
Tree Indexing on Flash Disks

Yinan Li, Bingsheng He†, Qiong Luo, and Ke Yi

Hong Kong University of Science and Technology
{yinanli,saven,luo,yike}@cse.ust.hk

Abstract— Large flash disks have become an attractive al-
ternative to magnetic hard disks, due to their high random
read performance, low energy consumption and other features.
However, writes, especially random writes, on the flash disk are
inherently much slower than reads because of the erase-before-
write mechanism. To address this asymmetry of read-write speeds
in indexing on the flash disk, we propose the FD-tree, a tree index
designed with the logarithmic method and fractional cascading
techniques. With the logarithmic method, an FD-tree consists of
the head tree – a small B+-tree on the top, and a few levels
of sorted runs of increasing sizes at the bottom. This design is
write-optimized for the flash disk; in particular, an index search
will potentially go through more levels or visit more nodes, but
random writes are limited to the head tree, and are subsequently
transformed into sequential ones through merging into the lower
runs. With the fractional cascading technique, we store pointers,
called fences, in lower level runs to speed up the search. We
evaluate the FD-tree in comparison with representative B+-tree
variants under a variety of workloads. Our results show that the
FD-tree has a similar search performance to the standard B+-
tree, and a similar update performance to the write-optimized
B+-tree variant. As a result, FD-tree outperforms all these B+-tree
index variants on both update- and search-intensive workloads.

I. INTRODUCTION

The flash disk, or flash Solid State Drive (SSD), has

emerged as a viable alternative to the magnetic hard disk for

non-volatile storage. The advantages of the flash disk include

high random read performance, low power consumption and

excellent shock resistance. Moreover, the capacity of the flash

disk doubles every year. Flash disks have been considered

recently as a new storage device that can replace magnetic

disk and achieve a much higher performance for enterprise

database servers [1], [2], [3]. Since tree indexes are a primary

access method in databases, we study how to adapt them to

the flash disk exploiting the hardware features for efficiency.

The flash disk is a type of electrically-erasable pro-

grammable read-only memory (EEPROM). Unlike magnetic

disks where seek and rotational delays are the dominant cost

of reading or writing a page, the flash disk has no mechanic

movement overhead. As a result, random reads of a flash disk

are up to two orders of magnitude faster than a magnetic disk

[4]. However, due to the erase-before-write mechanism of the

flash disk, each write operation may require erasing a large

block, called the erase block. This mechanism makes random

writes almost two orders of magnitude slower than both the

random read and the sequential access patterns. As shown in

Table I, our Samsung 32GB flash disk provides 3100 IO/sec

for random reads, but only 25 IO/sec for random writes. While

† Bingsheng He is currently with Microsoft Research at Asia.

high-end flash disks with a better random write performance

have recently been announced, such as the Intel Extreme series

SSD [5], their random writes are an order of magnitude slower

than random reads.
TABLE I

PERFORMANCE COMPARISON OF RANDOM ACCESS PATTERNS (IO/SEC)

Samsung Intel Extreme Segate 7200RPM
32GB SSD 32/64GB SSD SATA Magnetic Disk

Random Read 3100 35000 100
Random Write 25 3300 110

Given the asymmetry of the read and write speeds of

the flash disk, write-optimized indexes [6], [7], [8], [9],

traditionally optimized for magnetic disks, become a possible

alternative for flash-based tree indexing. Especially, the log-

structured merge tree (LSM-tree) [6] and its variant [7],

proposed for append-only or write-dominant environments,

consists of multiple B+-trees and is optimized for the write

access patterns: a new entry is firstly inserted into the smallest

one and gradually migrated to larger ones. However, a search

on these log-structured indexes requires searching multiple

B+-tree components. This can degrade the search performance

significantly.

To optimize the update performance by reducing small ran-

dom writes while preserving the search efficiency, we propose

the FD-tree, a tree index that is aware of the hardware features

of the flash disk. Specifically, we adopt the logarithmic method
[10] and the fractional cascading [11] technique to FD-tree for

efficient update and search performance, respectively.

