
Slicing*-Tree Based Web Page Transformation for Small
Displays

Xiangye Xiao, Qiong Luo, Dan Hong, Hongbo Fu
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong

{xiaoxy, luo, csdhong, fuhb}@cs.ust.hk

ABSTRACT
We propose a new Web page transformation method for
browsing on mobile devices with small displays. In our ap-
proach, an original web page that does not fit into the screen
is transformed into a set of pages, each of which fits into
the screen. This transformation is done through slicing the
original page. The resulting set of transformed pages form
a multi-level tree structure, called a slicing*-tree, in which
an internal node consists of a thumbnail image with hyper-
links and a leaf node is a block from the original web page.
Our slicing*-tree based Web page transformation eases Web
browsing on small displays by providing screen-fitting visual
context and reducing page scrolling effort.

Categories and Subject Descriptors: H.4.3 [Informa-
tion Systems Applications]: Communications Applications–
Information Browsers; H.5.4 [Information Interfaces and Pre-
sentation]: Hypertext/Hypermedia–Navigation;

General Terms: Design, Algorithms, Human Factors.

Keywords: Web browsing, small displays, proxy, thumb-
nails, Web page adaptation, slicing tree, VIPS algorithm.

1. INTRODUCTION
The majority of current Web sites are designed for desk-

top displays, and only a handful of browsers on PDAs (e.g.,
PalmScape, ProxiNet, HandWeb, and Power Browser [1])
support limited Web page adaptation for small displays. As
a result, PDA users have to scroll constantly when viewing a
Web page on a palm-sized screen. In this paper, we explore
a new approach to automatic page transformation for small
displays to remove two-dimensional scrolling.

Our approach is based on the following key observation:
PDA users draw heavily on their browsing experience on
desktops when browsing on PDAs. In particular, page lay-
out and visual context information are crucial for users to
identify their interests in a page. Therefore, for an original
Web page that does not fit the screen, our transformation
method first displays its thumbnail image with multiple em-
bedded hyperlinks (Figure 1 (a)). When a part of the page
is pen-tapped, its corresponding screen-fitting sub-page is
then displayed, and this tap-and-display process may con-
tinue a few more times until the target of interest is found
(Figures 1 (b)-(d)). During the entire browsing process, the

Copyright is held by the author/owner.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
ACM 1-59593-140-6/05/0010.

Figure 1: Displaying transformed pages on a PDA.

Figure 2: Page transformation proxy architecture.

original page layout and context information is preserved
and scrolling is seldom needed.

Figure 2 illustrates the architecture of our page transfor-
mation proxy server. When a PDA sends a request to a Web
site through our proxy, the proxy forwards the request and
transforms the received Web page into a tree hierarchy of
thumbnail index pages as internal nodes and leaf sub-pages
as leaf nodes. It returns the root index page to the PDA
for display and stores the other sub-pages locally. When the
user selects a region in the index page, it then serves the
user the corresponding sub-page that has been stored.

The page transformation system at the proxy consists of
four modules: page splitting, and the generation of thumb-
nail images, index pages, and leaf pages. The page splitting
module builds the tree organization of the set of transformed
pages with several factors considered, including the size of
the screen, the size of each page block, the number of blocks
in each transformed page, as well as the semantic coherence
between blocks. We adopt a variation of the binary slicing
tree [3], which we call a slicing*-tree, to represent the orga-
nization of the set of transformed pages. Each internal node
in the tree is a thumbnail of the original Web page (the root)
or that of an intermediate sub-page, and each leaf node is
a leaf page (a sufficiently small block in the original Web
page).



2. SLICING*-TREE FOR A WEB PAGE
In this section, we present our slicing*-tree based page

transformation, in particular, the slicing*-tree construction.
A slicing floorplan is a decomposition of a rectangle with

horizontal and vertical cuts. It can be represented as a bi-
nary tree, called a binary slicing tree. An internal node in
the slicing tree represents a cut, either in the horizontal di-
mension or in the vertical dimension. A leaf node in the tree
represents an atomic rectangle that has no cut through.

In comparison with the binary slicing tree, our slicing*-
tree does not require each internal node to have exactly two
children. Instead, it requires each internal node has at least
two children and has no more than a specific number of
children, which we denote as the threshold T . We add this
threshold based on the observation that it is easy for users to
identify in a region the sub-region of interest as long as there
are only a few, not necessarily two, sub-regions present.

As a Web page typically consists of box-shaped sections,
we can naturally use a slicing*-tree to represent a Web page
decomposition scheme. A slicing*-tree represents the trans-
formation of a Web page as follows: (1) each leaf node repre-
sents a leaf page transformed directly from a section in the
original page. The leaf page fits into the screen; (2) each
internal node represents a thumbnail image page of a large
section of the original page. This thumbnail image fits into
the screen. Furthermore, for each child node, there is an em-
bedded hyperlink pointing to its corresponding sub-section
in the thumbnail image of the parent node.

