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ABSTRACT
Cross-match is a central operation in astronomic databases
to integrate multiple catalogs of celestial objects. With the
rapid development of new astronomy projects, large amounts
of astronomic catalogs are generated and require fast cross-
match with existing databases. In this paper, we propose
to adopt a Multi-Assignment Single Join (MASJ) method
for cross-match on heterogeneous clusters that consist of
both CPUs and GPUs. We chose MASJ for cross-match,
because (1) cross-matching records from astronomic cat-
alogs is essentially a spatial distance join on two sets of
points, and (2) each reference point is mapped to only a
small number of search intervals. As a result, the MASJ
cross-match, or MASJ-CM algorithm is feasible and highly
e�cient in a heterogeneous cluster environment. We have
implemented MASJ-CM in two packages: one is an MPI-
CUDA implementation, which fully utilizes the multi-core
CPUs, GPUs, and InfiniBand communications; the other is
on top of the popular distributed computing platform Spark,
which greatly simplifies the programming. Our results on a
six-node CPU-GPU cluster show that the MPI-CUDA im-
plementation achieved a speedup of 2.69 times over a pre-
vious indexed nested-loop join algorithm. The Spark-based
implementation was an order of magnitude slower than the
MPI-CUDA; nevertheless, it is widely applicable and its
source code much simpler.

1. INTRODUCTION
In astronomy, cross-match is crucial for integrating physi-

cal attributes of celestial objects from multiple catalogs and
distributed archives. The information integrated from ob-
servational results at di↵erent wavelengths or at di↵erent
points in time, is essential to picture the entire universe and
study the temporal evolution for certain celestial objects.
However, these observational results often record slightly
di↵erent positions for the same object due to di↵erent resolu-
tions or calibrations. Thus, in cross-matching two catalogs,
the condition to determine a matching pair of observation
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records is a distance threshold.
As other scientific areas, astronomy is experiencing a data

avalanche. The state-of-the-art astronomical missions, which
adopt high-resolution detectors and large arrays of cameras,
are archiving a vast number of objects on a nightly basis.
For example, large catalogs that o↵er public access, such as
SDSS DR12 [3] and USNOB1 [26], contain billions of ob-
jects. With the increasing scale of catalogs, the ability to
e�ciently cross-match large catalogs is crucial for real-time
analytics and astronomical breakthroughs. However, most
existing studies, which implemented cross-match on a single
computer [5, 33, 40, 49] or on a small set of homogeneous
CPU servers [21, 27, 28], can only process smaller catalogs.

Given the increase of data volume, processing data on
computer clusters is an excellent choice. Modern clusters
are composed of multiple computer nodes, each of which
may be heterogeneous containing various multi-core CPUs
and possibly co-processors such as GPUs, APUs and In-
tel Xeon Phi processors. In addition to the great com-
puting power, such clusters o↵er low-latency communica-
tion channels, such as the InfiniBand network interface, for
data movements between nodes. Furthermore, for RDMA-
enabled clusters, data transfer across machines is further
accelerated since data is transferred directly between main
memory and the network card. On top of the hardware im-
provements, parallel programming interfaces, such as MPI,
OpenMP, CUDA and OpenCL, together with some state-
of-the-art distributed computing software systems, such as
Spark, facilitate the development of applications.

In this paper, we first propose a cross-match algorithm
named MASJ-CM and parallelize it using MPI and CUDA
on a multi-node CPU-GPU cluster. Our basic idea is to
treat the cross-match of two catalogs as a spatial distance
join and to replicate the reference candidate objects for each
sample object for matching. Specifically, with the positions
of celestial objects recorded as points in a spherical coor-
dinate system, an alternative view of cross-matching one
reference point with all sample points is a batch of point-
in-circle queries. Thus, cross-match of a reference catalog
with a sample catalog is essentially a spatial distance join
operation and has high degrees of parallelism in both data
and computation.

As a naive nested-loop join incurs a vast number of unnec-
essary pair-wise comparisons, we proposed an index-based
cross-match algorithm (IB-CM) in our previous work [41].
IB-CM loads both catalogs in multiple passes and the same
sample set is usually sent in the cluster multiple times. To
overcome these issues, we propose MASJ-CM for current



clusters, where the aggregate memory is su�cient to hold
both catalogs and the multi-assignment of the reference point
set on each node fits into the node’s memory.

Di↵erent from IB-CM, both catalogs are loaded and dis-
tributed in the cluster at the first step in MASJ-CM. We
index the sample catalog and calculate the index search in-
tervals for each reference point. Then, instead of filtering
sample points directly by the index search intervals, we repli-
cate each reference point and associate each replica with an
index in the search range. Due to the nature of astronomical
data and indexing, the number of replicas of each reference
point is small. By partitioning the entire task and redis-
tributing the data across the machines, the local indexed
join on multi-assigned data is done concurrently on each ma-
chine. Our evaluation shows that MASJ-CM outperformed
IB-CM on all datasets.

In addition to parallelizing the MASJ-CM using MPI and
CUDA on clusters, we implemented our MASJ-CM algo-
rithm on Spark [44] under the map-reduce model. The
key components, such as multi-assign and join, were im-
plemented via invoking various RDD (Resilient Distributed
Dataset) APIs. As operations performed on the data sets
were automatically parallelized in Spark, our Spark imple-
mentation was much simpler than our MPI-CUDA imple-
mentation. Furthermore, even though the Spark implemen-
tation ran much slower than the native MPI-CUDA imple-
mentation, it o↵ered greater applicability and scalability on
various platforms.

Our contributions are summarized as follows. First, we
propose the MASJ-CM algorithm and parallelize it to cross-
match large catalogs on heterogeneous clusters. It is suit-
able for main-stream astronomical indexing methods. Sec-
ond, our parallel MASJ-CM approach based on MPI and
CUDA e↵ectively utilizes the computing and communica-
tion resources of clusters composed of di↵erent types of het-
erogeneous nodes, whereas our MASJ-CM implementation
on Spark is simple and applicable to various Spark clusters.
Third, we have optimized our implementations and evalu-
ated them on real astronomical datasets. Our results show
that the self-match on a billion-record catalog can be done
on our MPI-CUDA implementation under five minutes on
a six-node cluster. To our best knowledge, this cross-match
performance is the fastest in the literature for such work-
loads.

The remainder of this paper is organized as follows: sec-
tion 2 introduces the background of astronomical cross-match
and discusses studies related to ours. Section 3 presents the
sequential MASJ-CM algorithm and section 4 introduces the
details of parallelizing MASJ-CM on a CPU-GPU cluster.
Section 5 presents our MASJ-CM implementation on Spark.
Section 6 evaluates our work and section 7 concludes this
paper.

2. BACKGROUND AND RELATED WORK
In this section we first briefly introduce the background.

Then we discuss related work on cross-match and spatial
joins. Notations are listed in Table 1.

