First, the synchronization overhead in the runtime system of
the framework must be low so that the system can scale to hun-
dreds of processors. Second, due to the lack of dynamic thread
scheduling on current GPUs, it is essential to allocate work evenly
across threads on the GPU to exploit its massive thread parallelism.
Third, the core tasks of MapReduce programs, including string pro-
cessing, file manipulation and concurrent reads and writes, are un-
conventional to GPUs and must be handled efficiently.

With these challenges in mind, we design and implement Mars,
our MapReduce framework on the GPU. Mars provides a small set
of APIs (Application Programming Interfaces) that are similar to
those of CPU-based MapReduce. Our runtime system utilizes a
large number of GPU threads for Map or Reduce tasks, and auto-
matically assigns each thread a small number of key/value pairs to
work on. As a result, the massive thread parallelism on the GPU
is well utilized. To avoid any conflict between concurrent writes,
we have developed a lock-free scheme with low runtime overhead
on the massive thread parallelism of the GPU. This scheme guaran-
tees the correctness of parallel execution with little synchronization
overhead. Additionally, since web data analysis tasks heavily in-
volve text processing, we have developed an efficient string library
for our APIs.

We have implemented Mars on a PC with an NVIDIA GeForce
8800 GPU (G80) and an Intel quad-core CPU. To evaluate Mars,
we pick six common tasks in web server applications including web
search, web document processing, and web log analysis. These
tasks are String Match (SM), Inverted Index (II), Similarity Score
(SS), Matrix Multiplication (MM), Page View Count (PVC), and
Page View Rank (PVR). We implemented these tasks using Mars as
well as using Phoenix [27], the state-of-the-art MapReduce frame-
work for multi-core CPUs. For these six tasks, the amount of
source code written by the developer using Mars is comparable to
that using Phoenix. Our results show that Mars achieves a 1.5-16
times performance improvement over Phoenix.

Organization: The remainder of the paper is organized as fol-
lows. We give a brief overview of the GPU, prior work on GPGPU
and MapReduce in Section 2. We present our design and imple-
mentation of Mars in Section 3. In Section 4, we present our ex-
perimental results. Finally, we conclude this paper and outline our
future work in Section 5.

2. PRELIMINARIES AND OVERVIEW
In this section, we introduce the GPU architecture and discuss

the related work on GPGPU, and review the MapReduce frame-
work.

2.1 Graphics Processors (GPUs)
Due to the high computation power and rapidly increasing pro-

grammability, GPUs have become an attractive co-processor for
general purpose computing [1]. For more details on the GPU and
its programming techniques, we refer the reader to a recent book
edited by Nguyen [22].

Following the previous work [16, 28], we model the GPU as
a many-core processor, as shown in Figure 1. The GPU consists
of many SIMD multi-processors, and supports thousands of con-
current threads. GPU threads have low context-switch and low
creation time as compared to CPU threads. The threads on each
multiprocessor are organized into thread groups. Threads within a
thread group share the computation resources such as registers on
a multiprocessor. A thread group is divided into multiple sched-
ule units that are dynamically scheduled on the multiprocessor. We

adopt the metric occupancy to measure the resource utilization on
the GPU [23]. The occupancy is the ratio of active schedule units
to the maximum number of schedule units supported on the GPU.
A low occupancy indicates that the computation resources of the
GPU are under-utilized.

Device memory

P1 P2 Pn

Multiprocessor 1

GPU

CPU

Main
memory

P1 P2 Pn

Multiprocessor N

Figure 1: The many-core architecture of GPU.

The device memory of current GPUs is of both high bandwidth
and high access latency. For example, the device memory of the
NVIDIA G80 has a bandwidth of 86 GB/sec and latency of around
200 cycles. Due to the SIMD property, the GPU can apply co-
alesced access to exploit the spatial locality of memory accesses
among threads: When the threads in a thread group access consec-
utive memory addresses, these memory accesses are grouped into
one.

2.2 GPGPU
GPGPU has recently emerged in various applications, such as

FFT [17], matrix operations [18, 19], embedded system design
[10], bioinformatics [21], databases [12, 13, 16], and distributed
computing projects including Folding@home [11] and Seti@home
[29]. Previously, GPGPU developers used graphics APIs such as
OpenGL [25] and DirectX [4] to map applications to the graphics
rendering mechanism. They need the knowledge of graphics rend-
ing pipelines. Recently, several GPGPU languages including AMD
CTM [2] and NVIDIA CUDA [24] have been proposed by GPU
vendors. They usually expose a general-purpose, massively multi-
threaded parallel computing architecture and provide a program-
ming environment similar to multi-threaded C/C++. High-level
programming frameworks such as Accelerator [30] and Brook [5]
are also developed to better facilitate GPGPU programming. We
can use these frameworks to develop our MapReduce runtime on
the GPU to save our implementation effort. With the MapReduce
framework, the user does not require the knowledge of a specific
programming model such as the streaming programming model in
Brook. For efficiency, we used CUDA to implement our frame-
work.

