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ABSTRACT

Frequent elements and top-k queries constitute an im-
portant class of queries for data stream analysis appli-
cations. Certain applications require answers for both
frequent elements and top-k queries on the same stream.
In addition, the ever increasing data rates call for pro-
viding fast answers to the queries, and researchers have
been looking towards exploiting specialized hardware for
this purpose. Content Addressable Memory(CAM) pro-
vides an efficient way of looking up elements and hence
are well suited for the class of algorithms that involve
lookups. In this paper, we present a fast and efficient
CAM conscious integrated solution for answering both
frequent elements and top-k queries on the same stream.
We call our scheme CAM conscious Space Saving with
Stream Summary (CSSwSS), and it can efficiently an-
swer continuous queries. We provide an implementa-
tion of the proposed scheme using commodity CAM
chips, and the experimental evaluation demonstrates
that not only does the proposed scheme outperforms
existing CAM conscious techniques by an order of mag-
nitude at query loads of about 10%, but the proposed
scheme can also efficiently answer continuous queries.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscella-
neous.

General Terms

Stream Algorithms, Design, Performance.

Keywords

Data Streams, Frequent elements queries, Top-k queries,
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Content Addressable Memory, Network Processor.

1. INTRODUCTION

Data stream applications, such as click stream anal-
ysis for fraud detection and network traffic monitoring,
have gained in popularity over the last few years. Com-
mon queries posed by the users include frequent ele-
ments [16, 4, 7, 19, 17], top-k queries [6, 18, 17], quantile
summarization [11], heavy distinct hitters [22] and many
more. The frequent elements query looks for elements
whose frequency is above a certain threshold. For ex-
ample, a network administrator interested in finding the
IP addresses that are contributing to more than 0.1% of
the network traffic will issue a frequent elements query.
On the other hand, the 100 most popular search terms
in a stream of queries constitute a top-k query. Quan-
tile queries are used for stream summarization such as
percentiles and medians, whereas a heavy distinct hitter
query is used for detecting malicious activities such as
spreading of worms in the network.

The frequent elements and top-k queries are used by
different analysis applications such as network and web
traffic monitoring, click stream analysis, financial mon-
itoring and so on. Besides applications where the users
are either interested in frequent elements or top-k el-
ements, there are certain applications where the user
is interested in both frequent elements and top-k ele-
ments on the same stream of tuples. As an example, if
we consider the case of a search engine, in order to opti-
mize the performance of the engine, the designer might
decide to cache the answers to the 1000 most popular
queries. This requires a top-k query on the stream of
query terms. On the other hand, for auctioning the
search keywords, the designer will be interested in the
queries which are above a certain threshold, and accord-
ingly assign bidding price to these keywords. In this
case a frequent elements query is used for some support
threshold of 0.5%.

Even though frequent elements and top-k queries seem
to be very similar, there is a fundamental difference. In
frequent elements computation, there is a notion of the
minimum possible frequency of an element but no order-
ing information is necessary, whereas in answering top-k
queries, the exact frequencies of the elements might not
be of interest as long as an ordering of the elements is
known. As a result, answering frequent elements cannot
be used as a pre-processing step for top-k queries, and



vice versa. A specialized solution is therefore sought for
the applications that need frequent elements and top-
k queries on the same stream of elements. Metwally
et. al. [17] suggest an efficient integrated solution, known
as Space Saving, for answering both frequent elements
and top-k queries. The authors propose a counter based
technique for frequency counting, and a data structure
to order the elements by their frequencies so that top-k
queries can be easily answered.

Besides the need for having an integrated solution for
frequent elements and top-k queries, the ever increasing
data stream rates call for fast and efficient processing.
In addition, new hardware paradigms have opened up
new frontiers for efficient data management solutions
leveraging specialized hardware features [5, 10, 8, 12,
3, 25, 23, 2]. A Content Addressable Memory (CAM)
can also be exploited for accelerating stream processing.
An interesting property of CAM is that in addition to
normal read and write operations, it supports constant
time lookup operation in hardware. A CAM obviates
the need for complex data structures, such as Hashta-
bles or search trees, to process efficient lookups. Hence,
a CAM can be efficiently used by algorithms that per-
form frequent lookups or searches. Bandi et al. [1] pro-
pose a CAM conscious adaptation for the Space Saving
algorithm and demonstrate acceleration compared to a
software implementation. A disadvantage of the pro-
posed adaptation is that the elements are not sorted
by their frequencies. As a result, the algorithm cannot
answer top-k queries efficiently. Additionally, since the
elements are not sorted, adapting the approach in [1]
for continuous queries, or even moderately high query
loads, is not straightforward. In this paper, we pro-
pose a CAM conscious version of the Space Saving algo-
rithm that also maintains the ordering of the elements
and hence can answer both frequent elements and top-k
queries on the same stream. Our scheme, CAM con-
scious Space Saving with Stream Summary (CSSwSS),
can efficiently answer continuous queries. The major
contributions of this paper are summarized as follows:

e This is the first approach of using CAM for provid-
ing an “integrated” solution to frequent elements
and top-k queries.

e We propose a CAM based data structure to count
occurrences of the elements and efficiently main-
tain the sorted order of the elements in terms of
their frequency. We explore the possible design
alternatives and analyze their advantages and dis-
advantages.

e We provide an implementation of the proposed al-
gorithm using a commodity CAM chip, and report
the performance of this algorithm on an experi-
mental prototype using synthetic data sets.

The rest of the paper is organized as follows: Sec-
tion 2 summarizes the work that has been carried in
frequent elements and top-k£ computation, and in us-
ing specialized hardware for data management opera-
tions, Section 3 explains the hardware prototype used
for our implementation, Section 4 explains in detail our

proposed algorithm, Section 5 provides a thorough ex-
perimental evaluation and analysis of the results and
Section 6 concludes the paper.

2. RELATED WORK

Frequent elements and top-k queries are among the
most common queries in data stream processing appli-
cations, and a large number of approaches have been
suggested to answer these queries. The algorithms for
answering frequent elements queries are broadly divided
into two categories: sketch based and counter based. The
sketch based techniques such as the one proposed by
Charikar et al. [4] try to represent the entire stream’s
information as a “sketch” which is updated as the ele-
ments are processed. Since the “sketch” does not store
per element information, the error bounds of these tech-
niques are not very stringent. In addition, these tech-
niques generally process each stream element using a
series of hash functions, and hence the processing cost
per element is also high. These approaches are therefore
not suitable for providing fast answers to queries.

On the other hand, the counter based techniques such
as [17] monitor a subset of the stream elements and
maintain an approximate frequency count of the ele-
ments. Different approaches use different heuristics to
determine the set of elements to be monitored. For
example, Manku et al. [16] propose a technique called
Lossy Counting in which the stream is divided into rounds,
and at the end of every round, potentially non-frequent
elements are deleted. This e-approximate algorithm has
a space bound of O(2log(eN)), where N is the length
of the stream. Panigrahy et al. [19] suggest a sampling
based counting technique which monitors a subset of el-
ements and manipulates the counters based on whether
a sampled element is already being monitored or not.
For a bursty stream this approach has a space bound of
O(£2), where F is the 2™ frequency moment and ¢ is
the minimum frequency to be reported. Most of these
counter based algorithms [16, 17, 19] are a generaliza-
tion of the classic Majority algorithm [9], and the goal
is to minimize the space as well as reduce the error in
approximation.

Different solutions have also been suggested for an-
swering top-k queries. Mouratidis et al. [18] suggest
the use of geometrical properties to determine the k-
skyband and use this abstraction to answer top-k queries,
whereas Das et al. [6] propose a technique which is ca-
pable of answering ad-hoc top-k queries, i.e., the algo-
rithm does not need apriori knowledge of the attribute
on which the top-k queries have to be answered.

With the growing data rates and faster processing
speed requirements, researchers are also striving for ac-
celerating these queries. Bandi et al. [1] suggested the
use of Content Addressable Memories (CAM) for ac-
celerating the frequent elements queries. The authors
leverage the constant time lookups of CAM to acceler-
ate a couple of counter based techniques. As pointed out
earlier, this approach cannot efficiently answer continu-
ous top-k and frequent elements queries. Bandi et al. [2]
also proposed the use of CAM for Database operations.
Other approaches for data management on new hard-



Figure 1: Hardware prototype.

ware paradigms have also been proposed. For example,
Gold et al. [10] leveraged Network Processors for accel-
erating database operators, while Cieslewicz et al. [5]
propose the use of Chip Multiprocessors for answering
aggregation queries. The use of Graphics processors has
also been proposed by Fang et al. [8]. For this work, we
concentrate on using CAM for efficient answering of fre-
quent elements and top-k queries.

3. HARDWARE PROTOTYPE

The hardware prototype (Figure 1) used for our im-
plementation consists of two major constituents: the
Network Processing Unit (NPU) and the Ternary Con-
tent Addressable Memory (TCAM). In this section, we
explain the features of the two constituent parts.

3.1 NPU Architecture

For the implementation in this paper, we use the Intel
IXP2800 network processor [15]. This network proces-
sor consists of a Control Plane Processor (CPP) and
16 independently operating data plane processors re-
ferred to as Micro Engines (ME). The CPP is a 32-bit
XScale core that runs Monta Vista linux, operates at
a maximum clock speed of 700MHz, and is designed
to work as a “master” assigning tasks to the ME. On
the other hand, the ME is designed to perform simple
data plane operations very fast. The MEs have a very
simple design and instruction set and have been opti-
mized to quickly perform simple operations. Each ME
operates at a maximum clock speed of 1.4GHz and has
8 hardware thread contexts. Therefore, the NPU pro-
vides 128(16 x 8) hardware threads. A hardware thread
is different from a software thread since each thread has
its own set of registers and hence switching contexts be-
tween threads incurs minimal overhead. Each ME has a
set of general purpose registers and a small instruction
cache.

In addition to the Thread Level Parallelism (TLP),
the NPU also provides a form of pipeline parallelism.
The MEs are arranged in a pipelined fashion and an
ME shares a set of registers with its immediate next ME.
These registers are called nearest neighbor registers and
are designed for fast inter-communication between the
MEs. For our implementation we use only a single ME
and do not use either of the above mentioned forms of

parallelism.

The CPP as well as the 16 MEs share some common
on-chip resources like the PCI unit, hashing unit, the
on-chip shared memory known as scratchpad, as well
as the industry standard DRAM and SRAM interfaces.
Main memory is available in the form of DRAM and
SRAM and is present on-board. A TCAM chip can be
efficiently interfaced with the NPU through the SRAM
interface.

Some important features of this architecture are as
follows: First, even though the NPU provides a lot of
parallelism, the architecture is so simple that only a
small set of instructions are supported and is suited for
simple operations. For example, floating point opera-
tions are not supported by the ME. So the applications
for which the NPU can be used are very limited. Sec-
ond, the CPP, which acts as a master, runs at a speed
slower than the ME. Therefore, when running parallel
threads, the master should also perform simple tasks or
else the master might become a bottleneck. Finally, the
MEs do not have any support for a memory hierarchy.
This is both an advantage as well as a disadvantage.
The programmers have the freedom to decide precisely
where their data resides, but this design increases the
overhead for the application design.

3.2 TCAM Architecture

Content addressable memories (CAM) provide effi-
cient lookup operations in hardware and have been typ-
ically used for networking applications such as IP ad-
dress lookups for packet forwarding or implementation
of access control lists. For our implementation, we use
the IDT 75K62134 chip [13] which is a Ternary Con-
tent Addressable Memory (TCAM). In addition to the
properties of a CAM, a TCAM has ternary capabilities
(i.e. it can represent a “don’t-care” state and hence can
efficiently represent ranges) and are therefore suited for
longest prefix matching in IP forwarding. For exam-
ple, a TCAM can store an IP range as say 168.111.x,
such that any IP address in the range 168.111.0.0 to
168.111.255.255 will match this entry. A typical TCAM
chip, similar to the one used in this paper, consists of
either 36-bit or 72-bit word-arrays and typical sizes are
128 K or 256K of these entries. The proposed algo-
rithms do not use the ternary capabilities, so a TCAM
and a CAM become functionally equivalent.

A TCAM consists of a two dimensional array of bits,
and the lookup is performed by a parallel comparison of
the search key with all the stored words in a SIMD-like
fashion. If the search key is present in the TCAM core,
then a match is reported and this is referred to as a
hit. If multiple copies of the search key are found, then
the smallest index is reported by a priority encoder, and
a special multi-hit bit is set. Since all the elements in
the TCAM array are compared in parallel, the power
consumption of the TCAM is pretty high. To lower the
power consumption, the chip we use allows division of
the TCAM into a number of search databases, so that
the application designer can selectively power down the
databases that are not in use and ignore them for com-
parison. The TCAM chip also supports mask registers,
which can be used to selectively mask certain bits dur-
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Figure 2: This figure illustrates the Stream Sum-
mary data structure for an example stream of
elements ( e, es,es3,e2,e2 ).

ing the LOOKUP and WRITE operations. The bits that
are masked do not participate in comparison during the
LOOKUP operations, and are not affected by the WRITE
operation. In addition to these operations, a TCAM
also supports reads and writes similar to conventional
memories.

Some important characteristics of the TCAM are as
follows: First, the chip can support a lookup throughput
of 100 million lookups per second, but that is possible
only through parallel access to the TCAM and pipelin-
ing of requests. The chip under consideration can sup-
port up to 128 pending requests. For our implementa-
tion, we do not consider the parallelism supported by
the TCAM. Second, even though the TCAM efficiently
interfaces with the NPU, the word sizes of two devices
do not match. The TCAM core is 72-bit wide, whereas
the SRAM bus of the NPU is only 32-bit wide. As
a result, all communication between the NPU and the
TCAM takes place through multi-word transfers. Due
to this overhead, it is very difficult to attain the maxi-
mum supported throughput.

4. SYSTEM DESIGN

This section explains the proposed algorithm for the
hardware prototype described in Section 3.

4.1 Background

Metwally et. al. [17] proposed an “integrated” scheme
for answering frequent elements and top-k queries. The
proposed counter based technique, called Space Saving,
is based on the intuition that frequent elements are of
importance only in a skewed stream, and in a skewed
stream, the frequency of the elements of interest is much
higher compared to the low frequency ones. This heuris-
tic is used to limit the number of elements which need to
be monitored. A nice property of this algorithm is that
the number of elements to be monitored is independent
of the length of the stream or the size of the alphabet,
and depends on only the user specified error bound. In

this algorithm, with the arrival of an element in the
stream, if the element is already being monitored, then
its count is incremented, otherwise the new element re-
places the element with the minimum frequency. The
space bound for this algorithm is O(1), where € is the
user specified error bound. An e-approximate algorithm
is one such that given a support ¢, instead of reporting
the elements above the frequency ¢ N, the algorithm re-
ports the elements whose frequency is above (¢ — €)N.

To answer top-k queries and keep track of the min-
imum frequency element, this algorithm maintains a
data structure, called Stream Summary [7, 17], which
can efficiently keep the elements sorted by their fre-
quency. The Stream Summary data structure consists
of “frequency buckets” which correspond to frequency
values of at least one element that is being monitored,
and each bucket consists of the elements which have
the same approximate frequency as is represented by
the bucket. Figure 2(a) provides an illustration of the
Stream Summary structure with two elements with fre-
quency 1. Figure 2 illustrates how the elements in the
stream are processed and maintained in sorted order of
their frequency. For example, in the example stream,
Figure 2(a) shows the structure after elements (e1,e3)
have been processed. When the element e3 appears
again, its frequency is incremented to 2, and Figure 2(b)
shows the state of Stream Summary structure. The ele-
ments are always kept sorted, and the per-element pro-
cessing cost is a constant [7, 17].

Authors in [1] propose an adaptation of the Space
Saving algorithm to use the constant time lookup of
TCAM. They store the elements and their frequencies
in the TCAM. As the stream is being processed, the ele-
ments can be looked up in constant time. In addition to
that, the Space Saving algorithm needs to keep track of
the minimum frequency element. This can also be done
efficiently by looking up the minimum frequency from
the TCAM and always keeping track of the minimum
frequency. As mentioned earlier, this TCAM adapta-
tion does not sort the frequencies and hence answering
queries is costly. In this paper, we refer to this algorithm
as CAM conscious Space Saving (CSS).

4.2 Proposed Algorithm

Stream Summary is a powerful structure that can be
used to efficiently keep the elements sorted by their fre-
quency. This structure can be easily adapted to the
CAM setting. With every stream element, the algo-
rithm needs to determine whether the element is al-
ready being monitored. Since CAM provides efficient
lookups, we can place the elements in the CAM. On
the other hand, in order to keep the elements sorted by
their frequency, the circular doubly-linked structure of
frequency buckets is maintained in SRAM. Figure 3 pro-
vides an illustration of the CAM adapted Stream Sum-
mary data structure. In Algorithm 1, we provide the de-
tails of how the Space Saving algorithm can be adapted
to use the CAM adapted Stream Summary. We call
our algorithm CAM conscious Space Saving with Stream
Summary (CSSwSS). Algorithm 2 gives an overview of
the supporting routines used by Algorithm 1.



Figure 3: TCAM adaptation of the stream sum-
mary data structure.

As described in Section 3.2, the TCAM chip we use for
our implementation provides support for programmable
size of search keys. This is accomplished by having
TCAM core of different sizes. An advantage of hav-
ing a larger TCAM core is that more data can fit into
a single TCAM entry; the disadvantage being that each
TCAM operation becomes costlier when compared to
smaller TCAM cores. Due to this programmable size,
two possible implementations of the proposed approach
are possible, based on what information is kept in the
TCAM and what is kept outside. It must be noted that
in addition to storing the elements, its frequency, the er-
ror in frequency approximation, and the link structure
for the sort order also need to be stored.

Narrow TCAM Core (72-bit): The TCAM chip
used in this implementation consists of an array of 72-
bit wide entries. As a result, the 72-bit core size is an
obvious choice. In this design, as the number of bits in
the TCAM core is less than the information to be stored,
part of information is stored in the TCAM and the rest
of the information is stored in SRAM with a pointer to
the corresponding information stored in TCAM. Since
the elements need to be looked up, they must be placed
in the TCAM. The placement of other items is an im-
plementation choice. In this implementation, we place
the element and the link structure of the elements in the
TCAM, while the error and a pointer to the frequency
bucket is placed in the SRAM. An advantage of this ap-
proach is that TCAM space is preserved as we are using
the bare minimum when it comes to TCAM resources.
The disadvantage is an added level of indirection which
is incurred when processing a stream element. Since
all information is not stored in the TCAM, a TCAM
LOOKUP is followed by a SRAM read to obtain all infor-
mation corresponding to an element.

Wide TCAM Core (144-bit): The chip being used
allows programmable word size. So the device may be
programmed to have a core size of 144-bits, where two
consecutive 72-bit entries are combined. As the TCAM
entries are wider in this design, all necessary informa-
tion corresponding to an element, i.e. the error and
pointer to the frequency bucket, fit into a single wide
TCAM entry. The advantage of this design is that the
additional level of indirection is avoided, the disadvan-
tages being more TCAM space being utilized (which
might be undesirable as the number of TCAM entries

Algorithm 1 CAM conscious Space Saving with Stream
Summary (CSSwSS)

/* mask; register masks the element component */
/* LOOKUP, WRITE are TCAM operations. */
/* min_fr is the pointer to the minimum frequency bucket in
Stream Summary. */
Procedure ComputeFrequentTopK(stream, table_size,
man_fr)
for each element (e) in stream do
hit « LOOKUP(e, index, mask1)
if (hit) then
/* The element is already being monitored, so increment
its counter. */
cur_fr « FrequencyBucketAtIndez(index)
added_bucket « IncrementCounter(cur_fr, index)
added_elem « index
else
/* The Element is not being monitored, so either add
to the end of the list if there is space, or overwrite the
minimum. */
if (cur_size < table_size) then
/* Space is left, so add element */
WRITE(free_index, e, 0, (link_structure))
if (min_fr = NULL || min_fr—freq > 1) then
/* A new Frequency Bucket must be added to the
list. */
new_node «— AllocateNewNode()
new_node—freq « 1
AddElementToList(new_node, free_indez)
added_bucket « new_node
added_elem <« free_index
else
/* A bucket with frequency 1 already exists, add
this element to that bucket. */
AddElementToList(min_fr, free_indez)
added_bucket « min_fr
added_elem <« free_index
end if
free_index+-+
else
/* Overwrite the minimum element. */
index « min_fr—elem
WRITE(index, e, min_fr—freq, (link_structure))
added_bucket <« IncrementCounter(min_fr, index)
added_elem <« index
end if
end if
end for
end Procedure ComputeFrequentTopK

is limited), and wide core makes each TCAM operation
costlier compared to the operations with a narrow core.

4.3 Query Processing

The CAM adapted Stream Summary data structure
can be used to efficiently answer the frequent elements
and top-k queries. In this paper we consider two dif-
ferent types of queries, viz. Continuous Queries and
Interval Queries. Continuous Queries are posed with
every update, i.e. with every stream element processed,
and the answer cache is always up-to-date. On the other
hand, Interval Queries, as the name suggests, are posed
at regular intervals, and hence the answer cache is up-
dated at regular intervals. In this section, we provide a
detailed analysis of the algorithm for using this structure
to efficiently answer the queries. First we will consider
the frequent elements query, and then move on to top-k
query.

Algorithm 3 provides a scheme for answering con-
tinuous frequent elements queries. Since the elements
are sorted, answering this query amounts to keeping a



Algorithm 2 Supporting method for CSSwSS
/* READ is a TCAM operation. */

Procedure IncrementCounter(freqg_node, element_index)
/* Increments the count of the specific element. */
new_fr <+ freq-node—freq + 1
next_node « freq_node—next
if (freq-node—count = 1 & next_node—freq # new_fr) then
/* This bucket can be promoted to become the new bucket.
*
freq_node—freq < new_fr
return freq_node
end if
RemoveElementFromList(freq_node, index)
if (next_node—freq = new_fr) then
/* The element moves to the next node. */
AddElementToList(next_node, index)
return next_node
else
/* A New Frequency Bucket need to be inserted next to the
current node. */
new_node «— AllocateNewNode()
AddToNext(new_node, freq_node)
AddElementToList(new_node, index)
return new_node
end if
end Procedure IncrementCounter

pointer to the bucket that has the minimum frequency
above the support ¢. We can use the CAM adapted
Stream Summary structure to efficiently maintain this
pointer (ptre). The intuition behind this algorithm is
that after processing an element, a bunch of elements
might become infrequent, while only one element can
become frequent. These elements can be determined
from Theorems 4.1 and 4.3 and Corollary 4.2.