The FD-tree is a logarithmic data structure for reducing the

amortized cost of the update. It consists of a small B+-tree,

called the head tree, on top of a few levels of sorted runs of

increasing sizes. In an FD-tree, updates are only applied to

the head tree, and then merged to the lower level sorted runs

in batches. Since the head tree is likely to fit into the main

memory, most random writes to the flash disk are transformed

into sequential ones through the merge. The idea of adopting

the logarithmic method is similar to the LSM-tree [6]. The

difference is that the FD-tree consists of sorted runs instead

of tree components, which allows us to improve the search

performance using the fractional cascading.

Fractional cascading was originally proposed to speed up

binary searches on multiple sequences of sorted data [11]. We

adapt this technique to flash disks to speed up the search on

FD-tree. Specifically, we store fences, or pointers to pages in

a lower level of sorted run into the immediate higher level.

With these fences, a search on an FD-tree is first performed

on the small tree, and next on the sorted runs level by level

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.226

1303

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.226

1303

5853402420

302525232218161588764431 15141111111098 4140404038353331 5453484746454342 9391897670636055

1 2 7 8 11 16 18 19 30 46 47 48 48 53 60 93

a

1 16 40 41 53 58 93

40 93

h

gfed

cb

i j k l m n o

Head Tree L0

Level L1

Leaf Level L2

Page

Index Entry

Fence

(a) The overview of the example FD-tree

53 53

a

41 53 58 93

40 93

f

c

n

46 47 48 48

55 6047 48 53 54

(b) Searching key = 48

Fig. 1. An example FD-tree

with the fences guiding the position to start in the sorted run

of the next level.

In the following, we describe our FD-tree designed and

empirically evaluate its efficiency in comparison with three

other existing indexes on flash disks.

II. FD-TREE

In this section, we present the design of FD-tree. Our goal

is to minimize the number of small random writes, while

maintaining a high search efficiency.

A. Index Structure

An FD-tree consists of multiple levels denoted as L0 ∼
Ll−1. The top level, L0, is a small B+-tree called the head
tree. Each of the other levels, Li(1 ≤ i < l), is a sorted run

stored in contiguous pages. Figure 1(a) illustrates the structure

of an FD-tree. The FD-tree has three levels, the head tree and

two sorted runs. The head tree is a two-level B+-tree. With

the fractional cascading technique, the leaf nodes of the head

tree have pointers to the sorted run, L1. Each non-leaf level

in turn has pointers to the sorted run of the immediate lower

level.

Each level of FD-tree has a capacity. Following the loga-

rithmic method, we set the levels with a stepped capacity, i.e.,

‖Li+1‖ = k · ‖Li‖ (0 ≤ i ≤ l− 2), where k is the logarithmic

size ratio between Li+1 and Li. Therefore, ‖Li‖ = ki · ‖L0‖.

The updates are initially performed on the head tree, and

then are gradually migrated to the sorted runs at the lower

levels in batches when the capacity of a level is exceeded.

The maximum size of the head tree, ‖L0‖ is far smaller than

the available amount of main memory, so that it is likely to

reside in the main memory. Specifically, we set ‖L0‖ to the

erase block size of flash disk so that the head tree fits into one

erase block.

We categorize the entries in an FD-tree into two kinds, index

entry and fence.

• Index Entry. An index entry contains three fields: an index

key, key, a record ID, rid, of the indexed data record,

and type indicating its role in the logarithmic deletion of

FD-tree.

• Fence. A fence is an entry with three fields: a key value,

key, a type, and a pid, the id of the page in the immediate

lower level that a search will go next. Essentially, a fence

is a pointer, whose key is selected from a index entry

in the index. Depending on whether the key value of

the fence in Li is selected from Li or Li+1, we further

categorize fences in Li into two kinds, internal fences

and external fences.

– External fence (type = External). The key value

of an external fence in Li is selected from Li+1. We

create a fence for each page of Li+1. For page P
in Li+1, we select the key of the last entry in P to

be the key of the fence, and set the pid field of the

fence to be the id of P .