We now briefly survey the work that developed GPGPU primi-
tives as building blocks for various applications. For additional in-
formation on the state-of-the-art GPGPU techniques, we refer the
reader to a recent survey by Owens et al. [26]. Govindaraju et
al. [12] presented novel GPU-based algorithms for the bitonic sort.
Sengupta et al. [28] proposed the segmented scan primitive. He
et al. [15] proposed a multi-pass scheme to optimize the scatter
and the gather operations. He et al. [16] further developed a small
set of primitives such as prefix sum and split as basic constructs
for query processing algorithms in relational databases. Addition-
ally, CUDPP [14], a CUDA library of data parallel primitives, was
released for GPGPU computing. These GPU-based primitives re-
duce the complexity of GPU programming. However, even with
the primitives, developers need to write complex GPU code for data
processing tasks. In comparison, our work further simplifies GPU

programming for MapReduce programmers by providing them a
higher level and more familiar interface than the primitives.

2.3 MapReduce
The MapReduce framework [9] is based on two primitives, Map

and Reduce, from functional programming. They are defined as
follows:

Map: (k1, v1) → (k2, v2)∗.
Reduce: (k2, v2∗) → (k2, v3)∗.

The Map function takes an input key/value pair (k1,v1) and out-
puts a list of intermediate key/value pairs (k2,v2). The Reduce
function takes all values associated with the same key and produces
a list of key/value pairs. Programmers implement the application
logic using these two primitives. The parallel execution of each
primitive is managed by the system runtime.

The following pseudo code illustrates a program written using
MapReduce. This program counts the number of occurrences of
each word in a collection of documents [9]. In this program, Map
and Reduce are implemented using two other system-provided APIs,
EmitIntermediate and Emit, respectively.

Map(void *doc) {
1: for each word w in doc
2: EmitIntermediate(w, 1);
}
Reduce(void* word, Iterator values) {
1: int result = 0;
2: for each v in values
3: result += v;
4: Emit(word, result); //output word and its count
}

MapReduce has been applied to various domains such as data
mining, machine learning, and bioinformatics. Additionally, sev-
eral implementations and extensions have been proposed. Hadoop
[3] is an open-source MapReduce implementation similar to Google’s.
Phoenix [27] is an efficient implementation on multi-core CPUs.
Chu et al. [8] applied MapReduce to ten machine learning algo-
rithms on a multi-core CPU. Yang et al. [7] added the merge oper-
ation to MapReduce for relational databases. The existing work fo-
cuses on the parallelism of multiple CPUs or multiple cores within
a single CPU. Since the GPU is a co-processor to the CPU, our
framework complements these existing frameworks. Different from
Phoenix, our GPU-based framework is lock-free, and is scalable
to hundreds of processors on GPUs or future multi-core CPUs.
Concurrent to our work, Catanzaro et al. [6] proposed a MapRe-
duce framework on the GPU, but it requires the developer to be
aware of GPU programming details such as the thread configura-
tion and the memory hierarchy in the GPU. Recently, Linderman et
al. [20] proposed the Merge framework for dynamically scheduling
MapReduce tasks among heterogenous processors. Their schedul-
ing method was used for coprocessing between the CPU- and the
GPU-based MapReduce frameworks.

3. DESIGN AND IMPLEMENTATION
In this section, we present our design and implementation for

Mars. Our design is guided by the following two goals.

1) Ease of programming. Ease of programming encourages de-
velopers to use the GPU for their tasks.

2) Performance. The overall performance of our GPU-based
MapReduce should be comparable to or better than that of
the state-of-the-art CPU counterparts.

3.1 APIs
Mars provides a small set of APIs. Similar to the existing MapRe-

duce frameworks, Mars has two kinds of APIs, the user-implemented
APIs, which the users implement, and the system-provided APIs,
which the users can use as library calls. Mars has the following
user-implemented APIs. These APIs are implemented with C/C++.
We use the void* type so that the developer can manipulate strings
and other complex data types conveniently.

//MAP_COUNT counts result size of the map func-
tion.
void MAP_COUNT(void *key, void *val, int keySize,
int valSize);
//The map function.
void MAP(void *key, void* val, int keySize, int valSize);
//REDUCE_COUNT counts result size of the reduce
function.
void REDUCE_COUNT(void* key, void* vals, int
keySize, int valCount);
//The reduce function.
void REDUCE(void* key, void* vals, int keySize,
int valCount);

Mars has the following four system-provided APIs. The emit
functions are used in user-implemented map and reduce functions
to output the intermediate/final results.

//Emit the key size and the value size in MAP_COUNT.
void EMIT_INTERMEDIATE_COUNT(int keySize,
int valSize);
//Emit an intermediate result in MAP.
void EMIT_INTERMEDIATE(void* key, void* val,
int keySize, int valSize);
//Emit the key size and the value size in REDUCE_COUNT.
void EMIT_COUNT(int keySize, int valSize);
//Emit a final result in REDUCE.
void EMIT(void *key, void* val, int keySize, int
valSize);

Overall, the APIs in Mars are similar to those in the existing
MapReduce frameworks such as Hadoop [3] and Phoenix [27]. The
major difference is that we need two APIs in Mars to implement the
functionality of each CPU-based API. One is to count the size of
results, and the other one is to output the results. This is because
the GPU does not support atomic operations, and the Mars runtime
uses a two-step design for the result output. We describe this two-
step design in Section 3.3.