2.1 Cross-Match of Astronomical Catalogs
The position of a celestial object in an astronomical cata-

log is usually recorded as a two-dimensional coordinate (↵, �)
in the Equatorial Coordinate System [1]. The ranges of ↵
and � are [0�, 360�] and [�90�, 90�], respectively. Due to

Table 1: Notations

Notation Meaning

(↵, �)
(Right ascension, Declination)

in equatorial coordinate system

✓
Threshold of distance

in equatorial coordinate system

diste(O1, O2)
Angular distance of objects O1 and O2

in equatorial coordinate system

R, S Reference, Sample catalog

Rma Reference catalog after multi-assignment

C(p, ✓) Circle with p as origin and ✓ as radius

Dsid
Diamond cell under HEALPix

where sid is the index of this region

|D| Total number of diamond cells

at current resolution under HEALPix

d(p,✓)
Number of diamond cells that

overlap C(p,✓) under HEALPix

�

The maximum number of diamond cells

that overlap circle C(p,✓) at a given

resolution in HEALPix

b Total number of bytes of a tuple (↵, �, sid)

N Number of nodes in a cluster

the time variation and di↵erences in telescopes and obser-
vational purposes, a celestial object may be recorded with
slightly di↵erent positions in di↵erent catalogs. Thus, a dis-
tance threshold based on the calibration errors and other
considerations, also called search radius ✓, is the condition
for testing whether two positions are observed on the same
celestial object.

Given two catalogs R and S, called the reference and sam-
ple catalogs respectively, a search radius ✓, and a distance
function diste(p, q) between two points p and q, the cross-
match problem is to find all pairs (p, q) where p 2 R, q 2 S
and diste(p, q)  ✓. In database terms, cross-match is a
spatial distance join R 1✓ S on two point datasets R and S.

2.2 Astronomical Indexing Schemes
Zones [38], the Hierarchical Triangular Mesh (HTM) [39]

and the Hierarchical Equal Area isoLatitude Pixelisation
(HEALPix) [13] are three main-stream sky partitioning/in-
dexing schemes for celestial objects. The common idea be-
hind them is similar with the grid file proposed for canonical
spatial problems [29]. That is, for a given resolution, the
sky is partitioned into a fixed number of regions, and each
celestial object is associated with an integer index of the re-
gion that contains the object. A property of these indexing
schemes is that, celestial objects that are near to each other
in the sky are assigned to the same index or indices of nearby
regions. Therefore, finding nearby objects can be done via
examining certain neighboring regions. Additionally, neigh-
boring celestial objects can be stored closely on disk or in
main memory of a compute device for e�cient fetching.

Zones, first proposed by Gray in year 2004 [38], maps the
celestial sphere into horizontal zones, each of which is a dec-
lination stripe of equal height. Di↵erent from Zones, both
HTM and HEALPix hierarchically partition the sphere into
small spherical triangles and diamond-shaped cells, respec-
tively. HEALPix results in a decomposition of the sphere
with equal-area diamond cells whereas HTM partitions the
sphere in regions of di↵erent sizes.



(a) Subdivision Pro-
cedure [13]

(b) Hierarchical Numbering Scheme

Figure 1: HEALPix

Both HTM and HEALPix organize indices in a hierarchy
of resolutions with the entire sky as the root node and re-
gions at the finest resolution as leaves. They label a newly
created region by appending a label from a finite set to
its parent node’s index. Furthermore, in both HTM and
HEALPix, the subdivided regions under the same parent
region are named in a nested and clockwise manner, respec-
tively.

In this paper, we choose HEALPix as our indexing scheme
in the implementation; our techniques are applicable to the
other indexing schemes. Figure 1(a) shows a partitioning
process to split the sky from resolution level 0 to level 3.
Figure 1(b) shows an example of labeling the indices of the
newly subdivided pixels at resolution level 1.

There are various versions of HEALPix implementations,
including C, C++, F90, IDL, Python and Java, with public
access [2]. The number of cells after partitioning is 12 ⇤ 4l
at resolution level l. For example, at resolution level 13,
the entire sky is partitioned into 12 ⇤ 413 = 805, 306, 368
cells. Two key functions, getPix and queryDisc, are used
in cross-match. getPix returns the HEALPix index of a
celestial object (↵, �) at a given resolution level. queryDisc
calculates the list of cells that overlap a query circle with the
origin (↵, �) and radius ✓. We extracted these two functions
from the C source code and implemented our own CUDA C
and Scala versions as counterparts.

2.3 Spark
The Apache Spark, which extends the MapReduce model

and improves the Hadoop implementation, was proposed for
fast and general cluster computing [43]. The ability of exe-
cuting most computations in memory without writing inter-
mediate results to disks o↵ers a high e�ciency. Spark has
been used as computing platforms in machine learning [44],
as well as in scientific areas, such as neuroscience [12], as-
tronomy [48] and genomics [30].

The core construct in Spark is the RDD, which is a collec-
tion of elements and operations that is automatically par-
allelized. A typical Spark application consists of a driver
program, which connects to a computing cluster and oper-
ates on the distributed datasets. The driver program mostly
starts from creating RDDs by referencing data from an ex-
ternal storage, such as HDFS [36], Amazon S3, or shared
file systems, e.g., GlusterFS [8] or Lustre [9]. Then, var-
ious RDD APIs are used to operate these RDDs. Trans-
formations and actions are two types of RDD operations.
A transformation, such as map, flatMap and filter, defines
a new RDD based on a previous RDD. An action, such as
count and cache, kicks o↵ a job to execute on a cluster and

Table 2: Parallel Cross-Match Performance Summary

Indexing Data Set Evaluation Execution

Method Size Environment Time

Zones

2m * 2m 8 SQL servers 20 minutes [27, 28]

3m * 0.03m
One hybrid

7 seconds [21]
MySQL server

2m * 2m One single GPU 1.1 seconds [40]

15m * 450m
6 GPUs on

4 minutes [5, 22]
a single node

HEALPix

100m * 470m
One single

32 minutes [49]
SQL server

470m * 1b
One quad-core

30 minutes [33]
CPU node

1.2b * 1.2b
Seven-node

10 minutes [41]
CPU-GPU cluster

usually returns a value to the driver program. To get a
better knowledge of the operations to be performed, trans-
formations are evaluated lazily until they meet actions.

2.4 Related Work
In this section, we revisit the studies related to ours and

classify them into two categories.