– Internal fence (type = Internal). The key value

of an internal fence is selected from Li. We add

internal fences to handle data skews. If the index

entries between two consecutive external fences, Fj

and Fj+1, span multiple pages (denoted as P0, P1,

..., Pp, p is the number of spanned pages), we add

an internal fence to page Pi (0 ≤ i < p) as the last

entry of the page. The key value of the internal fence

at Pi is set to be the key of the last index entry in

Pi. The pid field of the internal fence is set to be the

same as that of Fj+1. For example, in Figure 1(a),

entry 53 in page f is an internal fence that points to

page n. With this fence, we can avoid fetching page

g when searching keys between 47 and 53.

In each level of FD-tree, the fences and index entries are

organized in the ascending order of their keys. With the same

key, the external fences follow the index entries. By design, the

number of the external fences in Li is the number of pages in

Li+1, |Li+1|/f , where f is the number of entries in a page.

The number of the internal fences in Li is a maximum of

|Li|/f , because each page contains at most one internal fence.

Then, the total number of fences in Li, (|Li| + |Li+1|)/f , is

less than the number of entries in Li, i.e., k < f − 1.

B. Search

An index search on the FD-tree requires searching each level

from top down. A query can be either a point search with an

equality predicate (an exact match), or a range search with a

range predicate. Since the algorithm for the point search is

similar to that for the range search except the difference in

evaluating entries with predicates, we focus on the algorithm

13041304

for the point search.

To search an entry, we first perform a lookup on the head

tree, the same as that on the traditional B+-tree. Next, we

perform a search on each level following the pid of the fence.

Within a page in Li, a binary search is performed to find the

first matching entry, if any. We then scan the sorted run from

the first matching entry to find all matching entries. Next, we

continue the scan until we find the fence whose key value is

equal to or larger than the search key. All matching entries

are added to the result set. Since each page has at least one

fence, the scan is performed only on the pages having matches.

After finishing at level Li, following the pid of the fence, we

go down to the next level Li+1.

Figure 1(b) illustrates searching 48 on the example FD-

tree in Figure 1(a). At each level, it searches a page until it

encounters a fence and follows the fence to search the page

in the next level of sorted run.

The search performance of the FD-tree is not necessarily

worse than the B+-tree. Although an FD-tree may be higher

than a B+-tree with the same size because the fanout of FD-

tree is less than that of B+-tree with the same page size, i.e.,

k < f−1, two features in the design of the FD-tree inherently

benefits the index search performance. First, the pages in the

FD-tree are full of entries, and the entries in the levels of the

FD-tree except of L0 are stored contiguously. Note, the nodes

in the B+-tree are not full, typically with a utilization of 70%

[12]. Second, FD-tree does not have the aging problem [13]

like the B+-tree, where the locality of leaf nodes degrades after

a large number of updates.

C. Insert and Merge

To insert an entry, the new entry is inserted into the head tree

L0 first. If the number of entries in the head tree L0 exceeds

its capacity |L0|, a merge operation is performed between L0

and L1 to migrate all entries in L0 to L1.

The merge process is performed on two adjacent levels

when the smaller one of the two exceeds its capacity. The

merge operation sequentially scans the two inputs in the order

of key values, and combines them into one sorted run in

contiguous pages. A newly generated Li consists of all index

entries from Li−1, all index entries and external fences from

Li. The new internal fences of Li are constructed during

the merge when necessary. At the same time, the new levels

Lj(0 ≤ j < i) are rebuilt with the external fences constructed

from the newly generated Li. That is, given two adjacent

levels, Li−1 and Li, the merge process generates i + 1 new

sorted runs to update all levels from L0 to Li. If new Li

exceeds its capacity, Li and Li+1 are merged. This process

continues until the larger one of the two newly generated levels

does not exceed the capacity.