The following pseudo code illustrates the map for implement-
ing the word count application using Mars. Instead of processing
a document, each map task on the GPU processes one line in a
document. For each word, the EMIT_INTERMIDIATE_COUNT
function emits a pair of the length of the word string and the size of
an integer. Correspondingly, the EMIT_INTERMIDIATE function
emits the intermediate results of the word and the count of one.

//key is a line in the document.
//val is the line ID.
MAP_COUNT(key, val, keySize, valSize){
1: for each word w in key
2: EMIT_INTERMIDIATE_COUNT(w.length, sizeof(int));
}
MAP (key, val, keySize, valSize) {
1: for each word w in key
2: EMIT_INTERMIDIATE (w, 1);
}

3.2 System Workflow and Configuration
Figure 2 illustrates the work flow of Mars. Similar to the CPU-

based MapReduce framework, Mars has two stages, Map and Re-
duce. Before starting each stage, Mars initializes thread configu-
ration including the number of thread groups and the number of
threads per thread group on the GPU.

Figure 2: The work flow of Mars on the GPU.

In the map stage, the split operator divides the input key/value
pairs into multiple chunks such that the number of chunks is equal
to the number of threads. A GPU thread is responsible for only one
chunk. Thus, the threads in the map stage are load-balanced. After
the map stage is finished, we sort the intermediate key/value pairs
so that the pairs with the same key are stored consecutively.

In the reduce stage, the split operator divides the sorted inter-
mediate key/value pairs into multiple chunks of similar sizes. The
key/value pairs with the same key belong to the same chunk. The
number of chunks is equal to the number of threads. The thread
with a larger thread ID is responsible for a chunk with larger keys.
This ensures that the output of the reduce stage is sorted by the
key. The threads in the reduce stage are usually load-balanced un-
less there are skews in the lengths of the value lists. Dynamic load
balancing scheme is not applicable, because current GPUs do not
support dynamic thread scheduling. As the last step, the final out-
put from all threads is stored into a single buffer.

Algorithm 1 describes the work flow of Mars in more detail. The
operations in Lines 1–3 and 7 are done by the scheduler. The sched-
uler is responsible for preparing the data inputs, invoking the map
and the reduce stages on the GPU and returning the results to the
user.

Algorithm 1 Mars, the MapReduce framework on the GPU
1: Prepare input key/value pairs in the main memory and store

them into input arrays.
2: Initialize the parameters in the run-time configuration (Table

1).
3: Copy the input arrays from the main memory to the GPU de-

vice memory.
4: Start the map stage on the GPU and store the intermediate

key/value pairs into arrays.
5: If noSort is F , sort the intermediate result.
6: If noReduce is F , start the reduce stage on the GPU and gen-

erate the final results. Otherwise, the intermediate results are
the final results.

7: Copy the final results from the GPU device memory to the main
memory.

Compared with the existing CPU-based MapReduce frameworks
[9, 27], Mars has two major simplifications due to the limitation

of the GPU. First, Mars specifies the thread configuration and as-
signs the tasks to the GPU threads statically, because current GPUs
do not support dynamic thread scheduling. Second, for efficiency,
Mars relies on the CPU to preprocess raw input data into key/value
pairs, because the GPU has no direct access to disk files.

Table 1: Configuration parameters of Mars.
Parameters Description

noSort Whether a sort stage is required (If it is required,
noSort=F ; otherwise, noSort=T).

noReduce Whether a reduce stage is required (If it is required,
noReduce=F ; otherwise, noReduce=T).

tgMap Number of thread groups in the map stage.
tMap Number of threads per thread group in the map

stage.
tgReduce Number of thread groups in the reduce stage.
tReduce Number of threads per thread group in the reduce

stage.

Table 1 summarizes the configuration parameters of Mars. We
provide these parameters to allow the programmers to tune the sys-
tem for efficiency if they choose to. For instance, if the program-
mer knows that the application requires no Reduce, he/she can set
noReduce to true. All parameters have default values. The first
two parameters are set to false by default. We discuss the default
thread configuration in Section 3.4.

3.3 Implementation Details
Since the GPU does not support dynamic memory allocation on

the device memory during the execution of the GPU code, we use
arrays as the main data structure in Mars. The input data, the inter-
mediate result and the final result are stored in three kinds of arrays,
i.e., the key array, the value array and the directory index. The di-
rectory index consists of an entry of <key offset, key size, value
offset, value size> for each key/value pair. Given a directory index
entry, we fetch the key or the value at the corresponding offset in
the key array or the value array.

With the array structure, we allocate the space on the device
memory for the input data as well as for the result output before
executing the GPU program. However, the sizes of the output from
the map and the reduce stages are unknown. Moreover, write con-
flicts occur when multiple threads write results to the shared out-
put array, because most GPUs do not provide hardware-supported
atomic operations or locks. To address these two problems, we
adopt the previous lock-free output scheme of relational joins [16]
and implement a two-step output scheme for the map and the re-
duce stages. Since the output scheme for the map stage is similar
to that for the reduce stage, we present the scheme for the map stage
only.