THEOREM 4.1. When processing continuous frequent
elements queries, if element e; € bucket; becomes infre-
quent then all elements e; € bucket; and only elements
e; become infrequent.

PRrOOF. The proof is of the theorem consists of two
parts.

o All elements e; € bucket; becomes infrequent if
e; € bucket; becomes infrequent. This is intuitive
from the structure of the CAM adapted Stream
Summary structure as all elements in the same
frequency bucket have the same frequency.

e Only elements e; become infrequent. Since we are
answering continuous queries, the length of the
stream increases by 1 at each step. Now, since
¢ = AN, where 0 < A < 1 and N is the length of
the stream, and if f; is the frequency of e;, as e;
was reported as frequent in the previous step, and
considering the fact that N increased by 1 after
the previous step, all fr > fi must be reported
as frequent. The CAM adapted Stream Summary
structure ensures that all buckets to the right of
bucket; (refer to Figure 2 for illustration) will have
fr > fi. Therefore, only the elements e; become
infrequent if e; become infrequent.

Algorithm 3 Answering continuous frequent elements
queries

/* added_bucket and added_elem are the bucket added and
elements added.*/
Procedure ContinuousQueryFrequent(¢)
/*ptre is the pointer to the bucket with minimum frequency
above support ¢*/
/* ¢ is the minimum frequency to be reported. */
if (ptry # NULL) then
next_node « ptry—next
min_freq «— ptry—freq
if (min_freq < ¢) then
/* At least one element has become infrequent. */
if (next_node—freq > min_freq) then
ptry < next_node
else
ptry — NULL
end if
end if
if (added_-bucket—freq > ¢ & added_bucket—freq <
min_freq) then
/* An infrequent element has become frequent. */
ptry «— added_bucket
end if
else
/* No frequent element yet. */
if (added_bucket—freq > ¢) then
ptry «— added_bucket
end if
end if
end Procedure ContinuousQueryFrequent

COROLLARY 4.2. Only the elements with the mini-
mum frequency amongst the set of reported frequent el-
ements can become infrequent.

PrOOF. The proof follows from Theorem 4.1, since
for each new element, only the elements from a single
frequency bucket can become infrequent, and since the
buckets in CAM adapted Stream Summary are in sorted
order. []

THEOREM 4.3. When processing continuous frequent
elements queries, only the element seen last can become
frequent.

PROOF. An element e; with frequency f; will be re-
ported as frequent <= f; > ¢ where ¢ = AN and
0 < A < 1. Since the number of elements N is mono-
tonically increasing, therefore ¢ is also monotonically
increasing. If e; is the last element processed, then f;
is the only frequency that increases over the previous
step. Hence e; can be the only element that might be-
come frequent. []

From the theorems, it is evident that updating ptrg
induces a constant cost per element being processed: re-
porting an element becoming frequent is constant and
reporting p elements as infrequent is O(p). This is in-
dependent of the number of elements in the stream or
the number of elements monitored in the CAM adapted
Stream Summary structure. This is a drastic improve-
ment from the CAM conscious Space Saving (CSS) in [1],
where the cost of query answering is O(n), n being the
number of elements currently being monitored, and ev-
idently, p < n in most iterations.

Since answering continuous queries is not efficient for
CSS, in our experiments we compare CSS with CSSwSS
using varying query load, i.e., instead of the queries be-
ing continuous, now the queries are issued at regular



Algorithm 4 Answering frequent elements queries at
regular intervals

/* added_bucket and added_elem are the bucket added and
elements added.*/
Procedure IntervalQueryFrequent(¢)
/*ptrg is the pointer to the bucket with minimum frequency
above support ¢*/
/* ¢ is the minimum frequency to be reported. */
if (ptry # NULL) then
cur_fr « ptry
else
cur_fr «+— added_bucket
end if
next_node <« cur_fr—next
prev_node « cur_fr—prev
freq < cur_fr—freq
if (freq > ¢) then
/*Check if any infrequent element has become frequent.*/
while (prev_node—freq < cur_fr—freq & prev_node—freq
> $) do
cur_fr «— prev_node
prev_node « cur_fr—prev
end while
ptrg «— cur_fr
else
/* Some frequent elements have become infrequent, so up-
date the cache. */
while (next_node—freq > cur_fr—freq) do
cur_fr « next_node
next_node « cur_fr—next
end while
if (next_node—freq < cur_fr—freq) then
ptry < NULL
else
ptry «— cur_fr
end if
end if
end Procedure IntervalQueryFrequent

interval. Algorithm 4 gives an overview of the scheme
used for answering queries at regular intervals. Since
the queries are not issued after processing every sin-
gle element, Theorems 4.1 and 4.3 do not hold. Hence
Algorithm 3 cannot be used for this purpose. It can
be seen that Algorithm 4 uses an idea similar to that
of Algorithm 3, except that Algorithm 4 scans through
the structure, because the number of elements that have
been processed since the last invocation is not known.
But it can be easily proved that the time taken by Al-
gorithm 4 is O(m), where m is the number of elements
processed since the last invocation. So, in the worst case
it might reduce to a continuous query, but as demon-
strated in the experiments in a later section, the perfor-
mance is much better for most practical cases.

The CAM adapted Stream Summary structure can be
used to efficiently answer continuous top-k as well. The
idea is the same as with continuous frequent elements
queries and the top-k set is selected using the layout
of the CAM adapted Stream Summary structure. The
algorithm is very similar to the corresponding algorithm
in [17] and has been adapted to efficiently leverage the
CAM adapted Stream Summary. An overview of the
algorithm for continuous top-k monitoring is provided
in Algorithm 5.

Again, it is straightforward to see that the per-element
cost of continuous maintenance of set of top-k elements
is pretty small and the CAM adapted Stream Summary
structure can be used to efficiently maintain the top-k
set. It is therefore evident that CSSwSS can be used to

Algorithm 5 Answering continuous top-k queries

/* added_bucket and added_elem are the bucket added and
elements added.*/
Procedure ContinuousQueryTopK(k)
/* Sety, is the set of elements in top-k cache with minimum
frequency. */
/* ptry is the pointer to the bucket containing elements in
Setp*/
if (num_elems_topk < k) then
/* There are not enough elements in the top-k set. */
if (added_elem ¢ top-k set) then
Report added_elem € top-k
num_elems_topk++
end if
if (num_elems_topk = k) then
/* k elements have now been reported, enter maintenance
mode. */
ptry «— min_freq
Sety, «— ElementsInBucket(ptry,)
end if
else
/* Check for updates, if any. */
ptr]:' <« ptri—next
if (added_bucket = ptrkJr & ptr?—»freq — ptry—freq =1)
then
if (added_elem € Sety) then
Sety, «— Setp — added_elem
else
Select elem € Sety,
Sety, — Setp — elem
Report elem ¢ top-k
Report added_elem € top-k
end if
if (Sety is empty) then
ptry «— ptr,ir
Sety «— ElementsInBucket(ptry,)
end if
end if
end if
end Procedure ContinuousQueryTopK

efficiently answer frequent elements and top-k queries.

5. EXPERIMENTAL EVALUATION

We implement the CAM conscious Space Saving with
Stream Summary (CSSwSS) algorithm on a commod-
ity TCAM chip IDT75K62134 [13] which interfaces ef-
ficiently with the IXP2800 NPU [15]. The TCAM chip
has 128 K 72-bit wide entries, supports programmable
word size, and up to 128 parallel request contexts. De-
velopment is done using the Teja NP ADE [21] and Intel
Development Workbench [14]. Implementation of the
algorithms involve coding in T'ejaC™ and MicroCT™.
Times reported are actual execution times of the algo-
rithms on the MEs (Micro Engine), and are obtained
from the Timestamp register common to all the ME’s.
The experiments have been repeated multiple times and
the values have been averaged over multiple runs.

The experiments have been performed with synthetic
Zipfian data which has been shown to closely resemble
realistic data sets [24]. The data set used for experi-
ments consists of 1 million hits, taken from an alphabet
of size 10,000. The alphabet is the number of distinct
elements in the stream. Since the performance of the
Space Saving algorithm is not dependent on the size of
the alphabet, we expect similar results for smaller or
larger alphabet sizes. The zipfian factor is varied from
0 to 3 in steps of 0.5, where zipfian factor 0 represents
uniform distribution while 3 is a highly skewed distribu-



| TCAM Operation | 72-bit | 144-bit |

READ 0.32 0.64
LOOKUP 0.2971 | 0.3673
WRITE 0.32 0.3314

Table 1: Time (in secs) for a million TCAM op-
erations for different sizes of TCAM core.

tion. The error bound ¢ is set to 0.001. We compare the
performance of the proposed algorithms with the CAM
conscious Space Saving adaptation in [1], which we refer
to as CAM conscious Space Saving (CSS).

5.1 Cost of Frequency Counting

In this section, we experimentally evaluate the two
possible design alternatives. First we need to determine
the cost of the primitive operations in narrow and wide
TCAM cores. The operations of interest are LOOKUP,
READ and WRITE. We evaluate this using an experiment
where we time only the operations of interest, and Ta-
ble 1 summarizes the results.

There are a few interesting observations about the
statistics in Table 1. LOOKUP is one of the most impor-
tant operations, and this operation is done at least once
for each stream element. As we increase the width of
the TCAM core, the cost of LOOKUP increases, but the
increase in the cost of WRITE does not increase signifi-
cantly. The highest increase is for the READ operations
where the time almost doubles, as the chip used only
supports up to 72-bit wide READ operations. As a result,
a 144-bit READ comprises of two 72-bit READ operations.
But this is not very alarming as the layout of elements
can be designed in a manner that would never require a
144-bit READ, i.e. the algorithm will need either the first
or the second 72-bit entry but not both, so that only
the cost of 72-bit wide READ operations is incurred.

Another interesting observation about the times in
Table 1 is that the LOOKUP throughput is nowhere near
the peak throughput of about 100 million LOOKUPs per
second as stated in Section 3.2. This is primarily be-
cause we use only a single ME for implementing our al-
gorithm and accessing the TCAM, and the high through-
put can be obtained by parallel accesses to the TCAM.
We will exploit this parallelism in future work. In ad-
dition, it must be noted that we are using a single ME
that runs at a speed of only 1.4GHz.

Before evaluating the performance of the algorithms
for answering queries, we evaluate the cost of count-
ing the frequencies and keeping them sorted. Since the
authors in [1] provide an efficient frequency counting
algorithm (CSS), we compare the performance of the
proposed schemes with CSS. Figure 4 provides a com-
parison of time taken for frequency counting. From the
figure it can be seen that for uniform data, keeping the
elements sorted is almost twice as costly as simple fre-
quency counting. But as the data becomes skewed, the
elements can be kept sorted almost for free. This differ-
ence in performance is due to the fact that the proposed
scheme involves managing the structure of frequency
buckets, which becomes costly when the sort order of
elements is changing rapidly, which is the case for the

'CSSWSS (72-hit) ——
CSSWSS (144-bit) - |
[

Time (in secs)
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Zipfian factor

Figure 4: Comparing the performance of CSS
with CSSwSS for 72 & 144 bit TCAM core sizes.
This figure reports only the time for frequency
counting.

uniform distribution (zipfian factor close to 0). On the
other hand, when the data is skewed, the sort order
does not change much, and the proposed scheme per-
forms better as the cost of maintaining the minimum fre-
quency element in CSS now becomes significant, which
is not present in CSSwSS.

Now analyzing the performance of the two alternative
designs, it can be seen from Figure 4 that the approach
using 72-bit TCAM core performs better for moderate
and heavily skewed distributions, whereas the 144-bit
design performs better for uniform distribution. This
is because for uniform data, the CAM adapted Stream
Summary structure undergoes a lot of changes, and the
overhead due to the added level of indirection for the
72-bit implementation dominates. However, for skewed
data, the increased cost of the 144-bit TCAM operations
makes the 72-bit implementation cheaper.

Since the zipfian factor ranging between 1 and 2 repre-
sents most realistic data sets, from Figure 4 we can con-
clude that the implementation using 72-bit wide cores
would perform better for real data. In addition to the
savings in time, another advantage of the 72-bit imple-
mentation is that it saves TCAM space which can be a
scarce resource.

5.2 Cost of Answering Queries

In this section, we analyze the cost of answering fre-
quent elements and top-k queries using the proposed
algorithm. Since the proposed algorithm keeps the ele-
ments sorted, it can therefore be easily adapted to an-
swer queries efficiently and incrementally. As CSS does
not maintain the elements in sorted order, there is no
straightforward technique for the incremental reporting
of frequent elements. Every time a query arrives, the
best-effort adaptation of CSS would scan through all the
counters to report the frequent elements. On the other
hand, the CAM adapted Stream Summary structure in
CSSwSS can be leveraged to incrementally report the
frequent elements. Section 4.3 provides efficient algo-
rithms to answer queries and also provides a thorough
analysis of the cost incurred by these algorithms. In this
section, we evaluate these algorithms experimentally.
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Figure 5: Comparison of times for answering
continuous frequent elements queries for input
data of Zipfian factor 1.5.

Figure 5 compares the time taken to answer frequent
elements queries by the two implementations of CSS-
wSS, and by CSS. For this experiment, we vary the
query load, and the load is measured as a percentage
of queries per update. The efficiency of CSSwSS is ev-
ident from the fact that even at moderately low query
loads of about 10%, it is an order of magnitude faster
than CSS. We repeated the above experiment for the
same range of zipfian factors (0.0 — 3.0), but report the
one with zipfian factor of 1.5 as this data set is illustra-
tive of real data. We observed similar behavior for other
values of zipfian factor. The graph in the inset compares
the two implementations of CSSwSS and it can be seen
that the 72-bit implementation is a clear winner.

Our proposed algorithms can efficiently answer con-
tinuous queries and this is illustrated in Figure 6 where
we evaluate the performance of the proposed scheme
when answering continuous queries. Figure 6(a) repre-
sents continuous frequent elements queries whereas Fig-
ure 6(b) illustrates continuous top-k queries. Again, as
CSS does not sort the elements, it cannot efficiently an-
swer continuous frequent elements and top-k queries, so
we do not consider it for this comparison. These re-
sults corroborate the analysis performed in Section 4.3.
Figures 4 and 6 have similar trends for the two imple-

mentations of CSSwSS. This is because answering the
queries only involves processing the linked structure of
frequency buckets, which is identical for both the im-
plementations. Therefore, the 72-bit implementation
would be suited for most practical data sets.

5.3 Discussion

In Section 4 we propose efficient CAM conscious al-
gorithms and in Sections 5.1 and 5.2 we evaluate these
algorithms to demonstrate the gains over the existing
CAM conscious technique. But there are some impor-
tant implications of the experimental results. First, in
the experimental prototype used for the experiments
in this paper, the cost of a single TCAM operation is
about 300ns, which is an order of magnitude higher than
the typical TCAM speeds used in simulation of differ-
ent TCAM algorithms. For example, authors in [20]
report typical TCAM LOOKUP operation taking around
20ns. The TCAM chip used for our experiments, the
IDT75K62134 chip from IDT [13], can support about a
100 million lookups per second, which gives per opera-
tion cost of 10ns. From our analysis of the cost of TCAM
operations we inferred the following as primary reasons
for the difference in performance: the added level of
abstraction provided by Teja ADE which is used for im-
plementing the algorithms, the difference in the word
sizes of the NPU and the TCAM, and the use of a sin-
gle Micro Engine to access the TCAM. Second, a simple
analysis of the algorithms reveals that on an average,
for a uniform distribution, every element incurs 5 — 7
TCAM operations while for a skewed distribution it in-
curs 1—3 TCAM operations. From the times reported in
Figure 4 and Table 1 it can be seen that about 50 — 70%
of the frequency counting time is spent on the TCAM
operations. Therefore, a decrease in the cost of TCAM
operations would considerably reduce the time taken by
the CAM conscious algorithms.

Another important point to note is that these times
cannot be compared directly with the times of a software
hash-based technique running on a standard computer.
The primary reason is the difference in the two archi-
tectures. As pointed out in Section 3.1, the NPU has
a very simple design, whereas most standard processors
have higher clock speed and are highly optimized for



single thread performance. But as demonstrated in [2],
TCAM does not interface well with conventional pro-
cessors and requires an Application Specific IC (ASIC)
which becomes the communication bottleneck. There-
fore, even though TCAM provides good potential for de-
signing efficient stream management algorithms, prac-
tical limitations restrict the gains obtained from a real
experimental setup such as the NPU-TCAM prototype
used in this paper.

6. CONCLUSION

In this paper, we propose a CAM conscious integrated

solution for answering frequent elements and top-k queries.

We provide an implementation of the proposed algo-
rithm using commodity CAM chip. Evaluation using
realistic synthetic data sets show that CSSwSS performs
an order of magnitude better compared to the existing
technique even with moderate query loads of about 10%.
Therefore we can see that the proposed scheme can effi-
ciently answer frequent elements queries. In addition,
CSSwSS can efficiently answer continuous queries as
well. We analyze two design alternatives for implement-
ing our proposed scheme, and from the experiments, we
conclude that the implementation using 72-bit TCAM
core performs better for non-uniform data distributions.

Although we use the NPU for our implementation, we
do not leverage the parallelism provided by the NPU
and supported by the TCAM. In the future, we plan to
exploit this parallelism to further improve the process-
ing rates. In addition, we plan to explore the possibility
of using TCAM for other stream management opera-
tions.
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ABSTRACT

NAND flash memory is fast becoming popular as a com-
ponent of large scale storage devices. For workloads re-
quiring many random I/Os, flash devices can provide
two orders of magnitude increased performance relative
to magnetic disks. Flash memory has some unusual
characteristics. In particular, general updates require
a page write, while updates of 1 bits to 0 bits can be
done in-place. In order to measure how well algorithms
perform on such a device, we propose the “EWOM”
model for analyzing algorithms on flash memory devices.
We introduce flash-aware algorithms for counting, list-
management, and B-trees, and analyze them using the
EWOM model. This analysis shows that one can use
the incremental 1-to-0 update properties of flash mem-
ory in interesting ways to reduce the required number
of page-write operations.

1. INTRODUCTION

Solid state disks and other devices based on NAND
flash memory allow many more random I/Os per second
(up to two orders of magnitude more) than conventional
magnetic disks. Thus they can, in principle, support
workloads involving random I/Os much more effectively.

However, flash memory cannot support general in-
place updates. Instead, a whole data page must be writ-
ten to a new area of the device, and the old page must
be invalidated. Groups of contiguous pages form erase
units, and an invalidated page becomes writable again
only after the whole erase unit has been cleared. Erase
times are relatively high (several milliseconds). Flash-
based memory does, however, allow in-place changes of
1-bits to 0-bits without an erase cycle [5]. Thus it is pos-
sible to reserve a region of flash memory initialized to
all 1s, and incrementally use it in a write-once fashion.

Traditional measures of algorithm complexity do not
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model flash I/O behavior well, because the high cost
of a general update (relative to a 1-to-0 update) is not
accounted for. Previous models for write-once memory
(“WOM”) have been proposed to model devices like pa-
per tape and optical disks in which the write process is
destructive, so that once a bit is set it cannot be un-
set [10]. Maier proposes using write-once storage for a
“Read-Mostly Store” (RMS) where the memory is grad-
ually consumed as updates occur [8]. However, these
models are too restrictive for devices like flash memory
where a bulk erase allows memory to be reused.

1.1 The EWOM Model

We propose a new model for evaluating an algorithm
on a flash-like device. We call it the “Erasable Write
Once Memory” model, or the “EWOM” model. In addi-
tion to counting traditional algorithmic steps, we count
a page-write step whenever a write causes a 0 bit to
change to a 1 bit. If an algorithm performs a group of
local writes to a single page as one transactional step,
we count the group as a single page-write step. Even
if only a few bytes are updated, a whole page must be
written.

The true cost of a page-write step has several compo-
nents. There is an immediate cost incurred because a
full page must be copied to a new location, with the bits
in question updated. If there are multiple updates to a
single page from different transactional operations, they
can be combined in RAM and applied to the flash mem-
ory once, although one must be careful in such a scheme
to guarantee data persistence if that is an application
requirement.

There is also a deferred cost incurred because the flash
device must eventually erase the erase unit containing
the old page. It is a deferred cost because the write itself
does not have to wait for the erase to finish; the erase
can be performed asynchronously. Nevertheless, erase
times are high, and a device burdened by many erase
operations may not be able to sustain good read/write
performance. Further, in an I/O intensive workload a
steady state can be reached in which erasure cannot
keep up, and writes end up waiting for erased pages to
become available.

There is an additional longer-term cost of page erases
in terms of device longevity. On current flash devices
an erase unit has a lifetime of about 10 erases. Thus, if
special-purpose algorithms reduce the number of erases



needed by a factor of f, the expected lifetime of the
device can in principle be multiplied by f.

Our model can distinguish between situations where
the I/O device is saturated, and where the device is
lightly loaded. Algorithms might include a low-priority
background process that asynchronously traverses data
structure elements and reorganizes them to improve per-
formance. The extra I/O workload will not be notice-
able in a lightly-loaded setting, and most data structure
elements will end up in the optimized state. In a sat-
urated or near-saturated scenario, however, the back-
ground process will rarely run, and the data structure
elements will remain in the unoptimized state.

We choose not to model “seek” time for flash memory.
While there is a small overhead involved in moving from
one memory location to another, this overhead is small
relative to the erase costs. Further, this cost is orders of
magnitude smaller than seek times for magnetic disks,
whose performance models often distinguish between se-
quential and random 1/0.