D. Delete and Update

Deletion of an entry in the FD-tree is performed by inserting

a special entry called a filter entry. The existing then becomes

a phantom entry, and is left untouched. Specifically, we first

perform a search on the FD-tree using the predicate of the

deletion. This search identifies the set of index entries to be

deleted. New entries (filter entries) with the same key and

pointer value as these entries are inserted into the FD-tree. The

reason for inserting new entries instead of marking existing

entries invalid is to avoid the small random write of marking.
Since deletions insert filter entries and make old entries

become phantom entries, a subsequent search may get a result

set containing both types of entries. Therefore, we need to

remove filter entries and phantom entries of the same key and

pointer value from the result set in a search. As the merge

process occurs, both filter entries and phantom entries are

migrated to the lower levels. When they encounter each other

at the same level, they will be skipped and not appear in the

newly merged run. Thus, the phantom and their filter entries

are eventually deleted.
Figure 2 illustrates an example of the deletion process. We

mark the filter entries with a solid underline, and their phantom

entries with a dashed underline. In Figure 2(a), we delete the

index entries 37 in L0, 45 in L2 and the second 16 in L2.

Here, we use the key to represent the index entry. Since entry

37 is in the head tree L0, it is deleted from L0 directly. The

filter entries 45 and 16 are inserted into the head tree. When a

merge is performed on L0 and L1 as shown in Figure 2(b), the

filter entry 45 encounters its phantom entry, and both entries

are discarded. When a merge is performed on L1 and L2, as

shown in Figure 2(c), the filter entry 16 and its corresponding

phantom entry are discarded. Note, the first index entry 16

remains in the index after the merge.
In the FD-tree, an update operation is implemented as a

deletion on the old value and a following insertion with the

new value.

16

37

16

45

16 45

16

16

1616

45

16 16

Delete
37, 46, 16L0 :

L1 :

L2 :

(a) (b) (c)

Fig. 2. An example of the logarithmic deletion process

E. Discussion
We compare the costs of FD-tree with the representative B+-

tree variants including the standard B+-tree, the LSM-tree [6],

and BFTL [14], a B+-tree variant solely designed for the flash

memory used in embedded systems. The search cost of the FD-

tree is close to that of the B+-tree, which is known to have

the optimal search cost among all secondary storage index

structures. At the same time, the FD-tree supports updates

as efficiently as the LSM-tree. In some sense, the FD-tree

captures the best of both worlds.

III. EXPERIMENTAL RESULTS

In this section, we empirically evaluate FD-tree in compar-

ison with the standard B+-tree, LSM-tree [6] and BFTL [14].
We ran our experiments on a PC powered by Intel QuadCore

CPU 2.4GHz on Windows XP with 2GB main memory, and

a 32GB Samsung NAND flash disk.

13051305

(a) Search performance vs. index size (b) Insertion performance vs. index size (c) Overall performance of two workloads

Fig. 3. Comparison of the four indexes

The entries in the indexes contain a 4-byte integer key
and another 4-byte field shared by type and pointer. The

key values are uniformly distributed. The page size is set to

2KB, which is the physical page size of the flash disk. In our

experiments, we set f = k/2 for simplicity. Further tuning on

k could be done to achieve the optimal overall performance

by balancing read/write performance. An LRU buffer manager

is implemented for caching recently accessed disk pages. The

size of buffer pool is set to 8MB. We disabled the buffering

functionality of the operating system to avoid the interference.

Figure 3(a) shows the search performance of the four

indexes with the index size varied. Among the four indexes,

BFTL is the slowest, because it requires fetching multiple

pages randomly in accessing a tree node. B+-tree and FD-tree

are the best, and they perform quite similarly regardless of

the index size. FD-tree is slightly faster than B+-tree, because

the pages in the sorted runs are entirely full and are stored

consecutively. LSM-tree is slower than B+-tree and FD-tree,

because a single search on LSM-tree requires searching on

multiple B+-tree components.