First, each map task outputs three counts, i.e., the number of in-
termediate results, the total size of keys (in bytes) and the total size
of values (in bytes) generated by the map task. Based on key sizes
(or value sizes) of all map tasks, the runtime system computes a
prefix sum on these sizes and produces an array of write locations.
A write location is the start location in the output array for the cor-
responding map task to write. Based on the number of intermediate
results, the runtime system computes a prefix sum and produces an
array of start locations in the output directory index for the corre-
sponding map task. Through these prefix sums, we also know the
sizes of the arrays for the intermediate result. Thus, the runtime al-
locates arrays in the device memory with the exact size for storing
the intermediate results.

Second, each map task outputs the intermediate key/value pairs
to the output array and updates the directory index. Since each map
has its deterministic and non-overlapping positions to write to, the
write conflicts are avoided.

This two-step scheme does not require the hardware support of
atomic functions. It is suitable for the massive thread parallelism
on the GPU. However, it doubles the map computation in the worst
case. The overhead of this scheme is application dependent, and
is usually much smaller than that in the worst case. For example,
this overhead is negligible in the matrix multiplication in our study,
since MAP_COUNT simply emits the size without multiplication.

3.4 Optimization Techniques

3.4.1 Memory Optimizations
We use two memory optimizations reducing the number of mem-

ory requests in order to improve the memory bandwidth utilization.
Coalesced accesses. We utilize the GPU feature of coalesced ac-

cesses to improve the memory performance. We design the mem-
ory accesses of each thread to the data arrays according to the coa-
lesced access pattern when applicable. Suppose there are T threads
in total and the number of key/value pairs is N in the map stage.
Thread i processes the (i + T · k)th (k=0,..,N/T) key/value pair.
Due to the SIMD property of the GPU, the memory addresses from
the threads within a thread group are consecutive and these accesses
are coalesced into one. Figure 3 illustrates the map stage with and
without the coalesced access optimization.

T1 T2 TT

T1 TT

(b) The map stage with the coalesced access optimization

(a) The map stage without the coalesced access optimization

coalesced

TT TTT1 T1 T2 T2 T2

T1 T2 TT T1 T2 TT

Figure 3: The map stage with and without coalesced access op-
timization.

Accesses using built-in vector types. Accessing the values in
the device memory can be costly, because the data values are of-
ten of different sizes and the accesses are hardly coalesced. For-
tunately, GPUs such as G80 support built-in vector types such as
char4 and int4. Reading built-in vectors fetches the entire vector
in a single memory request. Compared with reading char or int,
the number of memory requests is greatly reduced and the memory
performance is improved.

3.4.2 Other Optimizations in Mars
Thread parallelism. The thread configuration, i.e., the number

of thread groups and the number of threads per thread group, is
related to multiple factors including, (1) the hardware configuration
such as the number of multiprocessors and the on-chip computation
resources such as the number of registers on each multiprocessor,
(2) the computation characteristics of the map and the reduce tasks,
e.g., they are memory- or computation-intensive.

Since the map and the reduce functions are implemented by the
developer, and their costs are unknown to the runtime system, it is
difficult to find the optimal setting for the thread configuration at
run time. Fortunately, CUDA provides an off-line calculator [23]

for computing the multiprocessor occupancy given a CUDA pro-
gram. For the program (either the map task or the reduce task),
the calculator takes the number of threads per thread group and
the number of registers used per thread as input, and outputs the
occupancy and the number of active thread groups per multipro-
cessor. The number of registers used per thread is obtained using
the NVCC compiler of CUDA.

With the calculator, we iterate the number of threads per group in
multiples of 32 (the schedule unit size) ranging from 32 to 512 (the
maximum number of threads per thread group), until the occupancy
is higher than a predefined threshold. Thus, we get the number of
threads per thread group and the number of thread groups. In prac-
tice, we set the occupancy threshold to be 2/3 so that the GPU is
sufficiently busy, and each thread group receives adequate compu-
tation resources.

Handling variable-sized types. The variable-sized types are
supported with the directory index. If two key/value pairs need
to be swapped, we swap their corresponding entries in the direc-
tory index without modifying the key and the value arrays. This
choice is to save the swapping cost since the directory entries are
typically much smaller than the key/value pairs. Even though swap-
ping changes the order of entries in the directory index, the array
layout is preserved and therefore accesses to the directory index
can still be coalesced after swaps.

Since strings are a typical variable-sized type, and string process-
ing is common in web data analysis tasks, we develop a GPU-based
string manipulation library. The operations in the library include
strcmp, strcat, memset and so on. The APIs of these operations
are consistent with those in C/C++ library on the CPU. The differ-
ence is that we use simple algorithms for these GPU-based string
operations, since they usually handle small strings within a map or
a reduce task. In addition, we use char4 to implement strings to
optimize the memory performance.