Traditional I/O devices have a fixed block transfer
size, and it is customary to count the number of blocks
transferred when measuring I/O complexity. RAM al-
lows fine-grained data access, and so it is customary
to simply count the number of computational steps to
perform a given operation as the complexity measure.
Flash memory occupies a middle-ground between tradi-
tional I/O devices and RAM. Some flash devices require
transfers to happen in block-sized units, where a single
device may support multiple block sizes, while others al-
low fine-grained access. For the purposes of the present
work, we will adopt the convention that the flash mem-
ory is a fine-grained access device for reads and 1-to-0
writes, and we measure complexity by counting the to-
tal number of computational steps. For general updates,
we also count a page write.!

1.2 Pages and Erase Units

Erase units are typically large, around 128KB. Copy-
ing a full erase unit on every update would not be effi-
cient. It is therefore common for data copying to happen
in page-sized units, where the page size P depends on
how the device is configured. A typical value of P might
be 2KB, meaning 64 pages in a 128KB erase unit.

We assume that there is a memory mapping layer that
maps logical page addresses to physical page addresses.
Such mapping is commonly implemented in hardware
within page-granularity devices: when an update hap-
pens, the physical address changes, but the logical ad-
dress remains the same so that updates do not need
to be propagated to data structures that refer to the
data page. When the device itself does not provide
such a layer, it is common to implement such a layer
in software. The mapping layer also ensures that wear
on the device is shared among physical pages, because
flash pages have a limited lifetime of approximately 10°
erase cycles. The mapping layer can also hide faulty or
worn-out pages from the operating system. The EWOM
model assumes that a logical-to-physcial mapping layer

If we fill a page using simple 1-to-0 writes, there are
no page write operations counted.

is present.

If updates are performed on pages, then at any point
in time, an erase unit may contain some valid pages and
some invalid pages that need to be erased. If an erase
unit contains valid pages, then those valid pages must
be written to alternate locations before the erase unit
can be erased. We assume that the same hardware or
software that monitors the logical-to-physical mapping
of pages also monitors the validity of pages for the pur-
poses of managing erase units for garbage collection.

In a lightly loaded device, such extra copying might
not be noticeable. However, in a heavily loaded system,
with high demand for new erase units, this overhead will
be noticeable.

A “best-case” workload for erase-unit recycling would
occur when all pages in an erase unit are invalid at erase
time. This kind of workload might happen if the data
access pattern is highly clustered, such as when a file is
sequentially updated, page by page. In that case, each
page write contributes to approximately P/E erases,
where F is the size of an erase unit.

A “worst-case” workload would occur when all erase
units available for recycling hold just one invalid page.
This kind of workload might happen on a device that
is almost full, and for which the data access pattern is
scattered over the various erase units. In this case, each
page write causes an erase.

There are obviously many intermediates between the
best and worst cases, and the range is wide. Thus it is
not always possible to predict the erase frequency given
just the page update frequency. More information about
workload characteristics is usually needed.

2. COUNTING

We begin our analysis with a simple task: maintain
a counter in EWOM storage. The counter is initialized
to zero, and may be incremented. A naive, in-place so-
lution would rewrite the counter, stored in conventional
binary form, on every update. Since an increment al-
ways changes some 0 to a 1, every update requires a
page write. Reads have cost proportional to the word
size W of the counter in binary.?

An alternative solution represents the counter in unary
form, with the number of zero bits indicating the count.
An increment operation can be handled by changing a
bit from 1 to 0 without a page-write operation. Unary
counters are severely limited in their counting capacity
since they have space complexity linear in the current
value of the counter. Reads and writes can be handled
in logarithmic time using an exponential expansion fol-
lowed by a binary search to find the first 0 in the bit
array.

A hybrid scheme stores a binary base counter, to-
gether with a unary increment counter of fixed length
L, where L < P—W so that the counter fits in a page [2].
The counter is computed by adding the base counter to
the offset of the first zero in the unary array, which can
be found using binary search. A page-write is needed

2Depending on one’s memory model, W is either con-
stant or O(logn), where n is the value of the counter.
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Method Space (bits) | Read time Write time Page-Writes
Naive w w 2w 1
Unary n O(logn) O(logn) =
Hybrid (lightly loaded) | W + L W+1 2 0
Hybrid (saturated) W+ L W +O(ogL) | O(log L) + 22X | 1

Figure 1: Amortized complexity for counting

every L steps, at which time the base counter is recom-
puted, and the unary counter is reset.

A low-priority asynchronous operation may look through

pages containing counters, and also perform this recom-
pute/reset operation. We assume that in the lightly
loaded case, the asynchronous background updates hap-
pen at least as often as writes, and promptly after those
writes. This assumption means that the state of the
counter on the flash device will usually have a zero unary
increment value, with the binary part of the counter
containing the current count. Reads become simpler
(because they don’t have to traverse the unary incre-
ment value), and writes become simpler (because there
is always space for unary increments — no page-writes
are necessary).

The complexity of these alternatives is summarized in
Figure 1, where n is the number of increment operations,
and P is the size of a page in bits. Read time is mea-
sured in terms of the number of bit operations needed.
For the write step, we assume that the writer does not
know the previous value of the counter, only that the
counter needs to be incremented. As Figure 1 shows,
the hybrid counting method amortizes page-writes al-
most as well as the unary method, while keeping read
and write performance close to the naive method.

2.1 Arbitrary Increments

One can generalize the hybrid method if increments
(or decrements) by arbitrary amounts are possible. A
single base counter is maintained in binary form. A
unary counter is kept for recording increments by multi-
ples of 2°, 21, 22 etc. An increment is broken down into
its binary form, and the corresponding unary counters
are updated. A separate set of counters is maintained
for decrements. Read operations need to scan through
the various counters to compute the net change to the
binary stored value.

In the event that one of the unary counters is full,
it may still be possible to process an addition without
a page write by decomposing the addition into a larger
number of smaller increments. For example, if the unary
counter corresponding to 2° is full, we could add the
value 2° by appending two bits to the unary counter
corresponding to 2%.

Other configurations are also possible. For example,
instead of recording increments using a unary counter
for each power of 2, one could use unary counters for
powers of an arbitrary value k. The number of bits to
set for each counter would be determined by the corre-
sponding digit of the value to be added when written in
base-k notation.

3. LINKED LISTS

A linked list is a commonly used data structure. In an
EWOM context, standard list operations would require
a page write. A page write would be needed to keep
track of the tail of the list, to implement list element
deletion, to insert an element into the list, and to update
nodes within the linked list.

Suppose that we interpret the all-1 bit pattern as a
NULL pointer. Then one can append to the list using
only 1-to-0 updates by updating the NULL pointer in
the last element of the list to point to a new element.
The new element itself would be written in an area of
the page initialized to all-1s. Unlike traditional append
operations to a list, this variant would need to first tra-
verse the entire list. On the other hand, a page-write is
avoided.

Deletions would need to be handled in an indirect
way, such as by using a “deleted” flag within the node
structure. This would complicate list traversal slightly,
because deleted nodes would remain in the list and need
to have their flags checked.

Like for counting, we could implement a low-priority
background process that “cleans up” lists on a page and
writes a new page. In this new page, the deleted ele-
ments would be omitted. One could also store a short-
cut to the current tail, so that future append operations
do not have to start from the head of the list.

4. BLOOM FILTERS

Some data structures are inherently monotonic in their
update behavior, and map well to the EWOM model
without modification. An example is the Bloom filter
[1]. If we interpret a vector of 1 bits to mean the empty
Bloom filter, then every insertion can be achieved by
setting some 1 bits to 0 bits. In the EWOM model, in-
sert operations do not need to perform any page-writes.

S. B-TREES

Within a database system, one of the places where
random I/O occurs frequently is in accessing B-tree in-

dexes in response to OLTP workloads. Indexes are searched

(to find the record to update), new records are inserted,
and old records are deleted. One way to deal with B-tree
update-heavy workloads is to batch the updates. That
way, the costs associated with restructuring a page can
be amortized over many updates. Batching happens
implicitly when a page resides in the database system’s
buffer pool.? Batching can also happen close to the

3Note that the database system is ensuring persistence
in this case by maintaining a recovery log.
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physical device in a RAM-based cache. However, if the
locality of reference of the database access is poor, such
as when the table and/or index is much bigger than the
buffer pool and records are being accessed randomly,
there will be little effective batching in practice.

We therefore propose a new way to organize leaf nodes
in a B-tree to avoid the page-write cost most of the time,
while still processing updates one at a time. We focus
on leaf nodes because that is where the large majority
of changes happen.

Suppose that an entry in a leaf node consists of an
8-byte key, and an 8-byte RID referencing the indexed
record. We assume a leaf node can hold L entries, taking
16L bytes. We shall assume that a leaf node has size
that exactly matches the page size of the device.

With the requirement that leaf nodes be at least half
full, a conventional B-tree leaf node will contain between
L/2 and L entries stored in sorted key order. The or-
dering property allows for keys to be searched in loga-
rithmic time using binary search.

A first attempt at a page-write-friendly leaf node would
be to store all entries in an append-only array in the or-
der of insertion [8]. A bitmap would be kept to mark
deleted entries. When the node becomes full, it is split,
and (nondeleted) entries are divided among the two re-
sulting pages. The obvious drawback of this approach
is that search time within the node will be linear rather

than logarithmic, dramatically slowing down both searches

and updates.

5.1 The Proposed Approach

Apart from the initial root node, all leaf nodes are
created as a result of a split. When a split happens,
we sort the (nondeleted) records into key order, and
store them in that order in the append-only array. We
keep track of the endpoint of this array by storing it
explicitly in the leaf node. Subsequent insertions are
then appended to the array as before.

So far, we have improved performance slightly be-
cause one can do a binary search over at least half of the
entries, followed by a linear search of the remaining en-
tries to find a key. However, the asymptotic complexity
is still linear in the size of the array.

To speed up the search of the newly-inserted elements
we store some additional information. Choose positive
integer constants ¢ and k. For every c entries in the new
insertions, we store a c-element index array. Each entry
in this index array stores an offset into the segment of
new insertions, and the index array is stored in key or-
der. (It is not maintained incrementally; it is generated
only when there have been ¢ new insertions.)

To search an array of m new elements (m < L), we
need at most (m/c)log, ¢+ (¢ — 1) comparisons. While
we have reduced the asymptotic search time by a factor
of ¢/log, ¢, it remains linear in m. The trick is to apply
this idea recursively.

Suppose that after kc elements, instead of a c-element
offset array, we store a kc-element offset array covering
the previous kc newly inserted records. Now we need
at most one linear search of at most ¢ — 1 elements,
at most k — 1 binary searches of ¢ elements, and | ]
binary searches of kc elements. If we keep scaling the

offset array each time m crosses ¢, ke, k%c, k3c etc., then
the total cost is O(log? m). (There are O(logm) binary
searches, each taking O(logm) time.)

A complete search therefore takes O(log(n/L)+log? L)
O(log n+log? L) time, where n is the number of elements
in the tree.

The space overhead of this approach is the total size
of the index arrays. This size is equal to

| Z]c+ |2 (ck —c) + | 2% |(ck® — ck) + ...
~ mlog,(m/c) = O(mlogm).

The overhead for one node is thus O(Llog L), and the
overhead for the entire tree is O(nlog L). This is a clas-
sical computer-science trade-off in which we use more
space to reduce the time overhead. Different choices for
c and k represent alternative points in the space-time
trade-off.

In practice, the space overhead is unlikely to be oner-
ous. For example, suppose that the page size is 16KB.
8KB can be devoted to new entries and the offset ar-
rays. This places an upper bound of 512 new entries. If
c = 32 and k = 3, the largest index array we will build
will have 288 entries. The total space in bytes to store
m new entries is then

16m+32(|m/32])+(96—32)(|m/96])+2(288—96) (| m/288)).

(Here, we’re assuming one byte offsets for up to 255
elements, and two-byte offsets for 256 or more elements.)
Based on these numbers, we could store 446 new entries
in the leaf node before we ran out of space. 1056 bytes
out of 16K bytes (6.4%) is the space overhead, ignoring
the pointer to the start of the new elements and the bits
to record deletions.

Under lightly loaded conditions, where one has spare
cycles to do background leaf optimization, one could
convert a leaf node to sorted format and reset the point-
ers to new entries, writing the resulting node to a new
memory location. For such “fresh” leaf nodes, search
time goes down from O(log?m) time to O(logm) time.
Note that because of the logical-to-physical page map-
ping, parent nodes are unchanged by leaf freshening.

5.2 Analysis

Every c entries, an updating transaction needs to sort
¢ elements costing O(clogc) time. When the system
gets to a k'c-byte boundary, it only needs to sort the
last ¢ elements, then merge k ordered lists of size k'~ !¢,
which can be done in O(clog ¢ + k'clog k) time. Amor-
tizing over all insertions, the cost per insertion has order

lo; m/c i m
Sosoen /O (kiclog k) (| 2% ]) /m

~ logkllog,(m/c)| ~ log(m/c)

Similarly, split processing can merge the array segments
rather than fully sorting the array.

One needs to know where the array of new values
ends, in order to decide when to terminate the search,
and where to append new values. The simplest way to
do this is to assume that a pattern of all 1-bits is not
a valid (key,RID) pair. One can then binary search to
find the last valid pair. One could try to explicitly store
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Method Space (bits) | Read time Write time Page Writes
Standard O(n) O(logn) O(logn) 1
Append-Only O(n) O(logn + L) O(logn) I

Hybrid (lightly loaded) | O(nlog L) O(logn) O(logn) 0

Hybrid (saturated) O(nlog L) O(logn +log? L) | O(logn +1log L) | O( %)

Figure 2: Amortized B-tree complexity for a tree of size n, treating ¢ and k as constants.

Pointer to the endpoint of initial sorted prefix.

Prefix P containing sorted (key,RID) pairs. Calculated during most recent page-write.

Sequence S of (key,RID) pairs in insertion order.

Indexes of first group of ¢ elements of S, in sorted order.

Indexes of second group of ¢ elements of S, in sorted order.

Indexes of k — 150

group of ¢ elements of S, in sorted order.

Indexes of first group of kc elements of S, in sorted order.

Indexes of k + 150 group of ¢ elements of S, in sorted order.

Deletion bits

Log Sequence Number (using generalized counter)

Figure 3: The final structure of a B-tree node of (key,RID) pairs.

the offset using the counters of Section 2, but such a
method would consume more space than necessary.

Figure 2 shows the amortized asymptotic complex-
ity for the proposed B-tree structure. We assume that
writes do not need to check whether the key already
exists in a node before insertion. If such a check is nec-
essary, the entry for the append-only method would be-
come O(logn+ L) and the entry for the hybrid method
with saturated writes would become O(logn + log? L).
Note that even in the saturated setting, the hybrid method
only needs a page-write every O((log L)/L) insertions,
while having better asymptotic read complexity than
the append-only method.

5.3 Refinements

We have assumed that leaf nodes contain (key,RID)
pairs. Sometimes, to save space, B-tree leaf nodes are
designed to associate a key with a list of RIDs. The
proposed structure can be modified so that at the time
of reorganization (i.e., when a page-write occurs), the
initial segment of data is in (key,RID-list) form. An
alternative would be to keep a linked list of RIDs for
each key, using the linked-list techniques described in
Section 3.

In real B-tree implementations, a leaf node contains a
log sequence number (LSN) recording information rele-
vant for node recovery in case of failure. On an EWOM
device, the LSN could be implemented using a gener-
alized counter as described in Section 2.1. Note that
LSNs are monotonically increasing, meaning that only
increments, not decrements, need to be considered.

The final structure of a B-tree node is summarized in
Figure 3. This figure shows a node containing (key,RID)
pairs. If RID-lists were used, a region within the page
would be used as a heap for allocating new RID nodes

to add to RID-lists.

6. RELATED WORK

An interesting technique related to counting was pro-
posed by Rivest and Shamir for the WOM model [10].
They show, for example, that it is possible to overwrite
an arbitrary number from {0,1,2,3} with another ar-
bitrary number from that set (a) using only monotonic
bit changes, and (b) with only 3 bits of storage. Each
possible number has two valid 3-bit encodings, such as

0:000,111; 1:001,110; 2:010,101; 3: 100,011

The first code for a number is used for the initial write.
The second code is used for the subsequent write, unless
the second write has the same value, in which case there
is no change. One could extend techniques like this to
the EWOM model by erasing when necessary, which in
this example would be after two or more updates.

Others have studied B-tree implementations for flash
devices. Wu et al. [11] describe a B-tree method that
uses a combination of RAM-resident buffers and “index
units” representing flash-resident incremental changes to
a B-tree node. The logical view of a B-tree node is re-
constructed using the node together with these index
units. The work of Wu et al. assumes a page-level in-
terface to the flash device, without fine-grained access.

Nath et al., also study B-tree indexes on flash devices,
with the aim of minimizing power and maximizing per-
formance on a low-power mobile device [9]. Their sys-
tem optimizes B-tree parameters in a self-tuning fash-
ion, based on the workload and device characteristics.
They also employ a page-level interface to the flash
memory.

OLTP workloads frequently need to perform small up-
dates in place. Lee and Moon show how to restructure



database pages and modify the logging protocol to min-
imize the required number of page erases [7]. Multiple
versions of a data element are kept on a page in a write-
once log-like structure within the page, and reads must
consult the log to look for changes. Data is written to
the flash storage in sector-sized units (512 bytes in [7]).

7. CURRENT DEVICES

The two basic types of flash memory available to-
day are NOR-flash and NAND-flash. These technolo-
gies have contrasting behaviors that make them suit-
able for different classes of application [4]. For example,
NAND-flash tends to have larger capacity, faster writes
and erases, and page-level data access. NOR-flash tends
to have faster reads, and fine-grained random access to
data. Hybrid NAND/NOR devices exist (e.g., [6]).

The types of flash memory interaction allowed by a
device vary. Some devices implement only a page-level
API such as FTL [5], and updates to pages always cause
a new page to be written. Such a choice allows an SSD
device to resemble a magnetic disk device, and be used
in existing systems that employ disk devices. Other de-
vices (together with a software layer) expose flash as a
“Memory Technology Device” (MTD) via UBI [3], which
allows partial updates to pages. Low level flash inter-
faces have been defined by the ONFI working group®.
In this paper, we assume an interface in which partial
writes to a page are allowed, as long as they only involve
trasitions from a 1 bit to a 0 bit.

Not every flash device may provide an interface that
allows fine-granularity in-place 1-to-0 updates. As men-
tioned above, flash-based solid-state disks currently pro-
vide disk-like APIs, with pages or sectors as the unit of
data transfer. Nevertheless, future devices may provide
finer-grained APIs if there is a potential performance
improvement. The results of this paper are a step in
this direction, showing what is possible with such an
APIL

Some flash devices store error-correcting codes in re-
served portions of the flash memory. Incremental changes
to pages would also require incremental changes to the
error-correcting codes. Even if the data changes are
monotonic 1-to-0 writes, the resulting error-correcting
code changes are unlikely to be monotonic. It may
thus be necessary to reserve space for an array of error-
correcting code values, and to write a new element into
the array after each write.

While our EWOM model is motivated by flash mem-
ory, it is also possible that other technologies such as
PRAM memory may, in the future, have similar block
erase characteristics.

8. CONCLUSIONS

We have described a new model for measuring the
performance of algorithms on write-once devices with
an erase capability. We have adapted several standard
algorithms to take account of the high page-write cost of
arbitrary updates, and have analyzed their performance.

dyww.onfi. org

The results of this paper are unlikely to represent the
final word on how to implement even the few techniques
we have addressed. For example, it may be possible
to trade space for time (or write performance for read
performance) in different ways to get new algorithmic
variants.
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ABSTRACT

As access times to main memory and disks continue to di-
verge, faster non-volatile storage technologies become more
attractive for speeding up data analysis applications. NAND
flash is one such promising substitute for disks. Flash offers
faster random reads than disk, consumes less power than
disk, and is cheaper than DRAM. In this paper, we investi-
gate alternative data layouts and join algorithms suited for
systems that use flash drives as the non-volatile store.

All of our techniques take advantage of the fast random
reads of flash. We convert traditional sequential I/O algo-
rithms to ones that use a mixture of sequential and random
I/0 to process less data in less time. Our measurements on
commodity flash drives show that a column-major layout of
data pages is faster than a traditional row-based layout for
simple scans. We present a new join algorithm, RARFE-join,
designed for a column-based page layout on flash and com-
pare it to a traditional hash join algorithm. Our analysis
shows that RARE-join is superior in many practical cases:
when join selectivities are small and only a few columns are
projected in the join result.

1. INTRODUCTION

With the ever increasing disparity between main memory
and disk access times, enterprise applications are hungering
for a faster non-volatile store. In this paper, we explore how
to leverage one such promising technology, flash drives, for
data analysis applications.

Driven by the consumer electronics industry, flash is be-
coming a practical non-volatile storage technology. Flash
drives are ubiquitous in cameras, cell-phones, and PDAs.
Major PC vendors are shipping laptops with flash drives.
Moreover, flash is starting to make its way into the enterprise
market. For example, vendors such as SimpleTech, Mtron,
and FusionlO are selling flash-based solid-state drives aimed
at replacing SCSI drives and entire disk arrays. But, are
flash drives an effective replacement for traditional disks?

Flash drives have several traits that make them attrac-
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tive for read-mostly enterprise applications such as web-page
serving and search. Table 1 compares flash drives to disks.
Flash drives offer more random read 1/Os per second (1500
to 100,000 IO/s), offer comparable sequential bandwidth
(20-80 MB/s), and use a tenth of the power (0.5 W). Flash is
cheaper than DRAM (~$18/GB) and is non-volatile. More-
over, flash continues to get faster, cheaper, and denser at a
rapid pace. In particular, NAND flash density has doubled
every year since 1999 [13].

Unfortunately, flash offers little or no benefit when used as
a simple drop-in replacement for disk for data analysis work-
loads in databases. Traditional query processing algorithms
for data analysis are tuned for disks; they stress sequen-
tial I/O and avoid random I/O whenever possible. Thus,
they fail to take advantage of the fast random reads of flash
drives.