2.4.1 Cross-match of astronomical catalogs
Gray et al. [38] proposed and implemented the zone-based

cross-match with some SQL extensions in a single Microsoft
SQL server. Nieto-Santisteban et al. [27, 28] implemented
a parallel zones algorithm on multiple servers and cross-
match of two million-record catalogs was done under 20
minutes with 8 servers. Kumar et al. [21] extended the
parallel zone-based cross-match to a hybrid MySQL clus-
ter and the optimized algorithm was able to cross-match
two catalogs with sizes of 3 million objects and 30,551 ob-
jects respectively in seven seconds. Most recently, Wang et
al. [40] and Budavári [5, 22] parallelized the zones algorithm
on a single GPU and a single node with multiple GPUs, re-
spectively. With the aid of GPUs, these methods completed
cross-match of million-scale catalogs in a few seconds. For
cross-matching partially overlapping catalogs, Fan et al. [11]
optimized the original zones algorithm by firstly filtering out
irrelevant objects with sky coverage information.

In contrast to the zones-based cross-match, Zhao et al. [49]
and Pinearo et al. [33] employed HEALPix as the partition-
ing scheme and performed cross-match of two catalogs in
partitioned regions. The work of Zhao et al. on a single
SQL server performed cross-match of SDSS DR6 (100 mil-
lion objects) and 2MASS (470 million objects) in 32 min-
utes, whereas that of Pinearu et al. [33] on a machine with
two hyper-threaded quad-core CPUs finished cross-match
of 2MASS (470 million objects) with USNOB1 (1 billion
objects) in 30 minutes. Our previous work [41] took an
indexed-loop join approach utilizing the HEALPix index and
was able to cross-match billion-record catalogs on a seven-
node CPU-GPU cluster under 10 minutes. Table 2 summa-
rizes the performance of these parallel cross-match methods.

In addition to cross-match of two catalogs with distance
thresholds, Budavári et al. [6] proposed a Bayesian model to
cross-match multiple catalogs while taking physical proper-
ties, such as colors, redshift, and luminosity, into account.
Most recently in year 2015, Fan et al. [10] employed this



model to cross-match radio catalogs, which contain physical
properties of celestial objects other than point coordinates.

2.4.2 Spatial Joins
Spatial databases usually contain complex spatial objects,

such as polygons and polylines. Conventional spatial joins
mostly focus on polygon intersection queries. Sequential al-
gorithms are either tree based that require pre-built spatial
indices, such as the R-tree [4, 14, 17, 18], R+-tree [23], PMR
quadtree [17], or are based on data partitioning [24, 31].
Furthermore, R-tree based methods are essentially single-
assignment multi-join (SAMJ) since an object is only as-
signed to one tree node and a spatial search usually touches
multiple tree nodes. In comparison, the R+-tree and grid-
file partition based approaches are multi-assignment single-
join (MASJ) as spatial objects that span multiple regions
are inserted into each of the leaf nodes or replicated into
each of the regions. As MASJ incurs object duplication, ei-
ther duplicate elimination or avoidance mechanism should
be adopted.

Parallel spatial join algorithms first partition both rela-
tions and then distribute the leaf nodes [19, 20, 35, 16] or
partitioned regions [25, 50, 32] across the cluster. Zhou
et al. [50] showed that, for parallel spatial join process-
ing,especially for unindexed data, MASJ was superior to the
R-tree based SAMJ method. Instead of dynamically insert-
ing objects into the R-tree, the MASJ-based parallel spatial
join first statically partitions the space into cells. Spatial ob-
jects that span multiple cells are replicated to each of these
cells. Second, these cells are merged into partitions, and
the partitions are mapped to computer nodes in a parallel
machine or a cluster. To handle data skew and balance the
workload in the cluster, Zhou et al. [50] used a Z-order merg-
ing strategy whereas both Luo et al. [25] and Patel et al. [32]
used a hash function to virtually merge cells into partitions.
Third, after both relations are partitioned and mapped to
computer nodes, the spatial join will be done on each node
locally by joining the small cells on the node.

Recently, Zhang et al. [47] parallelized the MASJ-based
spatial join on Hadoop. Both relations were split into dis-
joint regions in the map phase, and each region pair was
joined at the reduce stage. You et al. [45, 46] accelerated a
Z-order based spatial join on a GPU cluster and an R-tree
based indexed spatial join on cloud computing platforms,
including Spark and Cloudera Impala [42].

As we focus on parallel cross-match of astronomical cata-
logs on heterogeneous clusters, our work adopts the MASJ
partitioning method but di↵ers from previous work in the
following aspects. First, our work deals with celestial ob-
jects as points in a spherical coordinate system whereas con-
ventional spatial joins mostly process geospatial datasets in
which objects are positioned as polylines and polygons on a
quadrant plane. As a result, we do not utilize conventional
spatial indexing but rather specialized astronomical parti-
tioning schemes, such as the HEALPix indexing method.
Second, instead of replicating both relations, we only repli-
cate the smaller relation, because cross-match is essentially
point-in-circle queries. Consequently, the result of MASJ-
CM naturally contains no duplicates. Finally, as main mem-
ory size grows and celestial objects are represented as two-
dimensional coordinates in our system, the replicated coor-
dinates in each partition fit into main memory of each cluster
node and the final join phase can be done in-memory and

(a) Before Multi-Assignment (b) After Multi-Assignment

Figure 2: Multiple Assignment Example

requires no extra communication.

3. THE MASJ-CM ALGORITHM
In this section, we first present our sequential MASJ-CM

algorithm for the cross-match problem. Then, we estimate
the workload of the join and introduce our workload-driven
task decomposition scheme for parallel processing. MASJ-
CM requires both catalogs are loaded once into the cluster
to have a global overview of the data distribution. Thus,
MASJ-CM has a hard requirement for the scale of cluster for
o↵ering enough main memory. This requirement is feasible
to satisfy on current clusters, as each node typically contains
tens of gigabytes of memory.

We use the HEALPix as the partitioning method. In Fig-
ure 2(a), dots represent reference points and stars represent
sample points. Circle C(p1,✓) is contained in diamond D16

whereas circle C(p2,✓) overlaps the diamond set CL[p2] =
{D2, D4, D5, D7}. Thus, sample points inside C(p1,✓) and
C(p2,✓), i.e., the stars in Figure 2(a), are contained in di-
amond D16 and diamond set CL[p2] = {D2, D4, D5, D7},
respectively. Consequently, if a query point p is assigned to
all diamond cells that the query circle C(p,✓) overlaps, e.g.,
dots in Figure 2(b), cross-match can be done in all diamond
cells concurrently. Moreover, as multiple assigned reference
points can be associated with the spatial indices of the over-
lapping cells, cross-match can be done via joining all points
with an equal index and within distance ✓.