Figure 3(b) demonstrates the insertion performance of the

four indexes with the index size varied. Among the four

indexes, the B+-tree has the worst insertion performance, and

LSM-tree is the best. The insertion performance of FD-tree

is slightly slower than LSM-tree. This is because FD-tree

has more auxiliary entries such as the fences than LSM-

tree. Nevertheless, both LSM-tree and FD-tree are orders of

magnitude faster than the B+-tree and BFTL, due to their

logarithmic structure design. Since BFTL delays and clusters

the updates on the same page, it outperforms the B+-tree.

Figure 3(c) shows the overall performance of the four in-

dexes for the W-Search and W-Update workloads on the flash

disk. All these four indexes contain 109 entries. Their sizes are

approximately 8GB. The y-axis is the average elapsed time per

request of the workload. We define W-Search as a workload

consisting of 80% searches, 10% insertions, 5% deletions and

5% updates to simulate a workload dominated by writes.

We use a workload of 20% searches, 40% insertions, 20%

deletions and 20% updates to simulate a workload dominated

by reads, denoted as W-Update. These two workloads are

representatives of the read/write-intensity of commercial work-

loads. For W-Search on the flash disk, FD-tree is 15.8X, 2.3X,

5.2X faster than B+-tree, LSM-tree and BFTL, respectively.

For W-Update on the flash disk, FD-tree is 61.4X, 1.7X, 4.9X

faster than B+-tree, LSM-tree and BFTL, respectively.

IV. CONCLUSIONS

In this paper, we identify that the B+-tree indexes designed

for the hard disk are unsuitable for the flash disk, and

propose a flash disk aware tree index, FD-tree. We design our

tree index with the logarithmic and the fractional cascading

techniques to improve its overall performance. Our tree index

takes advantage of hardware features of the flash disk by

utilizing efficient random reads and sequential accesses, and

eliminating the slow random writes. Both of our analytical

and empirical results show that FD-tree captures the best of

both search and insertion performance among existing tree

indexes, and outperforms these indexes for both search- and

update-intensive workloads.

REFERENCES

[1] J. Gray and B. Fitzgerald, “Flash disk opportunity for server applica-
tions,” ACM Queue, vol. 6, no. 4, pp. 18–23, 2008.

[2] S.-W. Lee and B. Moon, “Design of flash-based dbms: an in-page
logging approach,” in SIGMOD Conference, 2007, pp. 55–66.

[3] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A case
for flash memory ssd in enterprise database applications,” in SIGMOD
Conference, 2008, pp. 1075–1086.

[4] E. Gal and S. Toledo, “Algorithms and data structures for flash memo-
ries,” ACM Comput. Surv., vol. 37, no. 2, pp. 138–163, 2005.

[5] Intel X25-E SATA Solid State Drive Datasheet. Intel Corp., 2008.
[6] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-

structured merge-tree (lsm-tree),” Acta Inf., vol. 33, no. 4, pp. 351–385,
1996.

[7] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and R. Kan-
neganti, “Incremental organization for data recording and warehousing,”
in VLDB, 1997, pp. 16–25.

[8] C. Jermaine, A. Datta, and E. Omiecinski, “A novel index supporting
high volume data warehouse insertion,” in VLDB, 1999, pp. 235–246.

[9] G. Graefe, “Write-optimized b-trees,” in VLDB, 2004, pp. 672–683.
[10] J. L. Bentley, “Decomposable searching problems,” Inf. Process. Lett.,

vol. 8, no. 5, pp. 244–251, 1979.
[11] B. Chazelle and L. J. Guibas, “Fractional cascading: I. a data structuring

technique,” Algorithmica, vol. 1, no. 2, pp. 133–162, 1986.
[12] D. Comer, “The ubiquitous b-tree,” ACM Comput. Surv., vol. 11, no. 2,

pp. 121–137, 1979.
[13] N. Ponnekanti and H. Kodavalla, “Online index rebuild,” in SIGMOD

Conference, 2000, pp. 529–538.
[14] C.-H. Wu, T.-W. Kuo, and L. P. Chang, “An efficient b-tree layer

implementation for flash-memory storage systems,” in RTCSA, 2003,
pp. 409–430.

13061306