In this paper, we investigate query processing methods
that are better suited for the characteristics of flash drives.
In particular, we focus on speeding up scan (projection) and
join operations over tables stored on flash. Our algorithms
use a mixture of random reads and sequential I/O. When
only a fraction of the input (rows and columns) are needed,
these algorithms leverage the fast random reads of flash to
retrieve and process less data and thereby improve perfor-
mance.

To make scans and projections faster, we examine a PAX-
based page layout [2], which arranges rows within a page
in column-major order. When only a few columns are pro-
jected, this layout avoids transferring most of the data while
incurring the cost of “random” I/Os to seek between differ-
ent columns. We explore the tradeoff between row-based
and PAX-based layouts on flash experimentally. Our results
show that a PAX-based layout is as good or better even at
a relatively small page size of 64KB, a size that works well
with traditional buffer management.

We then present a new join algorithm, called RARE-join
(RAndom Read Efficient Join), that leverages the PAX-
based layout. RARE-join first constructs a join index and
then retrieves only the pages and columns needed for com-
puting the join result. We show both analytically and using
times from our scan experiments that this join outperforms
traditional hash-based joins in many practical cases: when
join selectivities are small and only a few columns are pro-
jected in the join result [6]. Although the specific methods
we leverage in our algorithms have been previously studied,
motivating their use and applying them in the context of
flash storage is our main contribution.

In the next section, we give an overview of flash tech-
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NATA | USB | IDE FC
Disk Flash | Flash | Flash
GB 500 4 32 146
$/GB $0.20 $5.00 | $15.62
Watts (W) 13 05 |05 84
seq. read (MB/s) | 60 26 28 92
seq. write (MB/s) | 55 20 24 108
ran. read (I0/s) 120 1,500 | 2,500 | 54,000
ran. write (I0/s) | 120 40 20 15,000
10/s/$ 1.2 75 5
10/s/W 9.2 3,000 | 5,000 | 6,430

Table 1: Disk and Flash characteristics from manu-
facturer specs or as measured where possible. Prices
from online retailers as of May 16, 2008. SATA-disk:
Seagate Barracuda; USB-Flash: Buffalo; IDE-Flash:
Samsung 2.5” IDE; FC-Flash: STech’s ZeusIOps 3.5”
FibreChannel.

nology. Section 3 describes our experiments with scans and
projections. Section 4 describes our join algorithm and com-
pares it to traditional join methods. In section 5, we present
the related work and then we conclude in Section 6.

2. FLASH CHARACTERISTICS

There are two types of flash available: NAND and NOR.
NAND flash is typically used for data storage, and NOR is
typically used in embedded devices as a substitute for pro-
grammable ROM. Since current solid state drives are typi-
cally composed of NAND flash, we focus on NAND.

Table 1 summarizes the relevant characteristics of current
flash drives compared to disks.! Along with the conventional
metrics, the table also lists the random I/O rate per dol-
lar (I0/s/$), which measures the drive’s price-performance,
and the random I/O rate per Watt consumed (I0/s/W),
which measures the drive’s energy-efficiency. Although flash
drives are more costly per gigabyte, they well outperform
disk drives on metrics such as I0/s, I0/s/$ and 10/s/Watt.

NAND flash is typically organized into blocks of 128KB,
which are the minimum erase units, and these blocks are
subdivided into pages of 2KB. Once erased, all bits in the
block are set to “1”. Subsequently, selected bits can be pro-
grammed or set to “0” at a finer granularity. There is no
generic rewrite option. Thus, unoptimized random writes
are slow because they typically involve a read, erase (which
is slow), and program.

Currently, most NAND flash is limited to about 100,000
erase-write cycles per block. To avoid premature failure,
most flash drives include wear leveling logic that remaps
writes to evenly update all blocks. With wear leveling, writ-
ing continuously to a 32GB drive at 40 MB/s would cause
the drive to wear-out after 2.5 years. Since most drives are
not fully utilized, this typically implies a lifespan of 5-10
years, which is acceptable.

3. SCANS AND PROJECTIONS

Relational scans and projections return some of the columns
for some of the rows in a table. Since “seeks” are relatively

! Although we do not quote a price for the ZeusIOps drive,
enterprise flash drives like this one are significantly more
expensive in terms of $/GB.
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Figure 1: Row and PAX page layout

cheap on flash, it can be cost-effective to introduce addi-
tional seeks instead of reading data not needed in the query.
In this section, we consider the PAX page layout, which is
efficient for reading one column at a time but requires a seek
to skip over columns.

In Section 3.1, we describe the PAX page layout, discuss
the drawbacks for using PAX to reduce disk I/O, and show
why it is suitable for flash. In Section 3.2 we present our im-
plementation and experimental results that verify the bene-
fits of our approach.

3.1 PAX on Flash

Most commercial relational DBMS use a row-based page
format where entire rows are stored contiguously, as shown
on the left side of Figure 1. A slot array of 2-byte slots at
the end of the page contains pointers to the start of each
row. In this example, the table has four columns of sizes 4,
8, 32, and 4 bytes; the row size is 48 bytes. The page size is
64 KB. A full page contains 64 KB / (48+2) bytes = 1310
rows. We ignore page headers here for simplicity.

In contrast, the PAX (partition attributes across) lay-
out [2] creates mini-pages within each page. The rows of
the page are vertically partitioned among the mini-pages.
Each mini-page stores data for a single column. Each mini-
page for a fixed-length column is an array of column values
with an entry for every row on that page; the ith entry on
each mini-page is the column value for row i. Mini-pages for
variable-length columns use slot arrays. The right side of
Figure 1 shows this layout for the same example table. The
4-byte columns get 64 KB * (4/48) = 5460 byte mini-pages;
the 32-byte column’s mini-page is 43,680 bytes. Since no
slot arrays are needed for these fixed length columns, the
page with PAX layout holds data for 1365 rows.

In the original PAX proposal, Ailamaki et al. argued for a
PAX layout to improve CPU cache utilization when scanning
a subset of the columns [2]. They did not, however, consider
a change to disk I/O access patterns. Here, we consider how
a PAX layout can be used with flash to reduce total data
transferred and thereby improve performance for scans.

With the row-based layout, a scan query that needs only a
subset of the table columns must retrieve all of the columns
of the table. With the PAX layout, however, a scan query
can read only the required columns by “seeking” to the next
column’s mini-page (when the columns are not adjacent).



When the time spent seeking from one mini-page to the
next is less than the time to read the unneeded mini-pages
between them, performing the random read (seek) is better.

Enterprise disk drives can read sequential pages at around
100 MB/s and a short seek takes about 3-4 ms. Therefore,
a seek to skip mini-pages on disk must skip at least 300-400
KB (100 MB/s x 3-4 ms) to be worthwhile. If mini-pages
are 300 KB, then full pages must be multiple MB. However,
the “right” page size in a relational DBMS reflects many
other factors, such as buffer pool size, buffer-cache hit ra-
tios, update frequency, and per-page algorithmic overheads.
Unfortunately, these and other economic considerations [4]
lead most commercial RDBMSs to use much smaller page
sizes, typically between 8 KB and 64 KB.

Although the PAX layout does not improve read perfor-
mance for disks, it is worthwhile on flash. The seek over-
head on flash is much smaller. For the IDE flash drive in
Table 1 with 28 MB/s sequential read bandwidth and 0.25
ms seek time, it makes sense to skip mini-pages of only 7
KB (28 MB/s x 0.25 ms). Full pages can therefore be only
32-128 KB. With a 32 KB (or larger) page, a scan query
that projects less than three-quarters of a table will com-
plete faster using a PAX layout. Since mini-pages are not
always aligned at page-size boundaries of flash pages; some
extra data will be read when bringing a single column into
memory. In the next section, we verify these numbers ex-
perimentally.

Column stores also partition the table data by columns to
allow fast access to a subset of the columns [14]. Our query
processing methods apply to such column layouts as well
as to PAX layouts on flash. However, a column layout has
two important limitations when compared to PAX layout.
First, many parts of a traditional database engine, such as
the storage layer, I/O subsystem, buffer pool, recovery sys-
tem, indexes, some operators, and so on, expect and operate
on fixed size pages. Thus, a column layout requires touching
all these components and effectively redesigning the engine.
A PAX layout, on the other hand, only requires reimple-
menting the storage layer methods that retrieve data from
a page, since only the page organization has changed from
a traditional row layout, not the page contents. Second,
column stores may require multiple I/Os to update multiple
columns of a single row. With a PAX layout, only one I/0 is
needed, since all columns are stored on the same page. We
therefore investigate performance with PAX layouts since
they involve a less disruptive change.

3.2 Experiments

In our implementation, we use tightly packed mini-pages.
We read data in multiples of 4 KB, even if the needed mini-
page is less than 4KB. For our experiments, we modified the
code released in [6], which is a bare-bones high-performance
storage manager. This code implements relational scanners
on a single-threaded C++ code base, using Linux’s Asyn-
chronous I/0 capabilities to issue multiple outstanding 1/0
requests and overlap computation with disk transfer time.

We evaluate a single scan query of the form “select O1,
02, .. from ORDERS where predicate(O1)” in which the
predicate yielded 10% selectivity. The ORDERS table is
loosely modeled after TPC-H data. We simplify the schema:
the table contains eight 4-byte integers for a row length of
32 bytes; we create 60 million rows, for a total table size
of about 2 GB. We ran the experiments on the Samsung
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Figure 2: Comparing row vs. PAX layouts for scans
and projections.

32 GB IDE flash drive (from Table 1) formatted with the
Linux ext3 file-system. The baseline case is a scan of the
entire table, which corresponds to the performance of a row
store.

Figure 2 compares the performance of scans as we vary
the number of columns projected for three different page
sizes: 32 KB, 64 KB, and 128 KB. For all page sizes, the
fewer columns the query projects, the better it performs.
The “ideal” curve assumes the true read bandwidth of the
IDE drive and no “seek” delays. As we increase the page
size (and thus each mini-page read is larger), the overhead
of seeking is amortized. PAX pages of 32 KB are as good as
the baseline (row layout) case no matter how many columns
are read, and better when up to 88% of the data are read.
PAX pages of 64 KB always outperform the baseline case
and come close to ideal performance.

4. JOINS

In this section, we show how to leverage the PAX layout
to compute joins. We analytically compare a traditional
Grace-hash join to a new join algorithm, RARE-join, that
incurs additional random I/Os to save total data accessed.

4.1 RARE-join

Our new join algorithm, called the RARE-join (RAndom
Read Efficient join), has two main conceptual steps.

e It computes a join index by accessing only the join
columns of the input tables.

e It adapts Li and Ross’ jive-join [10] for PAX layouts
on flash. Jive-join uses a join index to compute the
join result in a single read pass through the input.

The main idea is to save I/Os by accessing only the join
columns and mini-pages holding the values needed in the
result rather than the entire input. The savings comes at
the cost of increased “seeks” and computing the join index,
which we show can be worthwhile when using flash.

To describe RARE-join and illustrate its benefits, we com-
pare it with a well-known hash-based join: Grace-hash [8].
Traditional Grace-hash operates over a row layout. We also
include a simple variant, Grace-PAX, which operates over
a PAX layout; the underlying scans access only the mini-
pages for columns projected in the result. We analyze two
basic modes for these joins: when there is enough memory

19



to compute the join in one pass through the input, and when
more passes are needed. We also analyze an important, in-
between mode for RARE-join: when it makes one pass over
the input but must materialize the join index.

For each algorithm, we assume that I/O cost dominates
runtime and give its costs in terms of the number of I/Os
required. We assume that the costs of a sequential read,
a sequential write, and a random read are the same. To
correct for this simplifying assumption, we adjust the I/O
costs in our examples using measurements from Section 3
where possible and appropriate. Table 2 shows the notation
that we use for the pseudocode and cost equations.

Symbol | Meaning
T1 Table 1
R Join result
J1 Join column of T}
\%1 Remaining columns of T projected in result
ido Row-id of join result from Table 2
Iz Temp file filled with id>
JI Temp file holding join index
M Memory available for join
h Hash-table overhead
Op1 Fraction of T1 pages needed
for computing the join

Table 2: Notation used for cost equations. T3 is
always the smaller table and its symbols are analo-
gous to those for T1. The |X| notation specifies the
number of page I/Os for X.

4.2 One-pass joins

Grace hash can compute the result in one simple pass over
the input if a hash-table on T, the smaller table, can fit in
memory, i.e. h|T:| < |M|, It first reads and builds a hash-
table on T>. Then it reads T1, probes the hash-table, and
spools the results to R. All accesses are sequential and the
total I/O cost is simply:

ITa| + |T2| + | R| (1)

Grace-PAX is better for two reasons. First, it needs less
memory to operate in one pass because only the join and
projection columns of T must fit in memory, h(|J2|+|V2|) <
|M|. Second, since it skips the unneeded columns, the total
I/0O cost is less:

|J1 + Vi| + |J2 + V2| + |R| (2)

In roughly the same memory as a 1-pass Grace-PAX, a
1-pass RARE-join, shown in Figure 3, reduces the I/O cost
further. RARE-join reads and builds a hash-table on the
join column, J2, and row-id, ¢d2. Then, it probes the hash-
table with Ji. Unlike Grace, it fetches only those mini-
pages necessary to produce the join result. For all matches,
RARE-join fetches and pins the mini-pages containing row
idy from V3 and fetches the mini-pages containing row id;
from Vi. Since it scans in 71 order, the new Vi mini-pages
can immediately replace old ones while the V> pages are
buffered. RARE-join spools the result to R. More precisely,
the memory requirement is: h(|Jz2| + |idz2|) + op2| V2| < |M],
and the total I/O cost is:

1. Read J2 and build hash-table
2. Read J; and probe hash-table
foreach join result <idi, id2> do
Read projected values of row id; from Vi
Read projected values of row idz from pinned V5
mini-pages else from flash
Write result into R

Figure 3: 1-pass RARE-join: when the hash-table
on J> and needed mini-pages of V- fit in memory.

1. Read J2 and build hash-table
2. Read Ji and probe hash-table
foreach join result <idi, id2> do
Read projected values of row id; from Vi
/* R and I, are both partitioned by ids */
Write projected values into partition of R
| Write i¢d2 into partition of I
3. Read I2 and process it.
foreach partition of I do
foreach ids in partition do
Read projected values of row idz from V2
Write values into partition of R

Figure 4: (1+¢) pass RARE-join: when the hash-
table on J> and output buffers fit in memory.

|1l + op1[Vi] + | J2| + 0p2| V| + | R (3)

Thus, given sufficient memory for the 1-pass case, RARE-
join outperforms Grace-PAX which outperforms Grace in
our cost model. In reality, however, the advantages de-
pend upon the overheads for each I/O of mini-pages and the
“page” selectivity. Depending on these parameters, we can
adapt RARE-join to make it behave more like Grace-PAX:
fetch V2 with J2 or Vi with J; or both.

4.3 More than 1 pass

If there is not enough memory to hold the hash-table on 75
for Grace or on J; and V5 for Grace-PAX, both degrade into
a two pass algorithm. The first pass partitions both tables
on the join column such that the runs of the smaller table
fit into memory. This pass involves a read and write. The
second pass reads each partition into memory and computes
the join. Thus, the total I/O cost for Grace is:

3|+ |T2|) + | R| (4)
and likewise for Grace-PAX:

3(Iv + Vil + |2 + T2|) + | R ()

Most joins will need at most two passes with flash, since
the outgoing buffer size can be small, e.g., 64 KB. With 2 GB
of main memory, there is room to create 32,000 partitions.
Therefore, a two-pass Grace join suffices for T> up to 65TB,
which is much larger than the size of current flash drives.

4.3.1 (1+¢) pass RARE-join

RARE-join has more flexibility than Grace and thereby
provides improved performance. If J; fits in memory, but
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Name | Address Age | Team
Ben 18 Main St 7 Orange
Julie 21 Iris Ln 8 Red
Sam 110 Hays Dr | 7 Green
Sarah | 2 Main St 7 Blue
Alex 90 Primrose | 8 Red
Lena 44 Madison | 7 Orange

Figure 5: Player Table.

Team | Field Time | Row Id
Red Terman | 1 1
Orange | Ohlone | 9 2
Orange | Carmelo | 3 3
Blue Briones | 2 3

Figure 6: Game Table.

Va2 does not, RARE-join can still compute the result with
one pass through the input, but must materialize the join
index. This (1 + €) pass RARE-join is shown in Figure 4.
To illustrate the algorithm, we step through it for the ex-
ample join query: “select name, team, time from player,
game where player.team = game.team;” using the Player
and Game tables shown in Figures 5 and 6.

As in the 1-pass case, RARE-join first builds a hash-table
on Jo and probes it with J;. Figure 7 shows the hash-table
for our example.

The result of probing the table in step 2 is the join index,
which has one entry for each row in the join result R. Since
the probes occur in J; order, the necessary Vi mini-pages
can be read sequentially and written directly to the result R.
Since we use a PAX layout, we write only the V; columns to
R and leave the portion of each page for V2 columns “blank”
until step 3. Note, this write pattern for R is efficient on
flash since we pay the cost of the erase in this phase and
“program” the V5 values in step 3.

Unlike in the 1-pass case, we cannot fit V> in memory.
A simple approach is to read the needed V2 mini-pages on
demand. This approach, however, might retrieve the same
mini-pages more than once since we generate results in J;
order. Instead, like jive-join, we partition the join index into
runs in step 2, so that the V2 mini-pages referenced in each
run can fit in memory. Actually, jive join [10] creates sorted
runs of the join index, which it then merges so that it can
later fetch the rows of T» sequentially. We borrow from this
idea, but observe that, with flash, we need not access V»
in sequential order. We only need to ensure that all values
needed from a single page are obtained with one page read.

Therefore, in step 2, we simply partition the join index by
the T page number (encoded in idz), so all row ids for the
same T5 pages go in the same partition. We need not materi-
alize the idy column of the join index since V; is streamlined
to the result in step 2. Thus, the I2 partitions only contain
idz values and are implicitly in 77 order.

For step 3, the entire set of V5 pages in a partition must
fit in memory at once. The number of partitions needed
is therefore |V2|/|M| and the partitioning function can be
either a hash or range partitioning scheme. We partition R
the same way so that in step 3, we can fill in the blank parts
of R with corresponding V> values, one partition at a time.
After step 3, we combine the pages from all partitions of R

Blue, 3
Red, 1
Orange, 2 — Orange, 3

Figure 7: (1 +¢) RARE: hash-table on Game.Team

2
3
2
3
Figure 8: (1+¢) pass RARE, step 2: I, partitions.

into a single file simply by linking them together. Figures 8
and 9 show the contents of the partitions in our example
and Figure 10 shows the final result table.

Since we need one buffer page for each partition of R and
I in step 2 and there are at most |V2|/|M| partitions, the
memory requirement is h(|Jz2| + |idz|) + 2(|Va2|/|M]|) < |M]|.
The total I/O cost of all three steps is:

|J1| 4+ op1|Vi| + |J2| 4+ op2|Va| + [R| + 2[I2] (6)

Combining the previous two equations, RARE outperforms
Grace-PAX when:

2|1 + (3 = 0p1)[Vi| + 2|J2] + (3 — op2)|Va| > 2[I2]  (7)

The left hand side is savings from reading the join columns
and only the needed mini-pages of V7 and Va2 once instead
of three times. This savings must outweigh the additional
cost of materializing and reading the row-ids id> from the
join index.

We illustrate the potential benefits of RARE-join with the
following example. Suppose 77 and T3 each have 8 columns
of 4 bytes and the join result contains only 3 columns from
each, i.e. 5 total with the common join column. Let T3
and T contain 256 million rows (8 GB) apiece. Further
suppose half the rows in 77 each match one row in 7> and
the page selectivities are 1. Also, assume a system with 2
GB of memory. We can then estimate the savings using the
performance numbers from Section 3 as follows.

Both V4 and Vs, which hold two columns, are 2 GB, and
Ji and Jp are 1 GB each. This setup puts Grace-PAX in
the two-pass mode and RARE-join in the (14 ¢) pass mode.
Assuming row-ids are 4 bytes, R and I2 each will have 128 M
rows and be 2.6 GB and 512 MB, respectively. Assuming
we use 64 KB pages, reading J1 (one column) takes 55.1 s,
reading Vi (two columns) takes 86.5 s, and reading J1 + Vi
(three columns) takes 117.8 sec; the transfer times are the
same for J2 and V2. Note, these account for the mini-page
“seek” overheads as measured in Section 3. We estimate that
writing R takes 91.4 s and one pass through I takes 18.3 s.
Therefore, Grace-PAX will take 3(117.8 x 2) +91.4 = 798.2
s while RARE-join will take 2(55.1+86.5)+91.44+2%18.3 =
411.2 s, a savings of 387 s or speedup of 1.94x. The savings
from making only a single pass through the input is 423 s,
and the penalty for reading and writing the join index is
only 36.6 s.

4.3.2 Two-pass RARE-join

Figure 11 shows the pseudocode for RARE-join when J
and the outgoing buffers do not fit in memory. In this case,
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Figure 9: (1 + ¢) pass RARE, step 2: partitioned R
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Figure 10: (1+ ¢) pass RARE, end: Result, R

steps 1 and 2 are similar to those in Grace-hash join. RARE-
join hash partitions the join column of both tables so that
each Jy partition can fit in memory. In step 3, it computes
and materializes the join index < id;,id2 > for each par-
tition. Note that within each partition, the join index is
ordered by id;.

In step 4, RARE-join merges the partitions of JI into
Ty order and fetches the needed projection columns Vi. It
spools the result and idz values to partitions of R and I3, as
in the (1 + €) pass algorithm. Then, step 5 is the same as
step 3 of the (1 + ¢) RARE algorithm. Note, the join index
is exactly twice the size of I, since it contains id; and idas.
Again, RARE-join fetches only the needed mini-pages of Vi
and Va2, but makes multiple passes over the join columns.
The total cost is therefore

31|+ op1|Va| 4 3[J2| + op2|Va| + [R] + 6|12].  (8)

Two-pass RARE-join therefore beats two-pass Grace-PAX
when

B —ap) Vi + (3 — ap2)[V2| > 6|12 )

The left hand side is the savings from only accessing the
needed pages of Vi and V4 once instead of thrice. The right
hand side is the penalty for materializing and passing over
the join index multiple times.