Hashing. Hashing is used in the sort algorithm to store the
results with the same key value consecutively. In that case, we
do not need the results with the key values in their strict ascend-
ing/decreasing order. We use the hashing technique that hashes
a key into a 32-bit integer, and we sort the records according to
their hash values. When we compare two records, we first compare
their hash values. Only when their hash values are the same, we
fetch their keys and compare them. Given a good hash function,
the probability of comparing the keys is low.

File manipulation. Currently, the GPU cannot directly access
the data in the hard disk. Thus, we perform the file manipulation
with the assistance of the CPU in three phases. First, we perform
the file I/O on the CPU and load the file data into a buffer in the
main memory. To reduce the I/O stall, we use multiple threads to
perform the I/O task. Second, we perform the preprocessing on
the buffered data and obtain the input key/value pairs. Finally, the
input key/value pairs are copied to the GPU device memory.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate our GPU-based MapReduce frame-

work in comparison with its CPU-based counterpart.

4.1 Experimental Setup
Our experiments were performed on a PC with a G80 GPU and

an Intel Core2 Quad processor running Linux Fedora 7.0. The hard
drive is a 160G SATA magnetic hard disk. The GPU consists of
16 SIMD multi-processors, each of which has 8 processors run-
ning at 1.35GHz. In contrast, the CPU has four cores running at
2.4GHz. The main memory is 2GB, and the device memory of the
GPU is 768MB. The GPU uses a PCI-E bus to transfer data be-

tween the main memory and the device memory with a theoretical
bandwidth of 4 GB/sec. Based on our measurements, the device
memory of G80 achieves a bandwidth of around 69.2 GB/sec and
34.5 GB/sec with and without coalesced access optimization, re-
spectively, whereas the quad-core CPU has 5.6 GB/sec.

To evaluate the efficiency of our framework, we compared Mars
with Phoenix [27], the state-of-the-art MapReduce framework on
multi-core CPUs. Phoenix uses Pthreads to implement its runtime
system. In our experiment, the number of cores used in Phoenix
is set to four, i.e., the number of cores in the CPU. Moreover, we
have applied the design of Mars to the multi-core CPU and imple-
mented a CPU-based Mars for comparison. The CPU-based Mars
has the same APIs as its GPU-based counterparts. CUDA allows
us to specify the function type of APIs using qualifier “__host__
__device__" so that these APIs can be called in both the CPU-
and the GPU-based schemes. Compared with Phoenix, our CPU-
based Mars inherits the lock-free design. We believe this design
allows our system to scale well on future multi-core CPUs with
many cores.

For Mars, the sort algorithm was the bitonic sort on the GPU
[16]. We used the prefix sum implementation from the CUDA li-
brary [24].

We run each experiment for five times and report their average
value.

Applications. We have implemented six applications for web
data analysis as benchmarks for the MapReduce framework. They
represent core computations for different kinds of web data analy-
sis such as web document searching (String Match and Inverted In-
dex), web document processing (Similarity Score and Matrix Mul-
tiplication) and web log analysis (Page View Count and Page View
Rank). The first two and the fourth applications are those used in
the experiments of Phoenix [27]. The third and the fourth applica-
tions are common tasks in the web search [31]. The last two are
the routines for analyzing the statistics on the web page accesses in
www.sina.com.cn.

Table 2 shows the description and the data sets used in our ex-
periment for each application. We used three data sets for each ap-
plication (S, M and L) to evaluate the scalability of the MapReduce
framework. The values in the matrix or the vector are randomly
generated float numbers. The web log entries are randomly gener-
ated. All these input data are stored as files in the hard disk.

Table 2: Application description
App. Description Data sets
String
Match

Find the position of a
string in a file.

S: 32MB, M: 64
MB, L: 128 MB

Inverted
Index

Build inverted index for
links in HTML files.

S: 16MB, M: 32
MB, L: 64MB

Similarity
Score

Compute the pair-wise
similarity score for a set of
documents.

#doc: S: 512,
M: 1024, L:
2048. #feature
dimension: 128.

Matrix
Multipli-
cation

Multiply two matrices. #dimension: S:
512, M: 1024, L:
2048

Page View
Count

Count the number of dis-
tinct page views from web
logs.

S: 32MB, M: 64
MB, L: 96 MB

Page View
Rank

Find the top ten hottest
pages in the web log.

S: 32MB, M: 64
MB, L: 96 MB

We briefly describe how these applications are implemented us-
ing the MapReduce framework.

String Match (SM): Each Map searches one line in the input

file to check whether the target string is in the line. Neither sort or
the reduce stage is required.

Inverted Index (II): Each Map processes one line of HTML
files. For each link it finds, it outputs an intermediate pair with the
link as the key and the position as the value. Sort is required and
no reduce stage is required.

Similarity Score (SS): It is used in web document clustering.
The characteristics of a document are represented using a feature
vector. Given two document features, �a and�b, the similarity score
between these two documents is defined to be �a·�b

|�a|·|�b| . SS computes

the pair-wise similarity score for a set of documents. Each Map
computes the similarity score for two documents. It outputs the
intermediate pair of the score as the key and the pair of the two
document IDs as the value. Sort is required and no reduce stage is
required.