3.1 Sequential MASJ-CM
Our sequential MASJ-CM algorithm proceeds as follows.

1. Multi-assignment: For each p = (↵, �) 2 R, let CL[p] =
{Dsid1 , Dsid2 , ...Dsidd(p,✓)

(|CL[p]| = d(p,✓)) denote the

list of diamond cells that the query circle C(p,✓) over-
laps. We duplicate p into the d(p,✓) cells while inserting
the spatial index into the original tuple. Specifically,
we duplicate p as p1 = (↵, �, sid1), p2 = (↵, �, sid2),
..., pd(p,✓) = (↵, �, sidd(p,✓)). Let Rma denote the R set
after this multi-assignment step.

2. Indexing sample catalog: For each (↵, �) 2 S, insert
the spatial index sidi into the corresponding tuple such
that q = (↵, �, sidi) where cell Dsidi contains (↵, �).

3. Single-join: Compute Rma 1(sid,✓) S to find point
pairs having the same sid and within a distance thresh-
old ✓.



We discuss three issues of MASJ-CM.

• Upper bound of |Rma|: Each p 2 R will be duplicated
through multi-assignment in the first step. Given the
maximum number of cells that the query circle C(p,✓)

overlaps, we have |Rma|  �|R|.

• Memory Cost: Since in-memory cross-match requires
both catalogs stored in memory simultaneously at some
moment, storing Rma and S simultaneously needs up
to b · (�|R| + |S|) memory space where b is the total
number of bytes of a tuple (↵, �, sid). In our imple-
mentation, b equals 20 as sid costs 4 bytes and point
tuple (↵, �), which are two double floating numbers,
costs 16 bytes.

• Choice of reference catalog: As in other canonical join
operations, choosing which catalog as the reference in
cross-match will not make any di↵erence in the fi-
nal join result. In our MASJ-CM algorithm, multi-
assignment only occurs on one catalog. So we take the
smaller catalog as the reference to reduce the memory,
computation and communication cost.

3.2 Workload Estimation in Step 3
To parallelize MASJ-CM, we first estimate the workload

of the third step for partitioning. The first two steps have
an even workload on each data point, so there is no need
to estimate their workload. Since in the first two steps, all
points in both Rma and S are indexed, step 3 can be done as
a sort-merge or a hash join on the index sid followed by the
final matching with the distance threshold. As hash join re-
quires extra memory space for computing the histogram, we
choose sort-merge to join the two sets on a single machine.

We use the number of angular distance calculations to es-
timate the workload in the third step, as these calculations
are the most computation-intensive component in the algo-
rithm. Since both Rma and S are indexed and sort-merge
join is done on the index sid, the angular distance calcu-
lation occurs only when two points from Rma and S have
an equal index. Let NR(i) and NS(i) denote the number
of points with spatial index sidi in Rma and S, respectively.
The total number of angular distance calculations for MASJ
can be expressed in

CostMASJ =

|D|�1X

i=0

NR(i) ⇤NS(i). (1)

The entire task CMMASJ is to compute the cross-match of
each region pair.

CMMASJ = [|D|�1
i=0 CM(Ri, Si) (2)

3.3 Task Decomposition Scheme in Step 3
A straightforward approach to execute step 3 in parallel

on commodity clusters is to assign a task set CM(i, ...j) =
CM(Ri, Si) [ ... [ CM(Rj , Sj), 0  i  j < |D|, the union
of multiple regional tasks, to a single node and then let all
nodes execute the tasks assigned to them concurrently. As
all operand data in a regional task, e.g., CM(Ri, Si), will be
held entirely by a node, this task can be executed locally and
no extra communication is needed. Thus, this approach is
especially suitable for a shared nothing architecture, where

di↵erent computer nodes can only exchange data via net-
work. In such an architecture, in addition to minimizing
communication cost, it is critical to maintain workload bal-
ance among multiple nodes. Therefore, we tackle the prob-
lem of workload balance in the presence of data skew.

As in many spatial problems, data skew is not uncommon
in astronomical data. Due to the uneven distributions of ce-
lestial objects and the di↵erences in observational purposes
of astronomical missions, the number of celestial objects that
fall into a region under a certain partitioning scheme, varies
from region to region. Thus, the number of celestial ob-
jects with equal spatial index in both catalogs, e.g., NR(i)
or NS(i), varies. Consequently, the scale of each regional
task, e.g., CM(Ri, Si), varies.

To prevent load imbalance, regional tasks of various scales
should be merged into a few larger tasks of similar scales.
This problem is equivalent to the bin-packing problem, which
is NP-hard. As such, we adopt a greedy workload-driven
task decomposition scheme that merges regional tasks into
larger ones in a bottom-up approach, aiming at balancing
the load.

First, we set COSTD = CostMASJ/N as the default work-
load of each computer node where N is the number of com-
puter nodes in a cluster. Then, we pack points in Rma and
S with equal spatial index into bucket pairs. We further as-
sociate each bucket pair with the corresponding index. For
example, the i-th bucket pair (BR(i), BS(i)) is

BR(i) = {p|p 2 Rma, p.sid = sidi} (3)

BS(i) = {q|q 2 S, q.sid = sidi} (4)

where |BR(i)| = NR(i) and |BS(i)| = NS(i).
Then we sort all bucket pairs by their indices. Next,

we start to merge as many consecutive bucket pairs in the
sorted order into a pair of larger buckets (BR, BS) until
the default workload is reached. Thus, for the s-th large
pair (BRs, BSs), we have

BRs = [j
k=iBR(k) (5)

BSs = [j
k=iBS(k) (6)

Costs =
jX

k=i

NR(k) ⇤NS(k)  COSTD (7)

where Costs is the estimated workload of the (BRs, BSs).
If there are any small bucket pairs left after N large bucket
pairs are formed, we assign the remaining pairs, one by one,
into the large bucket pair with the smallest estimated work-
load and update its estimated workload. For example, we
assign bucket pair (BR(i), BS(i)) to the j-th large pair and
increase Costj as

Costj = Costj +NR(i) ⇤NS(i) (8)

Finally, we assign each large bucket pair as a task set to a
computer node and the entire task decomposition is done.

4. THE MPI-CUDA IMPLEMENTATION
In this section, we describe a three-phase framework to

execute the MASJ-CM algorithm in parallel in a multi-node
cluster. Section 4.1 presents an overview of this framework
and the remainders discuss the implementation details.



4.1 Overview
Initially, both catalogs are split into N small files, each of

which contains roughly an equal number of celestial objects.
Each node loads one reference and one sample file at the
beginning of the execution. We assume the data processed
by each node can fit into its main memory during the entire
processing. Our three-phase framework works as follows.

1. Preprocessing and task decomposition: Each node pi,
0  i < N , starts from loading the corresponding refer-
ence and sample catalogs into its main memory. Then
each node calculates the list of overlapping cells for
each reference point, and the spatial index for each
sample point, respectively. In the meantime, each node
counts the number of reference and sample points that
fall into each cell. Finally, one of the computer nodes
p0 gathers the statistics from all the others, merges
them and runs the task decomposition algorithm pro-
posed in section 3.3 based on the global statistics. At
the end of this phase, p0 distributes the task decom-
position results to all other nodes.