We again illustrate the savings from RARE-join with an
example. Suppose T7 and T> have the same schema as in
the previous example but are four times larger, 32 GB each.
Also, consider the same join query as above with the same
row and page selectivities. In this case, J1 and J2 are 4 GB
each, and V7 and V» are 8 GB each. These input sizes place
both RARE-join and Grace-PAX in the two-pass mode. The
result has 512M rows, with 5 attributes of 4 bytes each.
Thus, R is 10.2 GB and I5 is 2 GB. Assuming the same
performance as above, reading Ji (one column) takes 220 s,
reading Vi (two columns) takes 346 s, and reading Ji + V4
(three columns) takes 471.2 s. We estimate writing R takes
366 s, and one pass through I» takes 73.1 s. Therefore,
Grace-PAX will take 3(471.2 x 2) + 366 = 3193 s while
RARE-join will take 3(220 x 2)+ (346 x 2)+366+ (6 x 73.1) =
2817 s, a savings of 376 s or speedup of 1.12x. The penalty
for I/O on the join index was 439 s, but the savings from
making only one pass through the projected columns was 815
s. A more selective query would only improve the RARE-

1. Read J2 and partition it (hash on join value)
2. Read Ji and partition it (same hash function)
3. Compute JI

foreach partition of J> do

Read J> and build hash-table

Read partition of J; and probe hash-table

foreach row in join result do
| Write 4d1,¢d2 in JI partition

4. Merge partitions of JI on id;y
foreach join result <idi,id2> do
Read projected values of row id; from Vi
/* R and I, are partitioned by ids */
Write projected values into partition of R
| Write i¢d2 into partition of I
5. Read I2 and process it.
foreach partition of I do
foreach ids in partition do
Read projected values of row idz from V2
Write values into partition of R

Figure 11: Two-pass RARE-join: when the hash-
table on J> and output buffers do not fit in mem-
ory.

join performance relative to Grace-PAX.
Extending RARE-join for more passes is analogous to ex-
tending Grace-hash, so we omit the description here.

4.4 Discussion

Although we believe our cost model is sufficient to high-
light the potential benefits of RARE-join, we still need to
implement and measure its benefits. We need to measure
its true performance and map out the tradeoffs in compari-
son to Grace, Grace-PAX, and more sophisticated variants
of hash-based joins. There are a number of complicating
factors that might affect performance. For example, our
analysis ignores CPU costs, underestimates I/O overheads,
and ignores the fact that sequential writes on flash are slower
than sequential reads.

A disadvantage of RARE-join, similar to jive-join, is that
the join results must be materialized. For some data analysis
functions, such as computing materialized views, this is not
an issue. However, when used in a pipelined query plan, the
above comparison is unfair. In that case, we need to penalize
RARE-join with the cost for reading and writing R. Even
so, RARE-join can be more efficient if the join result size or
selectivity is sufficiently small.

Nonetheless, there are still opportunities to improve RARE-
join. The hash-table on the join column could use compres-
sion for duplicate values. We could modify the algorithm to
pipeline results better at the cost of additional I/Os. As Hy-
brid hash join does, we could potentially use available mem-
ory more effectively on the first pass through the data. We
would also like to consider adapting other join algorithms,
such as index-nested loops join and sort-merge join, for PAX
layouts on flash.

S. RELATED WORK

We briefly review recent work on using flash in databases.
Graefe [4] revisits the five-minute rule in the context of flash
and suggests that flash serve as the middle level of a 3-level
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memory hierarchy. Given current technology, this analysis
shows that 32KB is too small for pages stored on a SATA
disk and fairly large for pages stored on NAND flash. He
lists several potential uses for flash, some which treat flash
as an extension of memory and others that treat it as a faster
disk. Graefe [5] also considers sorting over flash, although
that paper is primarily concerned with improving memory
utilization and robustness rather than with improving sort
performance. In contrast, we focus solely on query process-
ing over flash. For the future, we should consider adapting
our methods to a 3-level hierarchy.

Lee and Moon [9] also present new variants of standard
database algorithms that are adapted for the characteris-
tics of flash. They consider techniques for updating rows in
pages on flash. To avoid random writes, their approach logs
updates to database pages in a clean “log” section at the end
of each flash erase block rather than applying the updates in
place. Once the log section is exhausted, they relocate the
entire erase block and apply the updates. This approach
amortizes the cost of the erase over multiple updates.

Next, we outline previous ideas that we adapted for query
processing on flash drives. Ailamaki et al. [2] proposed the
PAX database page design to improve the cache performance
of TPC-H queries rather than to save on disk I/O. Read-
ing only the relevant columns for each query is the central
theme of column-oriented DBMSs such as C-Store and Mon-
etDB [3, 14]. These systems reportedly perform well on
certain types of queries [1, 6], using traditional disk drives.
For example, Harizopoulos et al. [6] show that a carefully
designed column store can out-perform a row-store for read-
mostly workloads. Further, Abadi et al. [1] look at join pro-
cessing over column layouts. As mentioned earlier, we can
easily apply our algorithms to column stores on flash and
provide similar benefits as with PAX. We, however, focus
on a PAX layout since it imposes less disruptive changes to
traditional database architectures. Moving to a flash stor-
age and using the PAX page layout blurs the line between
column-stores and row-stores. Like us, Zhou and Ross [15]
use a scheme similar to PAX, called MBSM, that co-locates
column values in blocks within larger “super-blocks” to re-
duce I/0. They optimize their methods, however, for tradi-
tional disks rather than flash.

Li and Ross [10] present efficient join algorithms, jive-join
and slam-join, that leverage a join index and stores the re-
sults in a column-oriented format. We modify the jive-join
by streamlining it with join index creation and by avoid-
ing the unnecessary steps used to optimize disk accesses.
To make disk I/Os sequential, jive-join sorts the join in-
dex before fetching the matching pages from the inner table
and re-orders the returned tuples to match the order of the
outer. Although this difference does not affect total data
transferred, it introduces additional CPU overheads which
can be important.

Some have also explored the energy-efficiency benefits of
flash. Rivoire et al. [11, 12] show that using flash can im-
prove the energy-efficiency of database operations like sort.
Kgil and Mudge [7] employ flash for a buffer cache for web-
servers to reduce their energy use.

6. CONCLUSION

In this paper, we present techniques for making core query
processing operations, i.e. scans and joins, faster when using
flash. Our techniques rely on using a PAX-based page lay-

out, which allows scans to avoid reading columns not needed
for the query. A PAX layout works well for flash drives since
they offer much shorter seek times than traditional disks.
We then present a join algorithm, RARE-join, that lever-
ages the PAX structure to read only the columns needed
to compute the join result. Roughly speaking, RARE-join
first computes a join index by retrieving the join-columns
and then fetches the remaining columns for the result. We
show that RARE-join using a PAX layout beats traditional
hash-based joins when few columns are returned and the
selectivity is low.

Several directions suggest themselves for future work. Ob-
viously, additional measurements on new hardware is an on-
going task. We also plan on studying scan and join per-
formance on flash for generalized vertical partitioning, e.g.,
storing first name and last name together rather than sep-
arately. In addition, we plan on investigating merits and
issues of RARE-join in complex query execution plans, e.g.,
pipelining and scheduling in bushy plans, memory manage-
ment, and materialization of intermediate results. Finally, in
addition to strict performance metrics, we plan on reviewing
the new techniques with respect to energy efficiency as well
as robustness of performance under adverse run-time condi-
tions, e.g., errors in cardinality estimation, distribution and
duplicate skew, and memory contention. We expect that
steps in these directions will speed the eventual adoption of
flash in enterprise systems.
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ABSTRACT

Partitioning is a key database task. In this paper we explore
partitioning performance on a chip multiprocessor (CMP)
that provides a relatively high degree of on-chip thread-level
parallelism. It is therefore important to implement the par-
titioning algorithm to take advantage of the CMP’s parallel
execution resources. We identify the coordination of writing
partition output as the main challenge in a parallel par-
titioning implementation and evaluate four techniques for
enabling parallel partitioning. We confirm previous work in
single threaded partitioning that finds L2 cache misses and
translation lookaside buffer misses to be important perfor-
mance issues, but we now add the management of concurrent
threads to this analysis.

1. INTRODUCTION

Partitioning is a core database task used for many pur-
poses. Partitioning can divide a larger task into constituent
smaller subtasks that can be processed more quickly than
the overall task taken as a whole. An example of this is
when a complete task, done all at once, would not be en-
tirely cache resident and could therefore suffer from a high
number of cache misses. Smaller subtasks may fit within a
cache, thereby experiencing good cache performance. Parti-
tioning is also important because of its ability to group like
values. In the case of a hash join, both relations are parti-
tioned using the same hash function and only tuples from
equivalent partitions can join to form part of the result. Sim-
ilarly, range partitioning based on a sort key can improve the
performance of sorting, which itself is a core database oper-
ation. In the context of parallelism, partitioning assists load
balancing by producing similarly sized subtasks.

A chip multiprocessor (CMP) is a single chip that sup-
ports multiple concurrent threads of execution with multiple
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processor cores per chip, multiple threads per core, or both.
This paper uses a specific CMP, the Sun UltraSPARC T1,
which has eight cores and four threads per core for a total
of 32 threads on a single chip [11].

In this paper we examine in-memory hash-based parti-
tioning performance on a chip multiprocessor. Though other
types of partitioning (such as range partitioning) are com-
mon, we identify the process of writing partitioning output,
rather than the method of computing a tuple’s partition as-
signment, to be key to partitioning performance. Therefore,
we focus on hash-based partitioning and explore different
means of coordinating the writing of output.

High performance partitioning on a CMP requires balanc-
ing parallelism with interthread coordination and on-chip
resource sharing. Because partitioning requires writing out-
put to many different locations, shared cache and translation
lookaside buffer (TLB) resources can become a source of con-
tention between threads, causing lower performance. Cache
and TLB pressure is a problem for single-threaded parti-
tioning implementations [8]. The problem is compounded
by the presence of multiple concurrent threads for two rea-
sons. First, each additional thread may increase the number
of output locations that are active at any one time. And
second, the interthread coordination required to effectively
manage the shared on-chip resources can become a bottle-
neck itself. In this paper we will describe the impact of these
issues and present techniques that overcome them to achieve
high performance partitioning on CMPs.

The rest of the paper is organized as follows. In Sec-
tion 2 we will present work related to both partitioning and
database operations on chip multiprocessors. Section 3 de-
scribes partitioning techniques and implementation options.
Our experimental platform and setup is described in Sec-
tion 4 and experiments are presented in Section 5. We
present future work in Section 6 and conclude in Section 7.

2. RELATED WORK

Partitioning has been studied in a number of contexts,
both parallel and not. It is central to many database op-
erations, including joins and aggregates, and it is also im-
portant for load balancing [4, 3, 8, 10]. Many variants of
parallel sorting include an initial partitioning step [5, 6]. As
parallelism is now available on-chip, we revisit partitioning
to investigate techniques that provide the best parallel par-
titioning performance on new CMPs.

Manegold et al. introduce a clustering (partitioning) algo-
rithm that performs well on modern architectures by opti-
mizing cache and TLB usage [8]. Though their analysis fo-
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Technique Contiguous Output | Contention

Independent No No

Concurrent Yes, per partition Yes
Count-then-move Yes No
Parallel Buffers Mostly per partition No

Table 1: CMP Partitioning Techniques

cused on single threaded execution, it provides an excellent
starting point for exploring the issues associated with in-
memory parallel partitioning on chip multiprocessors. Our
work differs in two main ways. First, our goal is high perfor-
mance parallel partitioning on a CMP rather than a unipro-
cessor. And second, our target platform uses very simple
cores optimized for thread-level parallelism rather than sin-
gle threaded performance.

A motivation for examining parallel partitioning arose from
observations made during an analysis of aggregation on CMPs
where it was found that contention between threads for
shared resources as well as interthread communication were
key factors affecting performance [2]. Because locality of ref-
erence is important to hash aggregation performance, paral-
lel partitioning may be able to improve aggregation through-
put by clustering the input. This paper explores the charac-
teristics of such a parallel partitioning. As mentioned in Sec-
tion 1, coordinating the writing of output between threads
is an important aspect of a parallel partitioning implemen-
tation. The parallel buffer data structure proposed in [1]
provides a framework for parallel, contention free access to
a mostly contiguous shared buffer. Using the parallel buffer
structure is one of the options for implementing parallel par-
titioning described next in Section 3.

3. PARTITIONING TECHNIQUES

Partitioning data is a two step process. In the first step,
the output partition to which a tuple belongs is identified.
In the second step, the tuple is copied to its output loca-
tion. The choice of the partitioning function in the first step
depends on the properties desired from the partitioning. In
this paper we focus on hash partitioning. Identifying a tu-
ple’s partition using hashing is an O(1) operation. We will
use multiplicative hashing and describe the number of out-
put partitions in terms of b, the number of hash bits used to
partition the input. The use of b hash bits results in 2° out-
put partitions. Because the input is read only, it can easily
be divided among t threads for parallelism. Writing the in-
put to different partitions, however, involves trade-offs in
thread coordination and resource sharing. We examine four
methods of enabling parallelism in the writing of tuples to
output partitions. The methods are summarized in Table 1
and described below.

3.1 Independent Output

In the independent output technique, each thread has its
own output buffers for each output partition, i.e. ¢ 2% out-
put buffers. There is no sharing of output space between
threads and therefore no thread coordination required aside
from assigning input tuples to each thread. Each buffer re-
quires the storage of metadata, such as the current writing
index and the size of the buffer. As the number of threads
or hash bits increases, the number of buffers required also
increases. At the same time, the expected size of each buffer,

%7 decreases!, which means that the storage overhead as-
sociated with metadata increases.

The complete independence of each thread helps enable
parallelism by avoiding any contention between threads. Un-
intentional false sharing in the cache can be avoided by en-
suring that each thread’s buffer metadata does not share a
cache line with the metadata from another thread.

There are two main disadvantages of this approach. First,
the metadata overhead increases as additional threads or
partitions are used. And second, each partition is frag-
mented into ¢ separate buffers. The operator that next pro-
cesses the partition must either accept fragmented input or
a further consolidation step is needed.

3.2 Concurrent Output

The concurrent output technique uses a single buffer for
each output partition. The one buffer is shared among all
threads, which coordinate writing through the use of atomic
instructions or locks. Specifically, the current writing index
must be atomically incremented before each write. In con-
trast to the independent technique, the number of output
buffers no longer depends on the number of threads, t. In
terms of storage overhead, therefore, the concurrent output
method scales better as more threads are used. Also, using
this method, each partition’s output is stored contiguously,
which may make further processing of a partition easier.

The atomic instructions or locks required for the correct-
ness of this technique are expensive and susceptible to con-
tention. In the independent approach, incrementing a write
index takes one cycle, whereas performing the atomic in-
crement required for the concurrent technique takes 22 cy-
cles?on the Sun T1 [12]. Not only do atomic instructions
have longer latency, but they can also cause contention.
When many threads attempt to atomically increment the
same variable, only one can proceed, forcing all other threads
to wait. In the worst case, all threads serialize due to atomic
increments to the same variable(s), which severely degrades
performance because no parallel computation occurs.

3.3 Count-Then-Move

The count-then-move technique uses two passes over the
input to partition the data into a single contiguous buffer
in which consecutive partitions reside within consecutive
ranges in the buffer. In the first pass, each thread processes
an assigned range of input tuples, counting the number of
tuples it would have placed in each partition. This step
requires 2° counters per thread. Each thread works inde-
pendently, so a high degree of parallelism is possible. As
with the independent technique above, care should be taken
to avoid false sharing in the cache by ensuring that no two
threads’ counters share a cache line.

Following the first pass, all of the threads must synchro-
nize to signal that counting is complete. Using the counts
supplied by all threads, each thread can then compute the
exact offset at which it will start writing output for each par-
tition. Each thread must therefore store 2° writing offsets.

! Assuming that the partitioning keys are unique and uni-
formly distributed.

2The Sun UltraSPARC T1 may not be used in an SMP con-
figuration as it does not support off-chip cache coherency
and atomic operations. This atomic latency would be higher
in a comparable processor that supported off-chip cache co-
herency and was used in an SMP configuration.
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Once these offsets are computed, the second pass begins.
Each thread processes the same assigned range of tuples
from the first pass, but this time, once a tuple’s assigned
partition is determined, it is written using the thread’s off-
set for that partition. The offset is then incremented. The
second pass also requires no interthread coordination.

A drawback of this approach is that it requires two passes
over the input to accomplish what other techniques accom-
plish in one pass. On the other hand, the entire result is
contiguous, which may be more useful than the fragmented
results produced by the other methods. The other methods
require further processing to produce contiguous output.

3.4 Paralle Buffers

The partitioning technique using parallel buffers [1] is very
similar to the concurrent output approach except that in-
stead of coordinating between threads on every write, coor-
dination occurs at the coarser granularity of a “chunk” of tu-
ples. Each thread atomically obtains a contiguous chunk of
one or more tuples from the buffer. It then has exclusive ac-
cess to those tuples and only needs to engage in interthread
coordination when it acquires a new chunk. The cost of
atomic operations is amortized over many writes and the
chance of contention for shared data structures is reduced.
An appropriately sized chunk can eliminate all coordination
contention, as shown in [1]. The parallel buffer is designed
so that all but the first ¢ chunks are either completely full or
completely empty and that there are no holes, i.e., all data
not in the first ¢ chunks is contiguous.

Using parallel buffers has the advantage of avoiding in-
terthread contention while using a mostly contiguous shared
buffer. Output written into a parallel buffer is also ready to
be read in parallel by subsequent tasks. A disadvantage
is that each parallel buffer requires more metadata than
the other techniques in order to support the management
of chunks and parallel access by multiple threads. Addi-
tionally, each buffer must have at least one chunk for each
thread. Even when the chunk size is set to just one tuple,
the parallel buffer must be at least ¢ tuples in size.

4. EXPERIMENTAL SETUP

All experiments were conducted on real hardware, a Sun
UltraSPARC T1, the details of which may be found in in
Table 2. We chose this platform because the T1 and its
recently introduced successor, the T2, are the commodity
CMPs with the most on-chip thread level parallelism.

Input Characteristics

The input to all experiments consists of 16 byte tuples with
an 8 byte partitioning key and an 8 byte payload. The par-
titioning keys are unique and uniformly distributed. This
input is similar to the input used in [8], but updated for a
64-bit processor. Due to space limitations we do not explore
the implications of non-uniform and non-unique input here,
but we do discuss some of these issues in Section 6.

3The miss latency varies with the workload and with the
load on the various processors [7].

4The TLB is shared among the 4 threads on the core, but
each thread’s entries are kept mutually exclusive [11].

Clock rate 1 GHz
Cores (Threads/core) 8 (4)
RAM 8GB

Shared L2 Cache 3MB, 12-way associative
64B Cache Line
Hit latency: 21 cycles
Miss latency: 90-155 cycles®
8KB per core
16B Cache Line
Shared by 4 threads
16KB per core
Shared by 4 threads

L1 Data Cache

L1 Instruction Cache

TLB 64 Entries per core’
Supported Page Sizes | 8KB, 64KB, 4MB, 256MB
On-chip bandwidth 132GB/s

Off-chip bandwidth 25GB/s over 4 DDR2
Operating System Solaris 10
Compiler Sun C 5.9

Flags -fast -xtarget=native64 -mt

Table 2: Specifications of the Sun UltraSPARC T1.

| mplementation Details

We used the pthreads library for all multithreading. Where
possible we implement atomic operations with atomic intrin-
sics provided by the compiler rather than by using a mutex
available in the threading library. This is advantageous be-
cause atomic instructions have lower latency than acquiring
and releasing a lock.

Physical memory frame allocation by the operating sys-
tem must be done atomically. Frame allocation may sig-
nificantly reduce parallelism because threads must serialize
when handling page faults that cause frame allocation from
the operating system. To avoid this overhead, our code
touches all of the pages to be used for writing output before
collecting profiling or timing information. This is a reason-
able modification because a long running database process
could avoid this frame allocation bottleneck by reusing allo-
cated buffers for partitioning and other operations.

To avoid the issue of growing an output buffer, the inde-
pendent, concurrent, and parallel buffers use buffers that are
allocated to be more than 50% larger than their expected
size. This leads to some space overhead but simplifies the
implementation and analysis. Issues such as needing to grow
an output buffer in a thread safe manner are discussed in
Section 6.

For all techniques, variables used for counting purposes
are 32 bit integers, which helps lower the metadata overhead
of each technique compared with using a 64 bit integer. For
our experimental input, 32 bits is sufficient for this purpose,
but in the future significantly larger partitions may require
the use of 64 bit integers. The parallel buffers used in these
experiments are a slightly improved version of the buffers
used in [1]. The amount of metadata required per buffer has
been reduced and code for writing and reading tuples has
been made more modular, but the overall operation of the
parallel buffer remains the same.

In the count-then-move technique, during the first pass
one could record each tuple’s assigned partition in a paral-
lel array. During the second pass, this parallel array could
be read instead of recomputing each tuple’s partition. We
tried both options and found that for hash partitioning the
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Figure 1: Comparing the throughput of four partitioning techniques using 32 threads and all available page

sizes. The input cardinality was 2** tuples.

performance was comparable so for the experiments in this
paper we recompute the hash function.

5. EXPERIMENTS

In this section we present an experimental evaluation of
the four partitioning techniques described in Section 3. We
also present data collected using the T1’s hardware perfor-
mance counters. All throughput values reported are aver-
aged over eight trials of the same experiment.

5.1 Performance and Contention

The performance of the four partitioning techniques is
shown in Figure 1. At best, partitioning can only equal
the performance of copying the same quantity of data, i.e, a
memcpy. As a comparison point, we present the performance
of a multithreaded memcpy operation in Figure 2.