Matrix Multiplication (MM): Matrix multiplication is widely
applicable to analyze the relationship of two documents. Given
two matrices M and N , each Map computes multiplication for a
row from M and a column from N . It outputs the pair of the row
ID and the column ID as the key and the corresponding result as
the value. Neither sort or the reduce stage is required.

Page View Count (PVC): A log entry is a 3-ary tuple <URL,
IP , Cookie>, where URL is the URL of the accessed page; IP
is the IP of the host accessing the page; Cookie is the cookie infor-
mation generated when the page is accessed. This application has
two executions of MapReduce. The first one removes the duplicate
entries in the web logs. The second one counts the number of page
views for each page. In the first MapReduce, each Map takes the
pair of a log entry as the key and the size of the entry as value. The
sort is to eliminate the redundancy in the web log. Specifically,
if more than one log entries have the same information, we keep
only one of them. The first MapReduce outputs the result pair of
the log entry as key and the size of the line as value. It requires
both sort and the reduce stage. The second MapReduce processes
the key/value pairs generated from the first MapReduce. The Map
outputs the URL as the key and the IP as the value. In the second
MapReduce, sort is required and no reduce stage is required.

Page View Rank (PVR): It finds the top ten URLs that are most
frequently accessed. The Map takes the pair of the page access
count as the key and the URL as the value, which is also the output
of PVC. Sort is required and no reduce stage is required.

In summary, these applications have different characteristics. MM
and SS are more computation intensive than other applications.
PVC has two MapReduces whereas other applications have one.
PVC has the reduce stage, while others do not.

Finally, we show the size of the source code written by the devel-
oper using Mars and Phoenix in Table 3. The code size is measured
in number of source code lines. Since our CPU-based MapReduce
framework has the same implementation as its GPU-based counter-
part, both implementations have the same code size. Programming
with Mars uses our own string manipulation library while program-
ming with Phoenix uses the standard string library in C/C++. In
general, the application with Mars has a similar code size as that
with Phoenix. The Map and Reduce functions in Mars are simpler
than those in Phoenix. Thus, the code size by the developer with
Mars may be shorter than that with Phoenix.

Table 3: The size of the source code written by the developer
using Mars and Phoenix.

II SM SS MM PVC PVR
Phoenix 365 250 196 317 292 166

Mars 375 173 258 235 276 152

4.2 Results on String Library

0

0.1

0.2

0.3

0.4

0.5

0.6

strcpy strcat strcmp strchr strstr memset

E
la

ps
ed

 ti
m

e
(s

ec
)

CPU

GPU (non-opt)

GPU(opt)

Figure 4: Performance comparison of the string libraries in
C/C++ and Mars.

Figure 4 shows the performance comparison of the string li-
braries in C/C++ and Mars, denoted as “CPU" and “GPU", respec-
tively. The number of string operations is eight million. The av-
erage string length is 16. The string operations on the CPU are
performed using multiple concurrent threads to exploit the multi-
core computation capability. The measurements on the GPU with
accessing data using char and char4 are denoted as “non-opt" and
“opt", respectively. The optimized GPU implementation achieves
2-9x speedup over the CPU implementation.

Different string manipulations have different performance com-
parison between the CPU and the GPU. For the memory intensive
operations such as strcpy, strcat and memset, the non-optimized
GPU implementation can be slower than the CPU implementation.
In contrast, the optimized GPU implementation is much faster than
the CPU implementation with a speedup of 2.8-6.8x. For other
three comparison-based operations, i.e., strcmp, strchr and strstr,
the difference between the optimized and the non-optimized GPU
implementation is small, because the memory optimization has lit-
tle performance impact on these comparison-based operations.

4.3 Results on Mars

Figure 5: Performance speedup of Mars over Phoenix.

Figure 5 shows the performance speedup of the optimized Mars
over Phoenix with the data set size varied. Overall, Mars is around
1.5-16x faster than Phoenix when the data set is large. The speedup
varies for the applications with different computation characteris-
tics. For computation-intensive applications such as SS and MM,
Mars is over 4x faster than Phoenix. For other simpler applications
such as SM, Mars is slightly faster than Phoenix.

We next investigate the time breakdown of each application. In
Figure 6, we divide the total execution time of a GPU-based appli-
cation into four components including the time for file I/O, the map
stage excluding the sort, the sort after the map and the reduce stage.
Note, the measurement of the map stage includes the time for copy-
ing the input data into the device memory, and the measurement of
the Reduce includes the time for copying the result back to the main
memory. The I/O time is dominant for SM and II, and the compu-
tation time is insignificant compared with the I/O time. Advanced
I/O mechanisms such as using a disk array may greatly improve
the overall performance for these two applications. In contrast, the
total time of GPU processing including Map, Sort and Reduce is
dominant for the other four applications. When the Sort step is
required for the applications such as SS, PVC and PVR, the Sort
time is a large part of the total execution time. Improving the sort-
ing performance will greatly improve the overall performance of
these applications.

0

500

1000

1500

2000

2500

3000

SM II SS MM PVC PVR

T
im

e
br

ea
kd

ow
n

(m
s)

IO
Map
Sort
Reduce

Figure 6: The time breakdown of Mars on the six applications
with the large data set.