The construction of slicing*-tree representation of a Web
page goes through three steps in sequence: VIPS tree con-
struction, leaf extraction, and internal node adaptation.

The VIsion-based Page Segmentation (VIPS) [2] algorithm
extracts the semantic tree structure of a web page based on
its visual presentation. Each node corresponds to a box-
shaped section (i.e., a block). The VIPS tree of a Web page
has most of the properties of a slicing*-tree except that (1)
a leaf page may be too small or too large with respect to the
screen size, and that (2) the number of children of an internal
node may be larger than the threshold. Thus, the problem
of slicing*-tree construction becomes to first generate the
VIPS tree and then to transform it into the slicing*-tree by
addressing these two differences.

To be conservative about the leaf page size, we generate
the VIPS tree so that its leaf pages are as small as possible.
After the VIPS tree with small leaf pages is constructed, we
go through the leaf extraction step to make each leaf block
as large as possible within the screen size limit. This is
done by merging small-sized neighboring sibling nodes in the
tree. We traverse the VIPS tree through Depth-First Search
(DFS). For each internal node, if its size is smaller than the
screen size, we remove all of its children because there is no
need to further decompose it. Otherwise, we examine its
children and see if these children can be re-partitioned to
decrease the number of children and to increase the size of
each new child node within the screen size limit.

The following step, internal node adaptation, adjusts the
tree to satisfy fanout requirement and to reduce the height
of the tree as much as possible. It is done through a DFS
traversal on the tree. If a node has more than T children, the
algorithm combines some children by adding more levels of
internal nodes between the node and these children so that it
has exactly T children. If a node has fewer than T children,
the algorithm attempts to increase its degree up to T .

Our slicing*-tree based transformation achieves a balance
between two extremes in the previous work. One extreme,
the binary slicing tree organization, generates a deep hierar-
chy of transformed pages consisting of two sub-pages only.
With this organization, users need to pen-tap many times to
navigate down to the target sub-pages. The other extreme
uses a two-level hierarchy, with the top level page consisting
of the hyperlinks to all of the bottom level sub-pages. Its
downside is that there may be too many sections in the top
level page so that it is hard for users to choose from.

3. EXPERIMENTAL EVALUATION
We have conducted initial experiments using an HP iPAQ

hx4700 PDA. We asked users to perform ten tasks, including
focused search tasks and reading tasks, on PDAs with and
without the page transformation proxy, and compared the
task completion time, bandwidth consumption, and input
effort. Our system achieved a shorter task completion time
in all of the ten tasks, with 47% improvement on the focused
search tasks and 22.7% improvement on the reading tasks.
In nine out of the ten tasks, it reduced the input effort and
achieved a smaller number of pen moves. The improvement
was 50% for the focused search tasks and 28.4% for the
reading tasks. It saved bandwidth consumption in seven
out of the ten tasks, and the average saving was 18.9%.

To study the performance of our system in more detail,
we further divide the task completion time into three parts:
user interaction time on the client device, processing time
at the proxy, and data transmission time on the network.
Our results indicate that the processing time spent on page
transformation at the proxy was only a small portion (less
than 10%) of the overall task completion time. In addition,
we see that page transformation time drops as T increases.
The improvement slows down as T becomes even larger.
The total size of the transformed pages is usually a few times
larger than that of the original page. However, because only
the pages chosen by the user will be transferred to the client
device, our system still reduced bandwidth consumption.

4. CONCLUSION
We have proposed a slicing*-tree based page transforma-

tion method for improving Web browsing on small terminals.
In our approach, a Web page is transformed into a set of
thumbnail index pages and leaf pages that form a multi-level
tree structure with bounded node degree. We have demon-
strated by experiments that our approach significantly eases
Web browsing on PDAs. An extended version of this paper
is available as a technical report [4].

5. REFERENCES
[1] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, and

T. Winograd. Power browser: efficient web browsing for pdas. In
CHI ’00: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 430–437, 2000.

[2] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Vips: a vision-based
page segmentation algorithm. Technical Report
MSR-TR-2003-79, Microsoft, 2003.

[3] M. Lai and D. Wong. Slicing tree is a complete floorplan
representation. In DATE ’01: Proceedings of the conference on
Design, automation and test in Europe, pages 228–232,
Piscataway, NJ, USA, 2001. IEEE Press.

[4] X. Xiao, Q. Luo, D. Hong, and H. Fu. Slicing*-tree based web
page transformation for small displays. Technical Report
HKUST-CS05-13, August 2005.