The performance of memcpy represents an extreme up-
per bound on partitioning performance because the C stan-
dard library memcpy uses a number of optimizations that our
generic partitioning code cannot leverage. If a store instruc-
tion writes to a cache line that is not in the cache, normally
a cache miss is first triggered to load the cache line and then
the store proceeds. This is important because the store may
only modify part of the cache line. However, it also means
that writes can cause cache misses. Because memcpy knows
that it is writing many full cache lines of data, it is able to
use a block initializing store instruction that does not read

the cache line from memory, but rather allocates a new ze-
roed cache line directly in the cache. Thus memcpy is able to
avoid a large number of cache misses and reduce the amount
of memory bandwidth that it requires. A generic partition-
ing algorithm has difficulty using such a store instruction
because writes to the same output partition may be sepa-
rated in time and across threads, therefore having an entire
cache line to write at once may not be practical, but we ex-
amine using such an instruction in Section 5.6. Figure 2 also
shows a naive, user implemented multithreaded memcpy to
give a sense of the best performance we might expect from
any of our partitioning techniques. The independent and
parallel buffer techniques actually slightly exceed the per-
formance of this memcpy implementation for small numbers
of partitions.

The only technique to suffer from contention is the con-
current output technique (Section 3.2). Figure 1 shows that
when fewer than six hash bits are used, performance of the
concurrent buffer technique suffers due to contention. This
makes sense given that there were 32 threads used and five or
fewer hash bits means that there were 32 or fewer output lo-
cations. Because the input data is uniform and unique, once
the number of partitions exceeds the number of threads each
thread will likely be writing to a different partition. Even
though the parallel buffer technique shares a buffer, its use
of chunks of tuples successfully avoids contention. In these
experiments the maximum chunk size was 128 tuples, but
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Figure 2: Throughput for copying 40,000 tuples us-
ing C Standard Library memcpy and using a simple
user implemented copying loop.

that was scaled down to a size of 1 as the number of parti-
tions increased and the expected partition size decreased.

The following sections explore in detail the factors influ-
encing the performance reported in Figure 1, including TLB
misses, cache misses, and scaling.

52 TLB Misses

TLB misses are known to be a significant performance is-
sue during partitioning [8] and our experiments on a CMP
confirm this observation. The TLB is a special cache that
the processor uses to quickly translate virtual addresses to
physical addresses. Because partitioning requires writing
output to different partitions, TLB misses may become fre-
quent if the TLB is not large enough to hold all of the pages
to which output needs to be written. The size of a page
of memory, therefore, influences the TLB’s ability to con-
tain all output pages. The Sun T1 has one 64-entry TLB
per core that supports four different page sizes. Partition-
ing performance using those page sizes is shown in Figure 1.
The difference in performance between different page sizes
is due in large part to the impact of TLB misses.

TLB miss data is presented in Figure 3 and for each tech-
nique, two graphs are shown: those on the left plot only user
level TLB misses, and those on the right plot both user and
system level TLB misses.

Figure 3(a) shows the user level TLB misses incurred per
tuple partitioned by the independent technique. A page size
of 256MB results in zero TLB misses because the 64 entry
TLB has a reach of 16GB, which is double the size of the
machine’s RAM! Each TLB is shared by four threads on
one core. Because each thread has its own output location
for each partition, the number of output locations the TLB
must cover is 2° x4 = 2°*2. For small pages, the 64 TLB
entry limit is reached when b = 4 as shown in Figure 3(a).
Because the parallel buffers share a contiguous buffer, they
share some output pages causing TLB misses to begin in-
creasing at b = 5 instead (Figure 3(e)). The concurrent
buffer has only one output location per partition regardless
of the number of threads. It therefore sees no increase until
b = 6 when the number of partitions equals the number of
TLB entries (Figure 3(c)).

The plateau around one TLB miss per tuple seen for most
techniques when using 8KB or 64KB pages is explained by
requiring a TLB miss for the output location alone. This

happens as soon as there are more than 64 output locations
active per core. The number of misses then grows to two per
tuple for both the independent and concurrent techniques,
Figures 3(a) and 3(c), respectively. The second miss is ex-
plained by needing another miss to access the metadata as-
sociated with the output buffer. As the number of partitions
increases, the storage overhead and, therefore, the number
of pages required by the metadata also increases.

Figures 4(a) and 4(b) show the number of pages of meta-
data required for the independent and concurrent techniques,
respectively. Each output buffer requires 16 bytes of state
and there is one buffer per partition in the case of concur-
rent output or one buffer per thread per partition in the
case of independent output. As Figure 4 demonstrates, the
TLB cannot hold entries for all of the metadata pages when
smaller page sizes are used. Because metadata pages also
compete with input and output pages in the TLB, two or
more TLB misses per tuple partitioned becomes increas-
ingly likely for larger numbers of hash bits when smaller
pages are used. Comparing Figures 4(a) and 4(b) with Fig-
ures 3(a) and 3(c) one can see the rise in TLB misses from
one to two per tuple processed roughly coincides with the
point at which the number of metadata pages exceeds the
TLB capacity. This makes sense, because given our uni-
form input distribution, metadata pages, which contain the
metadata for many output locations, are more frequently
accessed than output pages. Therefore, metadata pages are
more likely to be in the cache even when the number of out-
put pages greatly exceeds the TLB capacity. It is only when
the metadata pages also exceed the TLB capacity that we
begin to see TLB misses for metadata as well. The impact
of metadata on cache misses is discussed in Section 5.3.

In general, when using smaller page sizes, increasing the
number of output partitions beyond the reach of the TLB
increases the number of TLB misses, which decreases per-
formance. Large page sizes, such as those available on the
T1, can mitigate this TLB reach issue.

The count-then-move technique’s TLB misses (Figure 3(g))
also plateau around one miss per tuple, but then increase to
at least three misses per tuple when more hash bits are used.
This is because each pass incurs a TLB miss while reading
the meta data, plus one miss when writing the output. On
the first pass, the metadata miss occurs when the counter
is incremented and on the second pass it happens when the
write offset is read and incremented.

Similarly, parallel buffers (Figure 3(e)) incur more than
two misses per tuple. This is because pieces of its meta-
data are stored separately to avoid false sharing between
threads. More sophisticated metadata allocation could elim-
inate some of these TLB misses by placing all metadata for
a buffer on the same page, albeit on separate cache lines to
avoid false sharing.

The recorded user level misses make sense given the pat-
tern of memory accesses caused by the different partitioning
techniques. What is less obvious is the total misses — user
and system level (the right column of Figure 3). In all cases
except the count-then-move technique, the total TLB misses
exceed the user level misses at high partitioning cardinali-
ties.

We suspect that the system is incurring additional system
TLB misses while servicing user TLB misses. When a large
number of partitions are used, the amount of metadata re-
quired is quite large and requires many pages when small
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Figure 3: TLB misses incurred by the user and system while partitioning. The input cardinality was 22!
tuples and 32 threads were used.
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Figure 4: The number of pages required to hold partitioning metadata for different page sizes.

pages are used. This is in addition to the pages required for
the 2° output locations. Caching and searching all of the
pages required for both writing output and managing meta-
data may require the operating system to use multiple levels
of complex data structures®, straining the system in such a
way that it incurs TLB misses while servicing TLB misses.
We advocate using large pages for partitioning as this bad
TLB behavior is then avoided.

5.3 CacheMisses

The experiments using 256MB pages (Figure 1(d)), where
there are no TLB misses, show the impact of cache misses.
With large pages, the performance of the four techniques
drops off at a higher number of hash bits (more partitions)
than with smaller pages. This is because the TLB misses
are avoided, but cache misses still impact performance.

Using hardware performance counters, we measured the
number of L2 read misses per tuple for each tuple pro-
cessed. Unfortunately, cache misses triggered by writes are
not recorded by the hardware performance counters. The
results however, do show the increasing impact of the space
occupied by metadata used by the partitioning techniques.
Parallel buffers, which require the most metadata per par-
tition, incur the most L2 read misses for metadata as the
number of partitions increases, while concurrent output re-
quires the least metadata per partition and subsequently
incurs the fewest L2 read misses.

Even though the performance counters do not count L2
cache write misses, we can still reason about them. To do
so, we introduce the concept of an active cache line. A cache
line is active during partitioning from the time that data is
first written to it until it has been completely filled. Because
our tuples (16B) are smaller than an L2 cache line (64B),
a large amount of time may pass between the first and last
write. If the time between writes is too great, the cache line
may be evicted, resulting in a cache miss on every write.

Ignoring the metadata, we can calculate the number of
active cache lines for each partitioning method. If the num-
ber of active cache lines exceeds the 3MB L2 cache capac-
ity, then the thrashing described above will occur, causing
a cache miss on every write. The L2 cache contains 49152
cache lines. In the concurrent method, threads are shar-

5A complete discussion of TLB miss handling in Solaris can
be found in [9)].

ing an output buffer and incrementing the output location
one tuple at a time so there is just one active cache line
per partition. Because our input is unique and uniform, we
would therefore expect to see an increase in cache misses
and therefore a drop in performance when the number of
partitions exceeds the number of cache lines in the cache.
Based on this analysis we predict that the performance of
the concurrent technique would begin to drop off at 15 to
16 hash bits. However, Figure 1(d) shows that the perfor-
mance drops off earlier. In our analysis we also need to
include the metadata stored in the cache and the fact that
input is also being continuously loaded into the cache. Each
output buffer requires 16B of metadata so the number of

cache lines needed for the metadata is %. Additionally,
because the input is uniform, the expected number of input
tuples read between accesses to a partition is the number
of partitions, 2°, which results in 2b6*416 cache lines of data
added to the cache. With this amount of pressure on the
cache capacity, not to mention the chance of a conflict miss,
the drop in performance at 13 or 14 hash bits instead of the
predicted 15 makes sense. Also, because output buffers are
shared one tuple at a time, the point at which cache thrash-
ing starts should be the same, regardless of the number of
threads used as shown in Figure 5(b).

In contrast, the number of active cache lines in the other
methods, increases as more threads are used because each
thread has it own output location for each partition. Even
in the case of parallel buffer output, although the buffer is
shared, if the chunk size is equal to or greater than a cache
line of tuples, each thread will write to unique cache lines
within that buffer. Therefore, by using an analysis similar
to the one above, we expect performance to worsen due to
cache thrashing when fewer hash bits are used than with
the concurrent output. This is confirmed in Figure 1(d).
Furthermore, the inflection point should move left as more
threads are used, which is confirmed in Figures 5(a) and 5(c)
for the independent and parallel buffer output techniques,
respectively. When few threads are used, there is little cache
pressure for any number of partitions.

5.4 Scaling

All techniques stop scaling well once cache thrashing oc-
curs as described above and shown in Figure 5. When cache
misses are not an issue, additional threads improve perfor-
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Figure 5: Comparing the scaling of partitioning techniques as the number of threads is varied. The input
cardinality was 22 tuples and the page size was 256 MB.

mance, but the scaling is not perfect, i.e., a doubling of
threads does not double the partitioning throughput. Also,
as noted above, for all techniques other than the concur-
rent buffer, increasing the number of threads increases the
cache pressure. This means that cache thrashing will occur
at fewer and fewer output partitions as more threads are
used. That cache thrashing is such an impediment to good
scaling confirms the observation by [8] that suggests multi-
pass partitioning, where each pass fits within the cache and
the TLB, will give better performance than a single pass
using a larger number of output partitions. For CMPs, this
analysis is complicated slightly by the fact that output data
structures that help to avoid thread contention also scale in
terms of the number of active cache lines as the number of
threads used increases. Future CMPs with more threads,
all other characteristics being equal, will be limited to fewer
and fewer cache resident output partitions per pass assuming
that all threads are applied to the partitioning.

5.5 Multiple Passes

Figure 6 shows the performance of the parallel and con-
current buffer techniques using one and two passes. In the
two pass versions, the first and second passes partition using
[£] and | %] hash bits, respectively. As in [8], for very large
numbers of partitions, making two passes using fewer hash
bits performs better than one pass using all hash bits. A new
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Figure 6: One vs. two pass partitioning using 32
threads and 256MB pages to partition 22 tuples.

result, however, is the balancing of parallelism and the size
of data structures that enable parallelism. Although paral-
lel buffers avoid contention and have high performance when
less than nine hash bits are used, two pass parallel buffer par-
titioning performance is worse than single pass concurrent
buffer performance when nine or more hash bits are used.
This is because the concurrent technique requires less meta-
data and fewer active cache lines per thread, therefore stay-

32



180

No buffer —+—
Buffe
160 Buffer + Block Init. Store—%—
- 140
2
o
o
& 120
5]
a
E 100
Q
5
C 80
o
@
2
S 60
g
40
20
0
0 2 4 6 8 10 12 14 16 18
Hash Bits
(a) Page Size = 8KB
180 No buffer —+—
Buffer
160 Buffer + Block Init. Store—%—
- 140
2
o
1=
& 120
5]
a
E 100
Q
5
= 80
o
@
2
S 60
g
40
20

0 2 4 6 8 10 12 14 16 18
Hash Bits

(c) Page Size = 4MB

180

No buffer ——
Buffer
160 Buffer + Block Init. Store—x—
- 140
c
o
o
& 120
9]
Q
ﬁ 100
Q
S
= 80
IS)
@
2
S 60
S
40
20
0
0 2 4 6 8 10 12 14 16 18
Hash Bits
(b) Page Size = 64 KB
180 No buffer —+—
Buffer
160 Buffer + Block Init. Store—x—
- 140
c
o
o
& 120
9]
Q
ﬁ 100
Q
S
C 80
IS)
@
2
S 60
S
40
20
0
0 2 4 6 8 10 12 14 16 18
Hash Bits

(d) Page Size = 256MB

Figure 7: A throughput comparison of the independent output technique with different page sizes when using

buffering with and without block initializing stores.

ing cache resident to larger numbers of partitions. Even once
one-pass concurrent partitioning performance drops off, two
pass concurrent partitioning still performs better than two
pass parallel buffer partitioning. Note also, though, that us-
ing two-pass concurrent partitioning results in a larger range
of hash bits in which it experiences contention.

5.6 Buffering and Block Initializing Stores

Buffering tuples for writing to each output location may
improve partitioning performance in some circumstances.
One performance problem identified in Section 5.2 is that
for high numbers of output partitions, each write results in
a TLB miss. By collocating output buffers for all partitions,
the buffers take up fewer pages than the corresponding active
output partitions. Therefore, placing a tuple into a buffer
is more likely to be a TLB hit. Further, when a buffer is
flushed to the actual output location, only one TLB miss
is required for the entire buffer, thus amortizing the cost of
the TLB miss over many tuples. A comparison of the in-
dependent technique with and without a buffer is shown in
Figure 7. Figure 8 demonstrates that buffering significantly
lowers the number of TLB misses per tuple. Buffering alone,
however, introduces additional overheads, both in terms of
storage and computation, that make it perform worse than
no buffering in some cases. This performance can be im-
proved by using a block initializing store instruction when

flushing a full buffer to its corresponding output partition.

When a valid block initializing store instruction is exe-
cuted, rather than taking a cache miss to load the requested
line from memory, a zeroed cache line is allocated directly in
the L2 cache [12]. Using such an instruction when writing a
buffer of tuples to an output partition, we avoid the latency
of a cache miss and save some memory bandwidth. Block
initializing stores on the UltraSPARC T1 must start at an
offset aligned to the start of a cache line and should write
a full cache line to memory. Therefore, buffering of tuples
smaller than a cache line in size is required to use block ini-
tializing stores. Combining buffering with block initializing
stores results in better performance as shown in Figure 7.

Because block initializing stores require the writing of en-
tire cache lines, tuples that do not fit evenly withing a cache
line or span multiple cache lines may be more challenging
to properly buffer and write to a destination. In our experi-
ment, not only are the tuples smaller than a cache line, but
they also fit evenly within a cache line. Buffering is useful
for our data, but may not be appropriate in all situations. A
buffered partitioning implementation for tuples of arbitrary
size would need to balance total buffer size with the benefit
of amortizing TLB misses. If block initializing stores are to
be used, one must also ensure correct writing of whole cache
lines, which may be non-trivial if tuples span cache lines and
the output buffer is shared among threads.
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6. FUTURE WORK

We realize that not all input is uniform and that uni-
form input, as used in these experiments, may not represent
a worst case scenario for CMP partitioning. Future work
includes examining CMP partitioning performance on non-
unique, non-uniform input. Non-uniform distributions will
have some “heavy hitter” values that may cause some par-
titions to grow much larger than the expected size given an
assumption of uniform input.

In such a case, partition cardinality estimation may be
required and output buffers must be able to grow efficiently
and concurrently. Concurrent growth, in particular, may be
a challenge for the techniques described in this paper that
use shared buffers. The two-pass algorithm would remain
unchanged for non-uniform input because the initial count-
ing phase handles any amount of skew in actual partition
size. The presence of heavy hitters in the input may actually
improve performance by improving the locality of reference
to some partitions, thereby reducing TLB and cache misses.
On the other hand, frequently accessed partitions could be-
come a source of contention if shared between threads.

Other future work includes using CMP partitioning to aid
in the parallelizing or improving the performance of other
CMP database operations. For instance, it was observed
in [2] that an efficient means of clustering group by keys in
the input to multithreaded hash aggregation could improve
the overall performance of the aggregation operation. Un-
fortunately, the performance of CMP partitioning on this
particular machine does not seem high enough to be able to
improve the aggregation performance reported in [2].

CMP partitioning should also be investigated on CMPs
with “fatter” cores than the UltraSPARC T1. These cores
may have different performance characteristics due to more
sophisticated support for prefetching and out-of-order execu-
tion and different capabilities in terms of atomic operations.
As of publication, however, no commodity “fat” core CMP
chips have on-chip thread-level parallelism to match the T1.

7. CONCLUSION

In this paper we have identified output coordination to be
a key component of CMP partitioning performance and have
presented four techniques for enabling parallel partitioning.

As described in Section 3, all of the techniques have different
characteristics in terms of the format of their output and the
means with which they enable concurrent partitioning on a
CMP. Our results confirm the work of Manegold et al. [8] in
that reducing TLB and cache misses is paramount to achiev-
ing good partitioning performance. In our study, large pages
and sharing output pages among threads eliminate or reduce
TLB misses. We also find that cache misses are influenced
by the number of partitions, whether the number of active
cache lines scales with the number of threads used, and how
much per thread metadata is required to manage the out-
put buffers. Finally, an analysis of two pass partitioning
shows the importance of balancing space efficiency with en-
abling contention free parallelism. For smaller numbers of
partitions, it is important to use data structures that enable
contention-free partitioning. As the number of partitions
increases, one must switch to more compact, shared buffer
strategies and employ more than one pass for maximum per-
formance. In conclusion, high performance CMP partition-
ing requires a careful balancing of parallelism, contention,
active cache lines, and metadata size.
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ABSTRACT

Critical sections in database storage engines impact performance
and scalability more as the number of hardware contexts per chip
continues to grow exponentially. With enough threads in the sys-
tem, some critical section will eventually become a bottleneck.
While algorithmic changes are the only long-term solution, they
tend to be complex and costly to develop. Meanwhile, changes in
enforcement of critical sections require much less effort. We
observe that, in practice, many critical sections are so short that
enforcing them contributes a significant or even dominating frac-
tion of their total cost and tuning them directly improves database
system performance. The contribution of this paper is two-fold:
we (a) make a thorough performance comparison of the various
synchronization primitives in the database system developer’s
toolbox and highlight the best ones for practical use, and (b) show
that properly enforcing critical sections can delay the need to
make algorithmic changes for a target number of processors.

1. INTRODUCTION

Ideally, a database engine would scale perfectly, with throughput
remaining (nearly) proportional to the number of clients even for
a large number of clients. In practice several factors limit data-
base engine scalability. Disk and compute capacities often limit
the amount of work that can be done in a given system, and
badly-behaved applications (like TPC-C) generate high levels of
lock contention and limit concurrency. However, these bottle-
necks are all largely external to the database engine; within the
storage manager itself, threads share many internal data struc-
tures. Whenever a thread accesses a shared data structure, it must
prevent other threads from making concurrent modifications or
data races and corruption will result. These protected accesses are
known as critical sections, and can reduce scalability, especially
in the absence of other, external bottlenecks.

For the forseeable future, computer architects will double the
number of processor cores available each generation rather than
increasing single-thread performance. Database engines are
already designed to handle hundreds or even thousands of concur-
rent transactions, but with most of them blocked on I/O or data-
base locks at any given moment. Even in the absence of lock or I/
O bottlenecks, a limited number of hardware contexts used to
bound contention for the engine’s internal shared data structures.
Historically, the database community has largely overlooked criti-
cal sections, either ignoring them completely or considering them
a solved problem [1]. We find that as the number of active
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threads grows the engine’s internal critical sections become a new
and significant obstacle to scalability. Analysis of several open
source storage managers [11] shows critical sections become bot-
tlenecks with a relatively small number of active threads, with
BerkeleyDB scaling to 4 threads, MySQL to 8, and PostgreSQL
to 16. These findings indicate that many database engines are
unprepared for this explosion of hardware parallelism.

As the database developer optimizes the system for scalability,
algorithmic changes are required to reduce the number of threads
contending for particular critical section. Additionally, we find
that the method by which existing critical sections are enforced is
a crucial factor in overall performance and, to some extent, scal-
ability. Database code exhibits extremely short critical sections,
such that the overhead of enforcing those critical sections is a sig-
nificant or even dominating fraction of their total cost. Reducing
the overhead of enforcing critical sections directly impacts perfor-
mance and can even take critical sections off the critical path
without the need for costly changes to algorithms.

The literature abounds with synchronization approaches and
primitives which could be used to enforce critical sections, each
with its own strengths and weaknesses. The database system
developer must then choose the most appropriate approach for
each type of critical section encountered in during the tuning pro-
cess or risk lowering performance significantly.

To our knowledge there is only limited prior work that
addresses the performance impact and tuning of critical sections,
leaving developers to learn by trial and error which primitives are
most useful. This paper illustrates the performance improve-
ments that come from enforcing critical sections properly, using
our experience developing Shore-MT [11], a scalable engine
based on the Shore storage manager [4]. We also evaluate the
most common types of synchronization approaches, then identify
the most useful ones for enforcing the types of critical sections
found in database code. Database system developers can then uti-
lize this knowledge to select the proper synchronization tool for
each critical section and maximize performance.