2. Data redistribution: All nodes in the cluster exchange
data via the network so that each node loads its as-
signed partition of data required by the third phase
into the node’s main memory.

3. Parallel single join: Each node performs an in-memory
sort-merge join locally on the index, computes the dis-
tance of two points with the same index, and compares
with the distance threshold to determine whether it is
a match.

In this framework, the entire processing consists of three
phases with each phase consisting some sequential steps. Se-
quential execution has the following problems.

1. Dependence: A step cannot start until the previous
step is done even if there is no dependence between
them. Moreover, if two steps without dependence are
to be executed on the GPU and the CPU concurrently,
sequentially executing them will make the GPU or
CPU idle.

2. All-to-All communication: Communication among all
nodes are required in the second phase for redistribut-
ing data. The network latency and the bandwidth lim-
itations a↵ect the performance of this phase. Since
the third phase cannot start before all required data is
held by each node, the high communication cost may
be the bottleneck for achieving a high e�ciency when
cross-matching large-scale catalogs.

In the following we discuss our optimization strategies,
which mainly involve overlapping operations.

4.2 Phase 1: Task Decomposition
Algorithm 1 lists the pseudo-code executed by all nodes

in this phase. Each node starts from loading one reference
and sample file into its main memory (line 1-2). Then for
the in-memory point set R and S, operations performed
on them are di↵erent. For R, the node calculates the list
of overlapping cells for each point based on the search ra-
dius (line 6). Then it continues to count the number of
points that fall into each cell based on CL (line 7). For S,

Algorithm 1: MASJ-CM Phase1(Rfile, Sfile, ✓)

Input: Rfile: Reference file
Input: Sfile: Sample file
Input: ✓: Search radius
Output: ResultList: List of matching pairs

1 R Rfile ;
2 S  Sfile ;
3 omp set nested(1) ;
4 #pragma omp parallel num threads(2)
5 if omp get thread id() == 0 then
6 GPU-ComputeCL(R, CL, ✓) ;
7 count(CL,NR) ;

8 else
9 #pragma omp parallel for

10 for i 0 to |S| do
11 sid getP ix(S[i]) ;
12 insert sid to S[i] ;
13 i i+ 1 ;

14 count(S,NS) ;

15 MPI Barrier() ;
16 MPI Gather(NR, |D|, ..., p0) ;
17 if MASTER NODE then
18 Task List decompose entire task based on NR

and NS ;

19 MPI Bcast(Task List, ..., p0) ;

the node calculates the indices for all points in parallel via
OpenMP (line 9-13) and then counts the number of sam-
ple points that fall into each cell (line 14). As seen in the
algorithm, operations performed on R and S are indepen-
dent. Furthermore, the most computation-intensive com-
ponent GPU-ComputeCL (kernel function ComputeCL) is
executed on the GPU. Therefore, operations performed on
R (line 6-7) and S (line 9-14) can be in parallel. To do
this, we first enable the openMP nested parallelism by call-
ing omp set nested() (line 3). Then, we parallelize these two
components by assigning two OpenMP threads to execute
them concurrently. After all nodes get the statistics NR and
NS , we designate a node p0 to gather the results from all the
others via MPI Gather() (line 15-16). Then the designated
node runs the task decomposition algorithm and broadcasts
the decomposition result Task List to all other nodes via
MPI Bcast().

Algorithm 2 lists the pseudo-code for computing the list
of overlapping cells for each reference point. We parallelize
this phase by invoking all available GPU cards concurrently
and assigning GPU threads for processing. We partition R
into chunks with each of them fit into the global memory
of a single GPU. By invoking CUDA API cudaGetDevice-
Count(), we get the number of GPUs that are available for
execution (line 1). After setting the number of CPU threads
as GPUnum via omp set num threads() (line 2) and choos-
ing a GPU device via cudaSetDevice() (line 5), all GPU
cards are invoked concurrently to execute the kernel com-
puteCL. In ComputeCL, each GPU thread processes multi-
ple reference points. For one point R[i], the thread invokes
function queryDisc to calculate the list of overlapping cells
CL[i] based on the distance threshold ✓. CL[i] takes the
form CL[i] = {D1, D2, ...Dn} where each of them specifies
the id of a cell that overlaps its query circle C(R[i],✓).

At the end of Phase 1, each node has the subset of the



Algorithm 2: GPU-ComputeCL(R, CL, ✓)

Input: R: Reference Point Set
Input: CL: List of Overlapping Cells
Input: ✓: Search Radius

1 GPUnum  cudaGetDeviceCount() ;
2 omp set num threads(GPUnum) ;
3 #pragma omp parallel
4 GPUid  omp get thread num() % GPUnum ;
5 cudaSetDevice(GPUid);
6 cudaDeviceReset() ;
7 for i 0 to |R|/(GPUnum * chunk size) do
8 Rd  (i+ GPUid⇤R

GPUnum
)-th chunk ;

9 invoke kernel ComputeCL(Rd, ✓, CL) ;

original reference and sample catalog in its main memory.
Furthermore, each sample point has its index, and each ref-
erence point has its overlapping cell list stored in CL[i].

4.3 Phase 2&3: Redistribution and Single-Join
Phase 2 is the communication phase in which the refer-

ence and sample point subset are redistributed to each node
according to Task List. Specifically, each node gathers all
reference and sample points whose spatial indices fall into
the range assigned to it. In the meantime, each node scatters
the data in its main memory to the corresponding destina-
tion nodes. After scattering and gathering are done, each
node starts to execute the computation phase (phase 3) to
perform an in-memory sort-merge join on its gathered ref-
erence and sample point sets.

For node pi (0  i < N), let S⇤ = [N�1
j=0 S⇤

j and R⇤ =

[N�1
j=0 R⇤

j denote the final gathered sample and reference point
sets whose spatial indices fall into the range assigned to it,
respectively. S⇤

j (or R⇤
j ) is the set gathered from node pj .

We can redistribute the sample point set as the spatial in-
dices are already added to the sample point tuples in phase 1.
Moreover, the total amount of data is not increased heav-
ily since for each tuple, we only add an integer to it. To
gather the sample point set, each node only needs to allo-
cate a bu↵er for S⇤ and gather the required data by invoking
MPI Recv() with di↵erent sources. To scatter the required
sample set, each node packs the sample points that fall into
the certain range and scatters them to the corresponding
destination node. We do this via an in-place sort opera-
tion on S by spatial index first and then send points to a
destination node by MPI Send().

We redistribute the reference point set, two bu↵ers for
R⇤ and Rma are required by each node. B⇤ is the bu↵er
for gathered points. Bma is the bu↵er for the storage of
multi-assigned R. Firstly, each node follows the first step
of MASJ algorithm to produce Rma. For each tuple p 2 R,
we make d(p) duplicates and for each tuple we insert the
corresponding spatial index sid into it.