1.45

2.11

1.84

2.12

1.32
1.21

0.00

0.50

1.00

1.50

2.00

2.50

SM II SS MM PVC PVR

Sp
ee

du
p

Figure 7: The performance speedup of coalesced accesses on
the GPU.

In the following, we present the results for the performance im-
pact of the hashing, the coalesced accesses and using built-in vector
types. Since we obtain similar results for different data sizes, we
present the results for the large data sets only.

We study the three optimization techniques in order. We first
study the performance impact of the coalesced access optimization,
because it is orthogonal to the other two optimization techniques.
The coalesced access optimization is mainly for the key array and
the directory index, where tuples are of a fixed size. In contrast,
the built-in vector type and hashing are for the value array with
long or variable-sized tuples. Since hashing reduces the number of

1.43

4.15

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

II PVC

Sp
ee

du
p

Figure 8: Performance speedup with hashing.

1.22 1.18 1.17

2.15

1.65

1.09

0.00

0.50

1.00

1.50

2.00

2.50

SM II SS MM PVC PVR

Sp
ee

du
p

Figure 9: Performance speedup of accessing data with built-in
vector types.

accesses to the value array, we evaluate the hashing technique be-
fore evaluating the built-in vector type optimization. Specifically,
we evaluate the built-in vector type optimization at the presence
of hashing and coalesced access to examine how much further im-
provement it makes.

Figure 7 shows the performance speedup of coalesced accesses
on the six applications. We define the performance speedup of an
optimization technique to be the ratio of the elapsed time with-
out the optimization technique to that with the optimization tech-
nique. The measurements were obtained without using built-in vec-
tor types or hashing. The coalesced access improves the memory
bandwidth utilization, which yields a performance speedup of 1.2-
2.1x.

Figure 8 shows performance speedup of the hashing technique
for II and PVC, where hashing is applicable. We measured these
numbers with coalesced access and without using the built-in vec-
tor. The hashing technique improves the overall performance by
1.4-4.1x. The performance improvement of the hashing technique
on PVC is larger than that on II, because PVC has two invocations
of MapReduce.

Figure 9 shows the performance speedup of accessing data with
built-in vector types on the GPU. The measurement is with both
hashing and coalesced access optimizations. Using built-in vec-
tor types reduces the number of memory requests and improves
the bandwidth utilization. It improves the overall performance by
1.09-2.15x. The performance speedup depends on the size of the
data accessed in a task. For instance, the performance speedup for
MM and PVC is high, because each Map in MM and PVC requires
fetching long integer vectors and a web log entry, respectively, and
the built-in vector greatly helps. In contrast, the speedup for the

1.37

5.44

1.56

3.00

1.01

2.32

0.00

1.00

2.00

3.00

4.00

5.00

6.00

SM II SS MM PVC PVR

Sp
ee
du

p

Figure 10: Performance speedup of Mars running on the CPU
over Phoenix.

2.96 3.01

6.93

1.15

3.90

1.94

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

SM II SS MM PVC PVR

Sp
ee
du

p

Figure 11: Performance speedup of the GPU-based Mars over
its CPU-based counterpart.

other applications is small, because fetching data using the built-in
vector type is not frequent.

4.4 Results on Multi-Core CPU
Finally, we investigate our design of Mars on the multi-core

CPU. Figure 10 shows the performance speedup of Mars running
on the CPU over Phoenix. The overall performance of our CPU-
based implementation is comparable to or better than that of Phoenix.
There are two possible reasons for this performance speedup. One
is that applications written using Phoenix always have a reduce
stage whereas ours may not have. The other reason is that Phoenix
has lock overhead whereas ours does not. Specifically for II, our
CPU-based implementation is 5.4x faster than Phoenix.

Figure 11 shows the performance speedup of the GPU-based
Mars over its CPU-based counterpart. The GPU-based MapReduce
framework is up to 3.9x faster than its CPU-based counterpart.

5. CONCLUSION AND FUTURE WORK
Graphics processors have emerged as a commodity platform for

parallel computing. However, the developer requires the knowl-
edge of the GPU architecture and much effort in developing GPU
applications. Such difficulty is even more for complex and performance-
centric tasks such as web data analysis. Since MapReduce has been
successful in easing the development of web data analysis tasks,
we propose a GPU-based MapReduce for these applications. With
the GPU-based framework, the developer writes their code using
the simple and familiar MapReduce interfaces. The runtime on the
GPU is completely hidden from the developer by our framework.
Moreover, our MapReduce framework yields up to 16 times per-

formance improvement over the state-of-the-art CPU-based frame-
work.

We are interested in extending our MapReduce framework in the
following three ways:

1. Mars currently handles data that can fit into the device mem-
ory. We plan to support massive data sets that are larger than
the device memory.

2. We plan to implement our MapReduce framework on AMD
GPUs based on Brook+. It is an interesting study to investi-
gate the similarities and differences of designing and imple-
menting the MapReduce framework on AMD and NVIDIA
GPUs.