The rest of the paper is organized as follows. Sections 2 and 3
give an overview of critical sections in database engines and the
scalability challenges they raise. Sections 4 and 5 present an over-
view of common synchronization approaches and evaluate their
performance. Finally, Sections 6 and 7 discuss high-level obser-
vations and conclude.

2. CRITICAL SECTIONS INSIDE DBMS

Database engines purposefully serialize transaction threads in
three ways. Database locks enforce consistency and isolation
between transactions by preventing other transactions from
accessing the lock holder’s data. Locks are a form of logical pro-
tection and can be held for long durations (potentially several
disk I/O times). Latches protect the physical integrity of database
pages in the buffer pool, allowing multiple threads to read them
simultaneously, or a single thread to update them. Transactions
acquire latches just long enough to perform physical operations
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(at most one disk I/0), depending on locks to protect that data
until transaction commit time. Locks and latches have been stud-
ied extensively [1][7]. Database locks are especially expensive to
manage, prompting proposals for hardware acceleration [21].

Critical sections form the third source of serialization. Data-
base engines employ many complex, shared data structures; criti-
cal sections (usually enforced with semaphores or mutex locks)
protect the physical integrity of these data structures in the same
way that latches protect page integrity. Unlike latches and locks,
critical sections have short and predictable durations because they
seldom span I/O requests or complex algorithms; often the thread
only needs to read or update a handful of memory locations. For
example, a critical section might protect traversal of a linked list.
Critical sections abound throughout the storage engine’s code. In
Shore-MT, for example, we estimate that a TPC-C Payment trans-
action — which only touches 4-6 database records — enters
roughly one hundred critical sections before committing. Under
these circumstances, even uncontended critical sections are
important because the accumulated overhead can contribute a sig-
nificant fraction of overall cost. The rest of this section presents
an overview of major storage manager components and lists the
kinds of critical sections they make use of.

Buffer Pool Manager. The buffer pool manager maintains a pool
for in-memory copies of in-use and recently-used database pages
and ensures that the pages on disk and in memory are consistent
with each other. The buffer pool consists of a fixed number of
frames which hold copies of disk pages and provide latches to pro-
tect page data. The buffer pool uses a hash table that maps page
IDs to frames for fast access, and a critical section protects the list
of pages at each hash bucket. Whenever a transaction accesses a
persistent value (data or metadata) it must locate the frame for that
page, pin it, then latch it. Pinning prevents the pool manager from
evicting the page while a thread acquires the latch. Once the page
access is complete, the thread unlatches and unpins the page,
allowing the buffer pool to recycle its frame for other pages if nec-
essary. Page misses require a search of the buffer pool for a suit-
able page to evict, adding yet another critical section. Overall,
acquiring and releasing a single page latch requires at least 3-4
critical sections, and more if the page gets read from disk.

Lock Manager. Database locks preserve isolation and consistency
properties between transactions. Database locks are hierarchical,
meaning that a transaction wishing to lock one row of a table must
first lock the database and the table in an appropriate infent mode.
Hierarchical locks allow transactions to balance granularity with
overhead: fine-grained locks allow high concurrency but are
expensive to acquire in large numbers. A transaction which plans
to read many records of a table can avoid the cost of acquiring row
locks by escalating to a single table lock instead. However, other
transactions which attempt to modify unrelated rows in the same
table would then be forced to wait. The number of possible locks
scales with the size of the database, so the storage engine main-
tains a lock pool very similar to the buffer pool.

The lock pool features critical sections that protect the lock
object freelist and the linked list at each hash bucket. Each lock
object also has a critical section to “pin” it and prevent recycling
while it is in use, and another to protect its internal state. This
means that, to acquire a row lock, a thread enters at least three
critical sections for each of the database, table, and row locks.

Log Manager. The log manager ensures that modified pages in
memory are not lost in the event of a failure: all changes to pages

are logged before the actual change is made, allowing the page’s
latest state to be reconstructed during recovery. Every log insert
requires a critical section to serialize log entries and another to
coordinate with log flushes. An update to a given database record
often involves several log entries due to index and metadata
updates that go with it.

Free Space Management. The storage manager maintains meta-
data which tracks disk page allocation and utilization. This infor-
mation allows the storage manager to allocate unused pages to
tables efficiently. Each record insert (or update that increases
record size) requires entering several critical sections to determine
whether the current page has space and to allocate new pages as
necessary. Note that the transaction must also latch the free space
manager’s metadata pages and log any updates.

Transaction Management: The system maintains a total order of
transactions in order to resolve lock conflicts and maintain proper
transaction isolation. Whenever a transaction begins or ends this
global state must be updated. In addition, no transaction may com-
mit during a log checkpoint operation, in order to ensure that the
resulting checkpoint is consistent. Finally, multi-threaded transac-
tions must serialize the threads within a transaction in order to
update per-transaction state such as lock caches.

3. THE DREADED CRITICAL SECTION

By definition, critical sections limit scalability by serializing the
threads which compete for them. Each critical section is simply
one more limited resource in the system that supports some maxi-
mum throughput. As Moore's Law increases the number of
threads which can execute concurrently, the demand on critical
sections increases and they invariably enter the critical path to
become the bottleneck in the system. Database engine designers
can potentially improve critical section capacity (i.e. peak
throughput) by changing how they are enforced or by altering
algorithms and data structures.

3.1 Algorithmic Changes

Algorithmic changes address bottleneck critical sections by either
reducing how often threads enter them (ideally never), or by
breaking them into several “smaller” ones in a way that distrib-
utes contending threads as well (ideally, each thread can expect
an uncontended critical section). For example, buffer pool manag-
ers typically distribute critical sections by hash bucket so that
only probes for pages in the same bucket must be serialized.

In theory, algorithmic changes are the superior approach for
addressing critical sections because they can remove or distribute
critical sections to ease contention. Unfortunately, developing and
implementing new algorithms is challenging and time consuming,
with no guarantee of a breakthrough for a given amount of effort.
In addition, even the best-designed algorithms will eventually
become bottlenecks again if the number of threads increases
enough, or if non-uniform access patterns cause hotspots.

3.2 Changing Synchronization Primitives

The other approach for improving critical section throughput is
by altering how they are enforced. Because the critical sections
we are interested in are so short, the cost of enforcing them is a
significant — or even dominating — fraction of their overall cost.
Reducing the cost of enforcing a bottleneck critical section can
improve performance a surprising amount. Also, critical sections
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Figure 1.4lgorithmic changes and tuning combine to give best per-
formance.A<n> is an algorithm change; B<n> is a baseline
T<n> is synchronization tuning.

tend to be encapsulated by their surrounding data structures, so
the developer can change how they are enforced simply by
replacing the existing synchronization primitive with a different
one. These characteristics make critical section tuning attractive if
it can avoid or delay the need for costly algorithmic changes.

3.3 Both are Needed

Figure 1 illustrates how algorithmic changes and synchronization
tuning combined give the best performance. It presents the per-
formance of Shore-MT at several stages of tuning, with through-
put given on the log-scale y-axis as the number of threads in the
system varies along the x-axis. These numbers came from the
experience of converting Shore to Shore-MT [11]. The process
involved beginning with a thread-safe but very slow version of
Shore and repeatedly addressing critical sections until internal
scalability bottlenecks had all been removed. The changes
involved algorithmic and synchronization changes in all the major
components of the storage manager, including logging, locking,
and buffer pool management. The figure shows the performance
and scalability of Shore-MT at various stages of tuning. Each
thread repeatedly runs transactions which insert records into a pri-
vate table. These transactions exhibit no logical contention with
each other but tend to expose many internal bottlenecks. Note
that, in order to show the wide range of performance the y-axis of
the figure is log-scale; the final version of Shore-MT scales
nearly as well as running each thread in an independent copy of
Shore-MT.

The “B1” line at the bottom represents the thread-safe but
unoptimized Shore; the first optimization (A1) replaced the cen-
tral buffer pool mutex with one mutex per hash bucket. As a
result, scalability improved from one thread to nearly four, but
single-thread performance did not change. The second optimiza-
tion (T1) replaced the expensive pthread mutex protecting buffer
pool buckets with a fast test and set mutex (see Section 4 for
details about synchronization primitives), doubling throughput for
a single thread. The third optimization (T2) replaced the test-and-
set mutex with a more scalable MCS mutex, allowing the doubled
throughput to persist until other bottlenecks asserted themselves
at four threads.

B2 represents the performance of Shore-MT after many subse-
quent optimizations, when the buffer pool again became a bottle-
neck. Because the critical sections were already as efficient as
possible, another algorithmic change was required (A2). This
time the open-chained hash table was replaced with a cuckoo

hash table to further reduce contention for hash buckets, improv-
ing scalability from 8 to 16 threads and beyond (details in [11]).

This example illustrates how both proper algorithms and proper
synchronization are required to achieve the highest performance.
In general, tuning primitives improves performance significantly,
and sometimes scalability as well; algorithmic changes improve
scalability and might help or hurt performance (more scalable
algorithms tend to be more expensive). Finally, we note that the
two tuning optimizations each required only a few minutes to
apply, while each of the algorithmic changes required several
days to implement and debug. The performance impact and ease
of reducing critical section overhead makes tuning an important
part of the optimization process.

4. SYNCHRONIZATION APPROACHES

The literature abounds with different synchronization primitives
and approaches, each with different overhead (cost to enter an
uncontended critical section) and scalability (whether, and by
how much, overhead increases under contention). Unfortunately,
efficiency and scalability tend to be inversely related: the cheap-
est primitives are unscalable, and the most scalable ones impose
high overhead; as the previous section illustrated, both metrics
impact the performance of a database engine. Next we present a
brief overview of the types of primitives available to the designer.

4.1 Synchronization Primitives

The most common approach to synchronization is to use a syn-
chronization primitive to enforce the critical section. There are a
wide variety of primitives to choose from, all more or less inter-
changeable with respect to correctness.

Blocking Mutex. All operating systems provide heavyweight
blocking mutex implementations. Under contention these primi-
tives deschedule waiting threads until the holding thread releases
the mutex. These primitives are fairly easy to use and understand,
in addition to being portable. Unfortunately, due to the cost of con-
text switching and their close association with the kernel sched-
uler, they are not particularly cheap or scalable for the short critical
sections we are interested in.

Test-and-set Spinlocks. Test-and-set (TAS) spinlocks are the sim-
plest mutex implementation. Acquiring threads use an atomic
operation such as a SWAP to simultaneously lock the primitive and
determine if it was already locked by another thread, repeating
until they lock the mutex. A thread releases a TAS spinlock using a
single store. Because of their simplicity TAS spinlocks are
extremely efficient. Unfortunately, they are also among the least-
scalable synchronization approaches because they impose a heavy
burden on the memory subsystem. Variants such as test-and-test-
and-set [22] (TATAS), exponential back-off [2], and ticket-based
[20] approaches reduce the problem somewhat, but do not solve it
completely. Backoff schemes, in particular, are very difficult (and
hardware-dependent) to tune.

Queue-based Spinlocks. Queue-based spinlocks organize con-
tending threads into a linked list queue where each thread spins on
a different memory location. The thread at the head of the queue
holds the lock, handing off to a successor when it completes.
Threads compete only long enough to append themselves to the
tail of the queue. The two best-known queuing spinlocks are MCS
[16] and CLH [5][15], which differ mainly in how they manage
their queues. MCS queue links point toward the tail, while CLH
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Figure 2.Performance of mutex locks as the contention (left) and the duration of the CS (right) vary.

links point toward the head. Queuing improves on test-and-set by
eliminating the burden on the memory system and also by decou-
pling lock contention from lock hand-off. Unfortunately, each
thread is responsible to allocate and maintain a queue node for
each lock it acquires. In our experience, memory management can
quickly become cumbersome in complex code, especially for CLH
locks, which require heap-allocated state.

Reader-Writer Locks. In certain situations, threads enter a critical
section only to prevent other threads from changing the data to be
read. Reader-writer locks allow either multiple readers or one
writer to enter the critical section simultaneously, but not both.
While operating systems typically provide a reader-writer lock, we
find that the pthreads implementation suffers from extremely high
overhead and poor scalability, making it useless in practice. The
most straightforward reader-writer locks use a normal mutex to
protect their internal state; more sophisticated approaches extend
queuing locks to support reader-writer semantics [17][13].

A Note About Convoys. Some synchronization primitives, such
as blocking mutex and queue-based spinlocks, are vulnerable to
forming stable quasi-deadlocks known as convoys [3]. Convoys
occur when the lock passes to a thread that has been descheduled
while waiting its turn. Other threads must then wait for the thread
to be rescheduled, increasing the chances of further preemptions.
The result is that the lock sits nearly idle even under heavy conten-
tion. Recent work [8] has provided a preemption-resistant form of
queuing lock, at the cost of additional overhead which can put
medium-contention critical sections squarely on the critical path.

4.2 Alternatives to Locking

Under certain circumstances critical sections can be enforced
without resorting to locks. For example, independent reads and
writes to a single machine word are already atomic and need no
further protection. Other, more sophisticated approaches such as
optimistic concurrency control and lock-free data structures allow
larger critical sections as well.

Optimistic Concurrency Control. Many data structures feature
read-mostly critical sections, where updates occur rarely, and often
come from a single writer. The reader's critical sections are often
extremely short and overhead dominates the overall cost. Under
these circumstances, optimistic concurrency control schemes can
improve performance dramatically by assuming no writer will
interfere during the operation. The reader performs the operation
without enforcing any critical section, then afterward verifies that

no writer interfered (e.g. by checking a version stamp). In the rare
event that the assumption did not hold, the reader blocks or retries.
The main drawbacks to OCC are that it cannot be applied to all
critical sections (since side effects are unsafe until the read is veri-
fied), and unexpectedly high writer activity can lead to livelock as
readers endlessly block or abort and retry.

Lock-free Data Structures. Much current research focuses on
lock-free data structures [9] as a way to avoid the problems that
come with mutual exclusion (e.g. [14][6]). These schemes usually
combine optimistic concurrency control and atomic operations to
produce data structures that can be accessed concurrently without
enforcing critical sections. Unfortunately there is no known gen-
eral approach to designing lock free data structures; each must be
conceived and developed separately, so database engine designers
are have a limited library to choose from. In addition, lock-free
approaches can suffer from livelock unless they are also wait-free,
and may or may not be faster than the lock-based approaches under
low and medium contention (many papers provide only asymptotic
performance analyses rather than benchmark results).

Transactional Memory. Transactional memory approaches
enforce critical sections using database-style “transactions” which
complete atomically or not at all. This approach eases many of the
difficulties of lock-based programming and has been widely
researched. Unfortunately, software-based approaches [23] impose
too much overhead for the tiny critical sections we are interested
in, while hardware approaches [10][19] generally suffer from com-
plexity, lack of generality, or both, and have not been adopted.
Finally, we note that transactions do not inherently remove conten-
tion; at best transactional memory can serialize critical sections
with very little overhead.

5. CHOOSING THE RIGHT APPROACH

This section evaluates the different synchronization approaches
using a series of microbenchmarks that replicate the kinds of crit-
ical sections found in database code. We present the performance
of the various approaches as we vary three parameters: Con-
tended vs. uncontended accesses, short vs. long duration, and
read-mostly vs. mutex critical sections. We then use the results to
identify the primitives which work best in each situation.

Each microbenchmark creates N threads which compete for a
lock in a tight loop over a one second measurement interval (typi-
cally 1-10M iterations). The metric of interest is cost per iteration
per thread, measured in nanoseconds of wall-clock time. Each
iteration begins with a delay of 7o ns to represent time spent out-
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Figure 3.Performance of reader-writer locks as contention (left) and reader-writer ratio (right) vary.

side the critical section, followed by an acquire operation. Once
the thread has entered the critical section, it delays for 7i ns to
represent the work performed inside the critical section, then per-
forms a release operation. All delays are measured to 4 ns accu-
racy using the machine’s cycle count register; we avoid
unnecessary memory accesses to prevent unpredictable cache
misses or contention for hardware resources.

For each scenario we compute an ideal cost by examining the
time required to serialize 7i plus the overhead of a memory bar-
rier, which is always required for correctness. Experiments
involving reader-writers are set up exactly the same way, except
that readers are assumed to perform their memory barrier in par-
allel and threads use a pre-computed array of random numbers to
determine whether they should perform a read or write operation.

All of our experiments were performed using a Sun T2000
(Niagara [12]) server running Solaris 10. The Niagara chip is a
multi-core architecture with 8 cores; each core provides 4 hard-
ware contexts for a total of 32 OS-visible "processors". Cores
communicate through a shared 3MB L2 cache.

5.1 Contention

Figure 2 (left) compares the behavior of four mutex implementa-
tions as the number of threads in the system varies along the x-
axis. The y-axis gives the cost of one iteration as seen by one
thread. In order to maximize contention, we set both 7o and Ti to
zero; threads spend all their time acquiring and releasing the
mutex. TATAS is a test-and-set spinlock variant. MCS and
ppMCS are the original and preemption-resistant MCS locks,
respectively, while pthread is the native pthread mutex. Finally,
“ideal” represents the lowest achievable cost per iteration, assum-
ing that the only overhead of enforcing the critical section comes
from the memory barriers which must be present for correctness.

As the degree of contention of the particular critical section
changes, different synchronization primitives become more
appealing. The native pthread mutex is both expensive and
unscalable, making it unattractive. TATAS is by far the cheapest
for a single thread, but quickly falls behind as contention
increases. We also note that all test-and-set variants are extremely
unfair, as the thread which most recently released it is likely to
re-acquire it before other threads can respond. In contrast, the
queue-based locks give each thread equal attention.

5.2 Duration

Another factor of interest is the performance of the various syn-
chronization primitives as the duration of the critical section var-
ies (under medium contention) from extremely short to merely
short. We assume that a long, heavily-contended critical section is
a design flaw which must be addressed algorithmically.

Figure 2 (right) shows the cost of each iteration as 16 threads
compete for each mutex. The inner and outer delays both vary by
the amount shown along the x-axis (keeping contention steady).
We see the same trends as before, with the main change being the
increase in ideal cost (due to the critical section’s contents). As
the critical section increases in length, the overhead of each prim-
itive matters less; however, ppMCS and TATAS still impose 10%
higher cost than MCS, while pthread more than doubles the cost.

5.3 Reader/Writer Ratio

The last parameter we study is the ratio between the readers and
the writers. Figure 3 (left) characterizes the performance of sev-
eral reader-writer locks when subjected to 7 reads for every write
and with 7o and 7i both set to 100 ns. The cost/iteration is shown
on the y-axis as the number of competing threads varies along the
x-axis. The TATAS mutex and MCS mutex apply mutual exclu-
sion to both readers and writers. The TATAS rwlock extends a
normal TATAS mutex to use a read/write counter instead of a sin-
gle “locked” flag. The MCS rwlock comes from the literature
[13]. OCC lets readers increment a simple counter as long as no
writers are around; if a writer arrives, all threads (readers and
writers) serialize through an MCS lock instead.

We observe that reader-writer locks are significantly more
expensive than their mutex counterparts, due to the extra com-
plexity they impose. For very short critical sections and low
reader ratios, a mutex actually outperforms the rwlock; even for
the 100ns case shown here, the MCS lock is a usable alternative.

Figure 3 (right) fixes the number of threads at 16 and varies the
reader ratio from 0 (all writes) to 127 (mostly reads) with the
same delays as before. As we can see, the MCS rwlock performs
well for high reader ratios, but the OCC approach dominates it,
especially for low reader ratios. For the lowest read ratios, the
MCS mutex performs the best — the probability of multiple con-
current reads is too low to justify the overhead of a rwlock.

6. DISCUSSION AND OPEN ISSUES

The microbenchmarks from the previous section illustrate the
wide range in performance and scalability among the different
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primitives. From the contention experiment we see that the
TATAS lock performs best under low contention due to having
the lowest overhead; for high contention, the MCS lock is supe-
rior thanks to its scalability. The experiment also highlights how
expensive it is to enforce critical sections. The ideal case (mem-
ory barrier alone) costs 50 ns, and even TATAS costs twice that.
The other alternatives cost 250 ns or more. By comparison a store
costs roughly 10 ns, meaning critical sections which update only
a handful of values suffer more than 80% overhead. As the dura-
tion experiment shows, pthread and TATAS are undesirable even
for longer critical sections that amortize the cost somewhat.
Finally, the reader-writer experiment demonstrates the extremely
high cost of reader-writer synchronization; a mutex outperforms
rwlocks at low read ratios by virtue of its simplicity, while opti-
mistic concurrency control wins at high ratios. Figure 4 summa-
rizes the results of the experiments, showing which of the three
synchronization primitives to use under what circumstances. We
note that, given a suitable algorithm, the lock free approach might
be best.

The results also suggest that there is much room for improve-
ment in the synchronization primitives that protect small critical
sections. Hardware-assisted approaches (e.g. [18]) and imple-
mentable transactional memory might be worth exploring further
in order to reduce overhead and improve scalability. Reader-
writer primitives, especially, do not perform well as threads must
still serialize long enough to identify each other as readers and
check for writers.

7. CONCLUSION

Critical sections are emerging as a major obstacle to scalability as
the number of hardware contexts in modern systems continues to
grow and a large part of the execution is computation-bound. We
observe that algorithmic changes and proper use of synchroniza-
tion primitives are both vital to maximize performance and keep
critical sections off the critical path in database engines and that
even uncontended critical sections sap performance because of
the overhead they impose. We identify a small set of especially
useful synchronization primitives which a developer can use for
enforcing critical sections. Finally, we identify several areas
where currently available primitives fall short, indicating poten-
tial avenues for future research.
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ABSTRACT

A major performance bottleneck for database systems is the
memory hierarchy. The performance of the memory hier-
archy is directly related to how the content of disk pages
maps to the L2 cache lines, i.e. to the organization of data
within a disk page, called the page layout. The prevalent
page layout in database systems is the N-ary Storage Model
(NSM). As demonstrated in this paper, using NSM for tem-
poral data deteriorates memory hierarchy performance for
query-intensive workloads. This paper proposes two cache-
conscious, read-optimized, page layouts for temporal data.
Experiments show that the proposed page layouts are sub-
stantially faster than NSM.