The redistribution of reference point set and the single
join can be executed as a whole. We consider the following
three options.

Option 1 One-Time Redistribution and Single-Join
Each node allocates two bu↵ers, one for R⇤ and the other
for Rma, with enough space to gather and scatter the en-
tire data set. Then all nodes calculate R⇤ 1(sid,✓) S

⇤ in one
pass. This option works well when cross-matching two small
catalogs. When it comes to large catalogs, for example, self-

Algorithm 3: Single-Join(R, S, ✓, resultList)

Input: R: Reference Point Set
Input: S: Sample Point Set
Input: ✓: Search Radius
Output: resultList: List of matching pairs

1 run tbb:sort by key on R by sid;

2 chunk num |S|
chunk size ;

3 chunk id 0 ;
4 GPUnum  cudaGetDeviceCount() ;
5 omp set num threads(GPUnum) ;
6 #pragma omp parallel
7 GPUid  omp get thread num() % GPUnum ;
8 cudaSetDevice(GPUid) ;
9 cudaDeviceRest() ;

10 while chunk id < chunk num do
11 #pragma omp atomic
12 chunk id++ ;

13 Sd  Schunk id;
14 Rd  getMatching(R,Sd) ;
15 invoke kernel sort-merge(Sd, Rd, ✓, resultList) ;

matching a billion-record catalog SDSS, dozens of gigabytes
of memory are required. Under such situation, some mem-
ory space may be allocated as swap memory that incurs high
latency in network communication and memory access.

Option 2 Pipelined Redistribution and Single-Join
We pipeline the redistribution and single-join in iterations.

In one iteration, every two nodes exchange their data and
then join the entire set S⇤ with their partially gathered R⇤.
This way, the calculation of R⇤ 1(sid,✓) S

⇤ is converted into

[NM�1
i=0 R⇤

i 1(sid,✓) S
⇤. In one iteration, each node only needs

to allocate two small bu↵ers for gathering partial R⇤ and
scattering partial Rma, respectively. Compared with option
1, option 2 requires less memory space and suits for larger
catalogs.

Option 3 Overlapping Redistribution and Single-
Join

To reduce the communication overhead, we further opti-
mize option 2 to option 3. The main idea is to allocate extra
bu↵ers for overlapping the communication and computation.
Our experiments demonstrate that this option can cut the
total execution time of phase 2&3 nearly by half.

4.4 Single Join
The outline of single join is listed in Algorithm 3. The

basic idea to join two sets in parallel on multiple GPUs is to
perform the sort-merge join on a chunk of S and its matching
chunk in R concurrently. Suppose S is split into chunk num
chunks (chunk num = |S|/chunk size, chunk size is the
size of each chunk and S =

SQ
i=1 Si). Then, the spatial in-

dex sid of the first and the last tuples of each chunk Si are
used to identify the corresponding matching chunk Ri. Each
time, one GPU loads a chunk pair (one sample chunk Si and
its matching chunk Ri) into its device memory and invokes
the kernel program sort-merge to join this chunk pair (line
13-15). If this chunk pair is too large to be loaded simul-
taneously, the reference chunk is split into smaller ones and
loaded in multiple passes. After this chunk pair is merged,
the GPU continues to load a new chunk pair until all chunks
are merged. Note that the chunk id is a value shared by all
CPU threads. Once a GPU processes a new chunk pair, an



Listing 1: Driver program of MASJ-CM Spark Implementation

val sc = new SparkContext(conf)

/⇤ load reference and sample catalog, then preprocess them ⇤/
val refCatalog = sc.textFile(reference directory).map(x => x.split(" ")).map(x => (x(0).toDouble, x(1).toDouble))

val samCatalog = sc.textFile(sample directory).map(x => x.split(" ")).map(x => (x(0).toDouble, x(1).toDouble))

/⇤ multi�assign the reference point set ⇤/
val refSet = refCatalog.flatMap(x => healpix_func.multiAssign(x,radius))

/⇤ index the sample point set ⇤/
val samSet = samCatalog.map(x => (healpix_func.getPix(x._0,x._1),(x._0,x._1))

/⇤ cross�match two sets ⇤/
val matchedSet = refSet.join(samSet).filter(x => Geometry.matched(x._2._1, x._2._2,radius))

/⇤ save the result as text file ⇤/
matchedSet.saveAsTextFile("result.txt")

atomic add operation is performed on chunk id (line 11-12)
to make sure each GPU processes a unique chunk pair.

The implementation of the sort-merge kernel follows the
approach proposed by He et. al [15]. Specifically, each sam-
ple chunk is split into smaller ones, and each thread block
is responsible for one of the smaller chunks. Moreover, each
thread is responsible for one or more sample points. Then
the indices of the first and last tuples of each chunk are used
to identify the corresponding reference chunk. Then the ref-
erence chunk is loaded into the on-chip shared memory in
multiple passes for fast access. In one pass, each thread per-
forms an indexed nested-loop search or binary search to find
all matching reference points.

5. THE SPARK IMPLEMENTATION
We implemented the MASJ-CM algorithm as a map-reduce

program using Spark RDD APIs. The equivalent operations
of the three steps in MASJ-CM are flatMap, map, join fol-
lowed by filter, respectively. Listing 1 lists the code skeleton
of the driver program of the MASJ-CM Spark implementa-
tion. For readability purpose, the RDD APIs provided by
the Spark library are in bold. At the beginning, the driver
program creates a value sc, which is a SparkContext object
and represents a connection to a computing cluster. Then,
the driver program builds two RDDs, refCatalog and sam-
Catalog, by loading reference and sample catalogs through
sc. In the meantime, it converts each element in the RDDs as
an (ra, dec) coordinate pair using two map operations. Af-
ter the preprocessing step, the driver program multi-assigns
each reference point. Specifically, it passes a user-defined
function, healpix func.multiAssign, to the flatMap opera-
tion and transforms the refCatalog to a pair RDD where
each element takes the form (sid, (ra, dec)). Similarly, the
driver program indexes the sample point set by transforming
samCatalog with a map operation. Finally, the cross-match
is done by performing an inner join between two RDDs and
filtering the matched pairs with a filter operation on the
distance threshold.

Compared with parallelizing the MASJ-CM algorithm us-
ing MPI, OpenMP and CUDA on a CPU-GPU cluster, the
equivalent Spark implementation is quite concise. Further-
more, the MASJ-CM Spark program is able to run on var-
ious platforms, including Hadoop, EC2, Mesos, standalone
or in the cloud. As parallelizing and distributing collection
methods and datasets to multiple nodes can be done auto-
matically, Spark makes the parallelization e↵ortless to a cer-
tain extent and o↵ers fault-tolerance and scalability at the
same time. For example, the source code of our Spark and
MPI-CUDA based implementations is 498 and 2005 lines, re-

spectively. Furthermore, in the Spark implementation, 94%
of the source code are HEALPix related whereas this per-
centage is only 41.4% in the MPI-CUDA approach.