3. Since we have developed both the CPU- and the GPU-based
MapReduce frameworks, we are studying coprocessing tech-
niques between the CPU and the GPU to take advantage of
both processors.

The code and documentation of our framework can be found at
http://www.cse.ust.hk/gpuqp/.

Acknowledgments
The authors thank the anonymous reviewers for their insightful sug-
gestions. This work was supported by grant 616808 from the Hong
Kong Research Grants Council.

6. REFERENCES
[1] A. Ailamaki, N. K. Govindaraju, S. Harizopoulos, and

D. Manocha. Query co-processing on commodity processors.
In VLDB ’06: Proceedings of the 32nd international
conference on Very large data bases, pages 1267–1267.
VLDB Endowment, 2006.

[2] AMD CTM. http://ati.amd.com/products/streamprocessor/,
2007.

[3] Apache Hadoop. http://lucene.apache.org/hadoop/, 2006.
[4] D. Blythe. The direct3d 10 system. ACM Trans. Graph.,

25(3):724–734, 2006.
[5] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,

M. Houston, and P. Hanrahan. Brook for gpus: stream
computing on graphics hardware. ACM Trans. Graph.,
23(3):777–786, 2004.

[6] B. Catanzaro, N. Sundaram, and K. Keutzer. A map reduce
framework for programming graphics processors. In
Workshop on Software Tools for MultiCore Systems, 2008.

[7] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data processing on
large clusters. In SIGMOD ’07: Proceedings of the 2007
ACM SIGMOD international conference on Management of
data, pages 1029–1040, New York, NY, USA, 2007. ACM.

[8] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Y. Ng, and
K. Olukotun. Map-reduce for machine learning on multicore.
In NIPS ’07: Proceedings of Twenty-First Annual
Conference on Neural Information Processing Systems.
Neural Information Processing Systems Foundation, 2007.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113,
2008.

[10] J. Feng, S. Chakraborty, B. Schmidt, W. Liu, and U. D.
Bordoloi. Fast schedulability analysis using commodity
graphics hardware. 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications, 2007.

[11] Folding@home. http://www.scei.co.jp/folding, 2007.
[12] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha.

GPUTeraSort: high performance graphics co-processor
sorting for large database management. In SIGMOD ’06:
Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 325–336, New
York, NY, USA, 2006. ACM.

[13] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations using
graphics processors. In SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on
Management of data, pages 215–226, New York, NY, USA,
2004. ACM.

[14] M. Harris, J. Owens, S. Sengupta, Y. Zhang, and
A. Davidson. Cudpp: Cuda data parallel primitives library.
2007.

[15] B. He, N. K. Govindaraju, Q. Luo, and B. Smith. Efficient
gather and scatter operations on graphics processors. In SC
’07: Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, pages 1–12, New York, NY, USA, 2007.
ACM.

[16] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo,
and P. Sander. Relational joins on graphics processors. In
SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages
511–524, New York, NY, USA, 2008. ACM.

[17] D. Horn. Lib GPU FFT, 2006.
[18] C. Jiang and M. Snir. Automatic tuning matrix multiplication

performance on graphics hardware. In PACT ’05:
Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques, pages 185–196,
Washington, DC, USA, 2005. IEEE Computer Society.

[19] E. S. Larsen and D. McAllister. Fast matrix multiplies using
graphics hardware. In Supercomputing ’01: Proceedings of
the 2001 ACM/IEEE conference on Supercomputing
(CDROM), pages 55–55, New York, NY, USA, 2001. ACM.

[20] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng.
Merge: a programming model for heterogeneous multi-core
systems. In ASPLOS XIII: Proceedings of the 13th
international conference on Architectural support for
programming languages and operating systems, pages
287–296, New York, NY, USA, 2008. ACM.

[21] W. Liu, B. Schmidt, G. Voss, and W. Wittig. Streaming
algorithms for biological sequence alignment on gpus. IEEE
Transactions on Parallel and Distributed Systems,
18:1270–1281, 2007.

[22] H. Nguyen. GPU gems 3. Addison-Wesley, 2008.
[23] NVIDIA Corp. . CUDA Occupancy Calculator, 2007.
[24] NVIDIA CUDA.

http://developer.nvidia.com/object/cuda.html, 2007.
[25] OpenGL. http://www.opengl.org/, 2007.
[26] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,

J. Kruger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware.
Computer Graphics Forum, 26, 2007.

[27] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating mapreduce for multi-core and
multiprocessor systems. In HPCA ’07: Proceedings of the
2007 IEEE 13th International Symposium on High
Performance Computer Architecture, pages 13–24,
Washington, DC, USA, 2007. IEEE Computer Society.

[28] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
primitives for gpu computing. In GH ’07: Proceedings of the
22nd ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, pages 97–106, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

[29] SETI@home. http://setiathome.berkeley.edu/, 2007.

[30] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data
parallelism to program gpus for general-purpose uses.
SIGOPS Oper. Syst. Rev., 40(5):325–335, 2006.

[31] R. Yates and B. Neto. Modern information retrieval. Addison
Wesley, 1 edition, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