However, there are two shortcomings that greatly slow
down the Spark-based implementation’s performance. First,
the two key functions used in the driver program, getPix
and queryDisc, are implemented in Scala, which are less ef-
ficient than their equivalent C implementations. Second, the
Spark implementation does not utilize the GPU, which pro-
cesses most computation intensive tasks in the MASJ-CM
MPI-CUDA implementation. Overcoming these problems is
interesting future work.

6. EVALUATION
In this section, we first describe the experimental setup

and then present our experimental results.

6.1 Experimental Setup
We carried out our experiments on a heterogeneous clus-

ter maintained at our university. The entire cluster consists
of 22 nodes of which 16 are equipped with multiple GPUs.
Considering the purpose of our evaluation and available re-
sources, we employed a 7-machine cluster (Cluster-IB) and
6-machine cluster (Cluster-MASJ) to evaluate the IB-CM
and MASJ-CM algorithm, respectively. The di↵erence be-
tween Cluster-IB and Cluster-MASJ is that Cluster-IB has
a CPU-only node as the coordinating master node whereas
Cluster-MASJ contains no CPU-only node. All nodes, ex-
cept the CPU-ONLY node, are equipped with multi-core
CPUs and multiple GPUs. Furthermore, all GPUs are the
NVIDIA Tesla cards with compute capability 3.5 while the
device memory varies from card to card. Table 5 shows the
specifications of all nodes and the configuration of two clus-
ters used in our evaluation.

The operating system that ran on the entire system was
CentOS 6.5 (64-bit version). CUDA 6.5 was used to com-
pile all CUDA programs. The -O3 optimization option was
enabled in compilation. Intel MPI 5.0.3 library was used for
MPI execution. tbb parallel sort provided by the Intel(R)
Threading Building Blocks library [34] was invoked by the
CPU to perform all sort operations. gettimeofday() was in-
voked by the CPU to measure the elapsed time. Spark 1.6.0
was used in our Spark implementation.

We evaluated our implementation on three real-world datasets.
All of them are point source catalogs observed by optical
telescopes. The detailed description of each dataset is listed
in Table 3. 2MASS (short for Two Micron All Sky Sur-
vey) [37] and WISE (short for Wide-field Infrared Survey
Explorer) [7] are two million-record catalogs from scanning



Table 3: Data Sets

Data Set Description File Size # of Objects

2MASS
↵ 2 [0�, 360�]

7.02GB 470, 992, 970
� 2 [�89.9928�, 89.9901�]

WISE
↵ 2 [0�, 360�]

11.14GB 747, 634, 026
� 2 [�89.9946�, 89.9983�]

SDSS
↵ 2 [0�, 360�]

18.34GB 1, 231, 051, 050
� 2 [�17.7573�, 84.9799�]

Table 4: Comparison of Source Code Size in Two Implemen-
tations (Measured in lines)

Component MPI-CUDA Spark

Main/Driver program 1128 38

getPix 54 63

queryDisc 207 138

HEALPix Initialization 616 259

Total 2005 498

the entire sky. SDSS, which is short for Sloan Digital Sky
Survey, is a survey that covers more than one third of the
entire sky. The twelfth data release of SDSS [3] used in
our evaluation, a billion-record catalog, is one of the largest
astronomical catalogs that are publicly accessible.

Table 4 lists the details about source code size in two
implementations. The HEALPix related source code has
a percentage of 43.7% and 92.3% in the MPI-CUDA and
Spark implementation, respectively. Due to the lack of sup-
port to element collections in CUDA, such as queue and
stack, the HEALPix related source code in CUDA was al-
most twice the size of that in Spark. The portion of the
driver program, including loading data set, MPI communi-
cation, kernel invocation and calculation, was up to 56.3% in
the MPI-CUDA implementation. In comparison, in Spark
implementation, the driver program was 38 lines and the
portion 7.7%. Consequently, Spark greatly simplified the
implementation, especially when the indexing related APIs
were provided.

Table 6 lists an overview of the nine test cases designed
for our evaluation. Three of them (T1-T3) are self-matches
on the same catalog. The remainders (T4-T9) are cross-
matches on two di↵erent catalogs. The cases are described
in the form of “Reference catalog * Sample catalog” in all
figures. In all cases, the number of matching sample objects
for each reference object depends on the distance threshold.
The distance threshold was set to 0.0056�, a value suggested
by the astronomer. The resolution level of HEALPix parti-
tioning scheme was set to 13, the maximum supported res-
olution level with 32 bits. The average number of d(p), the
number of cells overlapping a query circle of radius 0.0056�,
was roughly 7.76 under resolution level 13. We ran each ex-
periment five times and report the best run. The variation
of all runs was low (< 7%). The estimated peak size of main
memory consumed during the execution of MASJ-CM MPI-
CUDA is also reported. All matching results were checked
by the astronomer to guarantee the correctness.

6.2 Performance Results
We show the overall performance in Table 6. First, the

MPI-CUDA implementation, MASJ-CM outperforms IB-CM
in all cases and achieves a speedup of 1.33 � 2.69. How-

ever, the equivalent MASJ-CM Spark implementation is 16.x
slower than the MPI-CUDA implementation. Second, when
cross-matching with a large catalog(T6-T9), taking the smaller
catalog as the reference catalog had a better performance in
both implementations.

To study the impact of the data volume, we extracted
small data sets from the SDSS with fixed number of objects
and executed self-matches on the extracted data sets. Fig-
ure 3 shows that the execution time increases linearly with
the increase of data volume in each catalog in the MPI-
CUDA implementation. The MASJ-CM spark performance
degraded when the number of objects was greater than 960
million.

Next, we continue to investigate the MASJ-CM’s time
performance in the MPI-CUDA implementation. As shown
in Figure 5, the time taken in phase 1 in each case was
24.28%� 35.53% and the merged phase 2&3 dominated the
performance in all cases. In three self-matches T1 to T3, the
overall execution time increases linearly with the increases
of data volume. When cross-matching two di↵erent cata-
logs, T4, T6 and T8, which took the smaller catalog as the
reference catalog, outperformed T5, T7 and T9, which took
the larger catalog as the reference, respectively.

Finally, we study the time breakdown of IB-CM in the
MPI-CUDA implementation in Figure 4 to understand the
performance advantage of MASJ-CM. The time cost of iter-
ation 1, in which the master node loaded the sample catalog
from hard disk, was 7.68%� 17.37%. The time taken in the
remaining iterations, in which the master node sent sample
catalog in the cluster multiple times, was 82.63% � 92.32%
and up to 2.42 times longer than the overall execution time
of MASJ-CM. Thus, eliminating sending sample catalog re-
peatedly can greatly improve the cross-match performance.

6.2.1 Phase 1 Performance
Having the performance overview, we next investigate the

performance of the first phase. Figure 6 show the elapsed
time of this phase. The I/O cost took 13.48% � 31.24% of
this phase and 4.23% � 8.0% of the overall execution pro-
cedure. Thus, loading large volumes of data did not signif-
icantly increase the total execution time. The index com-
putation, which processes the loaded reference and sample
catalogs concurrently, is the major time consumer of this
phase. Di↵erent from the I/O cost and index computation,
the time cost for task decomposition remained constant in
all cases since it only depends on the resolution level and
the number of nodes in the cluster. Furthermore, the group
(T4,T6,T8) that took the smaller catalog as the reference
catalog achieved a better performance than their equiva-
lents that used the larger catalog as the reference in this
phase, mainly because of the less execution time of the step
GPU-ComputeCL.

6.2.2 Phase 2&3 Performance
After investigating the performance of phase 1, we next

evaluate the performance of phases 2&3.
Redistributing and sorting sample point set Phase

2&3 starts from redistributing the sample point set in the
entire cluster. Then each node performs a sort operation
on its sample point set for the following sort-merge join.
Figure 7 shows the time cost for redistributing and sorting
sample point set. In self-matches (T1-T3), the time cost
increased with the increasing volume of sample point set.



Table 5: Multi-GPU Cluster Configuration

Node Name Configuration Processor Name Clock (Hz) # of Cores Cache/Shared Memory Main/Device Memory

CPU-ONLY 4 * CPU Intel E5-2650 v3 2.30G 4 * 10 640KB(L1) 2.5MB(L2) 25MB(L3) 64GB

2⇥K20
2 * CPU Intel E5-2650 v2 2.20G 2 * 10 512KB(L1) 2MB(L2) 20MB(L3) 64GB

2 * GPU Tesla K20 706M 2 * 2496 48KB 2 * 5GB

2⇥K20x
2 * CPU Intel E5-2650 v2 2.20G 2 * 10 512KB(L1) 2MB(L2) 20MB(L3) 64GB

2 * GPU Tesla K20x 732M 2 * 2688 48KB 2 * 6GB

2⇥K40
2 * CPU Intel E5-2650 v2 2.20G 2 * 10 512KB(L1) 2MB(L2) 20MB(L3) 64GB

2 * GPU Tesla K40 745M 2 * 2880 48KB 2 * 12GB

Cluster Name Node Connection

Cluster-IB Master: CPU-ONLY, Worker Nodes: Three 2⇥K20 nodes, two 2⇥K20x nodes, one 2⇥K40 node
4⇥QDR InfiniBand 40Gbit/s

Cluster-MASJ Three 2⇥K20 nodes, two 2⇥K20x nodes, one 2⇥K40 node

Table 6: Cross-Match Overall Performance
(Time in minutes, memory in gigabytes)

Test Reference Sample Average Matched IB-CM MPI-CUDA MASJ-CM MPI-CUDA MASJ-CM Spark

Case Catalog Catalog
Points (For Each

Execution Time Execution Time
Estimated Peak Memory

Execution Time
Reference Point) Consumption Per Node

T1 2MASS 2MASS 5.07 1.9 1.62 11.4 16.94

T2 WISE WISE 2.51 4.4 2.53 18.1 32.52

T3 SDSS SDSS 30.21 12.8 4.77 29.81 80.99

T4 2MASS WISE 2.46 2.96 1.95 12.44 18.75

T5 WISE 2MASS 1.55 3.22 2.27 17.07 30.14

T6 2MASS SDSS 1.93 5.83 2.88 14.24 47.52

T7 SDSS 2MASS 0.86 4.82 4.07 26.98 68.38

T8 WISE SDSS 4.95 8.1 3.82 19.90 64.83

T9 SDSS WISE 1.94 6.2 4.67 28.91 78.41
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Figure 3: Performance with di↵erent number of objects
in each catalog (in million).
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Figure 4: Time breakdown in IB-CM MPI-CUDA.

Cross-matches that took the larger catalog as the sample
(T4, T6, T8) cost a few seconds more than the opposite
cases (T5, T7, T9).

Redistributing reference point set and single join
We now examine the performance of these last two steps.
Figure 8 shows the overall speedups of our optimization
strategies. The comparison of option 1 and 2 shows that
pipelining the communication and computation achieved 0.96x-
1.34x speedups. Then the comparison of option 2 and 3
shows that the overlapping strategy brings 1.24x-1.75x speedups.
Consequently, option 3 results in the least execution time in
all test cases.

7. CONCLUSION

We presented a multi-assignment single-join cross-match
algorithm and its parallelization on heterogeneous clusters
for cross-matching billion-object astronomical catalogs. The
MASJ-CM outperformed our previous work IB-CM in match-
ing speed but required both catalogs to fit into the aggre-
gated memory of the cluster and the multi-assigned reference
point set of each node to fit into the main memory of the
node. Fortunately, due to the characteristics of astronom-
ical data and the indexing scheme, these memory require-
ments are readily satisfied on current clusters. Our results
shown that, the MPI-CUDA implementation of MASJ-CM
achieved a speedup of 2.69 times over IB-CM when self-
matching SDSS on a six-node CPU-GPU cluster. Further-
more, self-matching a billion-record catalog completed under
5 minutes with the MASJ-CM on the six-node cluster. To
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Figure 5: Time breakdown in MASJ-CM MPI-CUDA.
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Figure 6: Phase 1 time breakdown in MASJ-CM MPI-CUDA.

 0

 2

 4

 6

 8

 10

 12

 14

T1 (2M
ASS * 2M

ASS)

T2 (W
ISE * W

ISE)

T3 (SDSS * SDSS)

T4 (2M
ASS * W

ISE)

T5 (W
ISE * 2M

ASS)

T6 (2M
ASS * SDSS)

T7 (SDSS * 2M
ASS)

T8 (W
ISE * SDSS)

T9 (SDSS * W
ISE)

E
x
ec

u
ti

o
n
 T

im
e 

(S
ec

o
n
d
s)

Test Case

Communication Cost
Sort

Figure 7: Time cost for sample catalog in phase 2 in MASJ-
CM MPI-CUDA.
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Figure 8: Comparison of three options in phase 2&3 in MASJ-
CM MPI-CUDA.

our best knowledge, this work is the first in the literature to
achieve such performance for such billion-record workloads.
Additionally, the Spark-based implementation of MASJ-CM
was less e�cient than the MPI-CUDA implementation, but
it greatly simplified the programming and reduced the code
size by 75%.
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