1. INTRODUCTION

Database systems (DBMS) fetch data from non-volatile
storage (e.g. disk) to processor in order to execute queries.
Data goes through the memory hierarchy which consists of
disk, main memory, L2 cache, L1 cache [4]. The communi-
cation between the main memory and the disk has been tra-
ditionally recognized as the dominant database performance
bottleneck. However, architectural research on modern plat-
forms has pointed out that the L2 cache miss penalty has an
increasing impact on response times [3]. As a result, DBMS
should be designed to be sensitive, not only to disk and main
memory performance, but also to L2 cache performance [2].

The mapping of disk page content to L2 cache lines is
determined by the organization of data within the page,
called the page layout [2]. Thus, the page layout highly
impacts the memory hierarchy utilization of DBMS [15].
The prevalent page layout in commercial DBMS is the N-
ary Storage Model (NSM), also called row-store architec-
ture [16]. NSM stores all the attributes of a tuple contigu-
ously within a disk page. While NSM provides a generic
platform for a wide range of data storage needs, recent
studies demonstrate that it exhibits poor memory hierar-
chy performance for query-intensive applications [17]. In
contrast with OLTP-style applications, query-intensive ap-
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plications require faster reads, while tolerating slower writes.
Hence, they should be read-optimized [16]. Typical examples
are data warehouses and customer relationship management
systems, where relatively long periods of ad-hoc queries are
interspersed with periodic bulk-loading of new data [16].
Recently, page layouts alternative to NSM have been imple-
mented in academic and commercial read-optimized systems
[20, 19, 5, 21].

This paper focuses on read-optimized, cache-conscious page
layouts for temporal data. Various characteristics of tempo-
ral data make this problem novel. In temporal databases,
in order to keep past, whenever a modeled entity e is mod-
ified, its old version is retained and a new version of e is
created. Thus, an entity e may be represented in a single
temporal relation by a set of tuples. Each tuple contains
a timestamp t and records the state (or the version) of e
at t. Figure 1.a depicts a sample temporal relation product
(entity surrogate, timestamp, name, price, CO2 consump-
tion) in NSM-style representation. In this example, as in
the remainder of this paper, time is assumed to be linear
and totally ordered: t; < t;4+1. Let ¢; and t; be two times-
tamps such that: (i) ¢; < t;; and (ii) the state of an entity e
is modified at ¢; and at t;, but is unchanged between them.
As the state of e remains unchanged between t; and ¢;, it
is recorded only once by the tuple identified by (e, t;). The
tuple (e, t;) is said to be alive or wvalid for each t € [t;,t;);
[ti, t;) expresses the lifespan or the time validity of (e, t;).

In most cases: (i) only a small fraction of the attributes of
an entity are time-varying; and (i) time-varying attributes
vary independently over time. With NSM, even if only one
attribute is updated, all the other attributes are duplicated.
For example, in figure 1.a the update of the price of prod-

e | t|name|price| (02 ts|price| | ts| 02
et A 50 [0.5 1] 50 1]0.5
el|t3] A 52 [0.5 2| 52 2 10.5
el[ts| A | 52 |0.3 [3] 52 |[3]0.3]
e|t2] B 100 [0.7 4| 100 410.7
e2|t4| B 105 |0.7 5] 105 5]0.7
(a)
e[ t[name| [e] t[price|[e] t[C02 ['e[ €] name[price| 0z |
e[t A |[a[ta] S0 |[ea]af0.5 [afa] A [ 50 [0.5]
e|t2| B el|t3| 52 e1]t5/0.3 el|t3] A 52 | 0.5
e2[t2| 100 |[ez2[t2[0.7 el[ts| A 52 [0.3]
e2[ t4] 105 [e2[t2] B [ 100 [0.7]
e[t B [ 105 [ 0.7
(c) (d)

Figure 1: (a) A sample temporal relation prod-
uct (entity surrogate, timestamp, name, price, CO;
consumption) in NSM-style representation. (b)
Straight-forward DSM; t¢s: tuple surrogate. (c)
Temporal DSM. (d) PSP only stores values written
in black. Other values are implicit.
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Figure 2: (a) NSM page layout. (b) Cache behavior
for "find the CO:> consumption history of A".

O*fset‘ vecior

uct A at t3 leads to the replication of his name and CO4
consumption. We call this type of replication version re-
dundancy. The important issue here is not the disk space
consumed by version redundancy, as disk space costs virtu-
ally nothing nowadays. The issue is that loading the mem-
ory hierarchy several times with the same data: (i) wastes
disk and main memory bandwidths; (iz) pollutes the main
memory and the L2 cache; and (744) increases the amount of
CPU cycles wasted in waiting for data loading.

This paper introduces the Temporal Decomposition Stor-
age Model (TDSM) and the Per Surrogate Partitioning stor-
age model (PSP), two page layouts specifically tailored for
temporal data. TDSM and PSP aim at avoiding version re-
dundancy to achieve: (i) reasonable performance for writes;
and (i7) high-performance reads. The remainder of this pa-
per is organized as follows. Section 2 illustrates the use
of conventional page layouts for temporal data. Section 3
introduces TDSM and PSP. Section 4 compares the perfor-
mance of PSP, NSM and TDSM. Section 5 reviews related
work. Section 6 concludes the paper.

2. CONVENTIONAL PAGE LAYOUTS

2.1 N-ary Storage Model

Each NSM page has a Page Header (PH) containing infor-
mation such as the page identifier and the total remaining
free space [13]. Each tuple in an NSM page is preceded
by a Tuple Header (TH) providing metadata about the tu-
ple, such as the length of the tuple and offsets of variable-
length attributes [13]. To locate tuples within a page, the
starting offsets of tuples are kept in an offset vector [13].
Typically, the tuple space grows downwards while the offset
vector grows upwards (figure 2.a).

Consider the query: "find the CO2 consumption history
of product A" and assume that the NSM page of figure 2.a
is already in main memory and that the cache line size is
smaller than the tuple size. As shown in figure 2.b, to ex-
ecute the query, the page header and the offset vector are
first loaded in the cache in order to locate product A tuples
(cache lines 1 and 2). Next, each A tuple is loaded in the
cache (cache lines 3 to 6). Product A name and price, which
are useless for the query, are brought more than once in the
cache, leading to the waste of main memory bandwidth, 1.2
cache space and CPU cycles.

2.2 Decomposition Storage Model

An alternative storage model to NSM is the Decomposi-
tion Storage Model (DSM) [6], also called column-store ar-
chitecture [16]. As illustrated in figure 1.b, DSM partitions
vertically a relation R with arity n, into n sub-relations.
Each sub-relation holds: (%) the values of an attribute of
R; and (4i) the tuple surrogates identifying the original tu-
ples that the values came from. The trade-offs between DSM
and NSM are still being explored [10, 1]. The two most cited

1 [[el,+),[11,t4),DL
[e1,4x),[t4,+),D2

D1 [THLJel[t1] 50 DL [THL[e1][t1] 50 | D2 [TH2Jel[t3] 52
TH2 [el[ 3] 52 TH2 [el[t3] 52 TH4 [e2[t5] 105
TH3 [e2[ t2] 100 TH3 [e2[ 2] 100
Offset vector Offset vector Offset vector

(a) (b)

Figure 3: (a) The TSB-tree starts with one data
page. (b) Time split of D; at ¢4

strengths of DSM are: (i) improved memory hierarchy uti-
lization: with DSM, a DBMS needs only read the values of
attributes required for processing a given query [2]; () im-
proved data compression [16]: as the values of an attribute
are stored contiguously, DSM enables further compression
opportunities.

The most cited drawbacks of DSM are: (7) increased seek
time: "disk seeks between each read might be needed as
multiple attributes are read in parallel" [1]; (i) increased
cost of insertions: DSM performs poorly for insertions be-
cause multiple distinct pages have to be updated for each
inserted tuple [1]; and (44) increased tuple reconstruction
cost: for queries involving several attributes, DSM needs to
join the participating sub-relations together [2]|. In addition
to the drawbacks aforementioned, using DSM for temporal
data does not avoid version redundancy.

3. READ-OPTIMIZED PAGE LAYOUTS
3.1 Temporal Decomposition Storage Model

3.1.1 Principle

TDSM is a temporal extension of DSM. As illustrated in
figure 1.c, TDSM does not store the timestamp attribute
in a separate sub-relation as in the straight-forward DSM.
Rather, the timestamp attribute is stored with each of the
other attributes. With this approach, TDSM has the follow-
ing advantages when compared to DSM: (¢) TDSM avoids
version redundancy and hence improves memory hierarchy
utilization; and (é) TDSM reduces the insertion cost when
the attributes of an entity are updated, because only the
pages storing the updated values are modified.

For queries involving several attributes, TDSM needs to
join the participating sub-relations as in DSM. However, un-
like DSM, where equi-joins on tuple surrogate are performed,
TDSM joins two tuples only if their entity surrogates are
equal and their lifespans intersect (i.e. Temporal Equi-join
[7, 8]). Such a temporal equi-join is known to be more ex-
pensive to process than a conventional equi-join [7].

At the current state of TDSM implementation, we use
an indexed join scheme to reduce tuple reconstruction cost.
With this approach, each sub-relation is implemented as a
clustering Time-Split B-tree (T'SB-tree) [12] and a slightly
modified merge join is used to connect sub-relations tuples
selected by the TSB-trees. Obviously, more elaborate join
techniques could be used [7, 8]. However, as demonstrated in
[7], the adopted approach provides a reasonable simplicity-
efficiency tradeoff. The following subsection reviews the
TSB-tree and details tuple reconstruction in TDSM.

3.1.2 TSB-Tree and Tuple Reconstruction

The TSB-tree is a variant of the B-+tree. Leaf nodes con-
tain data and are called data pages. Non-leaf nodes, called
index pages, direct search from the root and contain only
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Input: Ly, Ly {Two sorted list of resp. n; and ns tuples; each
tuple Ty (resp. T») of Li (resp. L2) has an entity surrogate e, a
timestamp ¢ and an attribute a; (resp. a2).}

Output: L, {List of tuples resulting from the merge join of L; and
Ly. Each tuple T, of L, has an entity surrogate, a timestamp and
two attributes a; and as.}

1 0; 7«0
while i < nj or j < n2 do
if i < n; and j < n2 then
Ty «— L1li]; Ty «— La[j];
if Th.e = Ts.e then
T,.e — Ti.e;
if T .t = T5.t then
Trt—Tv.t; Tr.ay «— Thv.a1; Tr.az — Ts.az;
i+ 4+ Jit++
else if T7.t < T».t then
Tyt —T1.t; Tr.ay «— Tr.a1; @+ +;
{T.a> keeps its old value}
else
Tyt — Tot; Tr.az < Ta.a2; j+ +;
{T.a1 keeps its old value}
end if
else if Th.e < Ts.e then
Tre—Tr.e; Tpt—T1.t; Tr.ay — Th.a1; 1+ +;
else
Tr.e < Ts.e; Tpt«—Tot; Tr.az <« Ta.a2; j+ +;
end if
else if i < n; then
Ty «— L1[i); Trt«—Tit; Tr.ay <« Tr.a1; i+ 43
else
T «— Lo[j]; Tyt — Tot; Tr.as «— Ta.a2; j+ +;
end if
L,.push_back(T);
end while
return L,;

Figure 4: Merge Join in TDSM

Step‘ Lo | Le | Output
1) |[eL, t1, 50[el, 3, 52]|[e1, t1, 0.5]eL, t5, 0.3]|[eL, £1, 50, 0.5]
L] L

i /
2) |[eL, t1, 50]el, t3, 52]|[el, t1, 0.5]eL, t5, 0. 3]|[eL, £, 50, 0.5]eL, t3, 52, 0.5]
T T

i J
3) |[eL, £, 50[el, 13, 52||[eL, t1, 0.5]el, 5, 0. 3]|[eL, t1, 50, 0.5]eL, t3, 52, 0.5[eL, t5, 52, 0.3]
A F

i J
4) |[eL, £, 50[el, 13, 52]|[eL, t1, 0.5]eL, 5, 0. 3]|[e, 1, 50, 0.5]eL, t3, 52, 0.5[el, t5, 52, 0. 3]
M A

i J
Figure 5: Merging of two sorted temporal lists

search information. TSB-tree pages at a given level parti-
tion the surrogate-time space. An entry of an index page is
a trlple ([emi'ru emaz)y [tsta’rt7tend)7 I)7 where [emin, emaz) is
a surrogate interval, [tstmt, tend) is a time interval and I the
identifier of a child page. Such entry indicates that the data
pages of the subtree rooted at I contain tuples (e,t), such
that e E[emin:emaaﬂ) and t e[tsta'r't» tend)~

Tuples within a data page are ordered by entity surrogate
and then by timestamp. If the insertion of a tuple causes
a data page overflow, the TSB-tree uses either, time split,
surrogate split or a combination of both. A surrogate split
occurs when the overflowing data page only contains current
tuples (i.e. tuples alive at the current time). It is similar to
a split in a B-+tree: tuples with surrogate greater than or
equal to the split surrogate are moved to the newly allocated
data page. A time split occurs when the overflowing data
page, D, contains both current and historical tuples. The
time split of D separates its tuples according to the current
time ¢: (1) a new data page D’ with time interval [t, +00) is
allocated; (2) tuples of D valid at ¢ are copied in D’ (figure
3.b). After a time split, if the number of tuples copied in D’
exceeds a threshold 6, a surrogate split of D’ is performed.
An index page split is similar to a data page split.

Consider the query "find the price and the CO2 consump-
tion history of product A" and assume that sub-relations

Sub-Page Header(SPH) yape

Creation time Zone offsets Z9N® Price zone (02 zone

[el@p]@p[@pfa]s]s50]52]ts]0.5]0.3]
| ¥

Figure 6: Sub-page layout

price and COxz are, respectively indexed, by T'SB,, and T'S B..
The query is processed as follows. First, T'SB, and T'SB.
are searched in order to locate product A prices and CO;
consumptions. Two list of tuples, L, and L., sorted on en-
tity surrogate and on timestamp, are created to hold tuples
respectively selected by T'SB, and T'SB.. Finally, L, and
L. are merged. The algorithm of merge join used in TDSM
is shown in figure 4. Figure 5 illustrates the merge process.

3.2 Per Surrogate Partitioning Model

As illustrated in figure 1.d, the goal of PSP is: (¢) to store
each information only once; and (ii) to allow easy tuple re-
constructions. In order to allow easy tuple reconstructions,
PSP keeps all the attribute values of a tuple in the same
page, as in NSM. Unlike NSM, PSP organizes attribute val-
ues within a page, so that, version redundancy is avoided.

Within a page, PSP packs tuples into sub-pages, so that
tuples of distinct sub-pages have distinct entity surrogates
and tuples of any sub-page have the same entity surrogate.
Thus, a sub-page records the history of an entity. Within a
sub-page, to be able to avoid version redundancy, PSP packs
the values of each attribute contiguously in an attribute zone.
The remainder of this section details the design of PSP.

3.2.1 Attribute Zone

Let s be a sub-page recording the history of an entity e.
An attribute zone is an area within s, storing the history of
an attribute a of e: the values taken by a over time. For
instance, in figure 6, the price zone of product A, stores
together its successive amounts. Each zone of an attribute
a is prefaced by a timestamp vector holding the timestamps
of updates on a. The values of a are put at the end of the
timestamp vector in the same order as timestamps. When a
variable-length attribute is also time-varying, its values are
preceded by an offset vector.

Let t. be the lowest timestamp identifying a tuple record-
ing a state of an entity e; t. is called the creation time of
e: e.g. in figure 1.a the creation time of entity e; is t;. To
avoid redundancy, t. is not stored in the timestamp vector
of each attribute zone; rather, t. is stored only once at the
sub-page level. Thus, if an attribute is time-invariant, the
timestamp vector of its attribute zone is empty. For exam-
ple, in figure 6, the timestamp vector of the name zone of
product A is empty.

3.2.2 Sub-Page and Page Layouts

As shown in figure 6, each sub-page corresponding to an
entity e is preceded by a Sub-Page Header (SPH) containing:
the creation time of e and a vector of pairs (v,z), where z is
the starting offset of the zone of an attribute a of e and v is
the number of a distinct values.

As an entity may have tens or even hundreds of versions,
a vector of sub-page offsets in PSP is expected to be much
smaller than a vector of tuple offsets in NSM. In addition,
the page header size is typically smaller than an L2 cache line
size. Thus, for PSP it makes sense to store the page header
and the offset vector contiguously, so that, loading the page
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Figure 7: (a) PSP page layout. (b) Cache behavior
for "find the CO:> consumption history of A".

header also loads the offset vector or a large part of it. As
illustrated in figure 7.a, in a PSP page, the sub-page space
grows upwards while the offset vector grows downwards.

Situations occur where the whole history of an entity does
not fit in a single page, i.e. a sub-page is too large to fit in
a single page. PSP copes with this large sub-page problem,
as follows. Let s be a large sub-page storing the history
of an entity e and ¢ be the time of the last update of e.
The solution consists in creating a new sub-page s’ and ini-
tializing it with the version of e valid at ¢. This solution
introduces some (limited) redundancy but has an important
advantage: the search for e tuples alive at a timestamp t,,
such that t; > t, is only performed within s’ and the search
for e tuples alive at a timestamp t;, such that t; < ¢, is only
performed within s.

3.3 Discussion

Consider the query "find the CO2 consumption history
of product A". As shown in figure 7.b, PSP improves the
cache space and the main memory bandwidth consumed by
this query, because it avoids fetching the same value sev-
eral times (as opposed to NSM and DSM). In addition, PSP
improves the data spatial locality, because the requested val-
ues are stored contiguously. PSP also requires less storage
space than NSM, because: (i) it stores unchanged values
only once; and (i) it factorizes common entity metadata,
whereas NSM stores a header for each tuple. Thus, PSP
also improves disk bandwidth and main memory space uti-
lization, as a PSP page is expected to contain more infor-
mations than the corresponding NSM page.

In case of time-invariant data, each attribute zone within a
PSP page stores a single value and has an empty timestamp
vector. Thus, in such case a PSP sub-page has a layout
similar to a typical tuple format in NSM. As a result, a PSP
page and an NSM page have similar layouts and behaviors
when used for non temporal data.

For queries involving several attributes, PSP only needs
to perform joins among attribute zones stored contiguously
within a single sub-page (as opposed to DSM and TDSM).

4. PERFORMANCE EVALUATION

This section compares the performance of the different
storage models. For vertical decomposition, as TDSM is
expected to outperform the straight-forward DSM and due
to the lack of space, only TDSM is considered.

NSM and DSM systems often use their own sets of query
techniques that can provide additional performance improve-
ments [10]. As this paper only focuses on the differences
between NSM, TDSM and PSP related to the way data are
stored in pages, we have implemented a TDSM, an NSM and
a PSP storage managers, in C++ from scratch (our code
is compiled using GCC). The performance of these storage
managers are measured with identical datasets and query

workloads, generated following the specifications of the cost
models presented in [18, 11]. To provide a fair comparison,
the implmented storage managers use clustering T'SB-trees.

4.1 Workload and Assumptions

The cost models proposed in [11, 18] model a temporal
relation R by a set of E entities and T timestamps. Each
entity e is subject to updates; each update occurring at
timestamp ¢, generates a new entity version (e,t), whose
value is recorded in a tuple of R. The proportion ¢ of enti-
ties updated at each timestamp, called data agility [18], is
assumed to be constant. Thus, the total number of tuples
in Ris: E+ dE(T —1). R is assumed to be indexed by
TSB-trees, using NSM, TDSM (one TSB-tree per attribute)
or PSP. The goal is to evaluate the storage, insertion and
query costs. The storage cost is measured by the number
of occupied data pages. The insertion cost is measured by
the average time elapsed during the insertion of a tuple.
The cost of a query ¢ is measured by the following param-
eters: (7) the average number of data pages loaded in main
memory; () the execution time when data are fetched from
disk; (74) the average number of L2 cache misses when the
requested pages are main-memory resident; and (iv) the ex-
ecution time when the requested pages are main-memory
resident. To be as general as possible, we follow [18] and
assume that a temporal query ¢ has the following form:

select ¢, attributes from R where e € [e;, ¢;) and t € [t, ;)

where g, is the number of involved time-varying attributes,
lei,e;j) an interval of entity surrogates containing g, surro-
gates and [tx,t;) a time interval containing ¢: timestamps.

4.2 Settings and Measurement Tools

A large number of simulations have been performed to
compare NSM, TDSM and PSP. However, due to the lack
of space, only few results are presented herein. For the pre-
sented simulations, data are generated as follows. A tem-
poral relation R is assumed to have ten 4-byte numeric at-
tributes, in addition to an entity surrogate and a timestamp.
Four attributes of R are time-varying. Time-varying at-
tributes are assumed to vary independently over time, with
the same agility. F and T are respectively set to 200K en-
tities and 200 timestamps. At the first timestamp, 200K
tuples are inserted in R (one tuple per entity). Then, at
each of the following 199 timestamps, J F entities, randomly
selected, are updated. The data agility § is varied in or-
der to obtain different temporal relations. For example, if
0 = 15%, R contains 6.17 millions tuples (200K + 200K x
15% x (200 — 1)=6.17 millions).

Simulations are performed on a dual core 2.80 GHz Pen-
tium D system, running Windows 2003 Server. This com-
puter features 1GB main memory (DDR2-667MHz), 800
MHz Front Side Bus, and 2 x 2 MB L2 cache. The cache line
size is 64B. The storage managers were configured to use a
8KB page size. The execution time is measured by function
QueryPerformanceCounter provided by the API Win32. L2
cache events are collected using Intel VTune.

4.3 Results

Storage Cost. Figure 8 depicts the storage costs as func-
tion of data agility. PSP requires up to ~ 7.4 times less
storage space than NSM and on average = 2 times less stor-
age space than TDSM. The superiority of PSP and TDSM
against NSM increases as the agility increases, because, the
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data are fetched from main memory

larger is the agility and the larger is the number of tuples
per entity, hence, the larger is the disk space saved by PSP
and TDSM.

Insertion Cost. To provide fair comparison of insertion
costs, we assume that all data requests are served from
disk. Figure 9 depicts the insertion costs as function of data
agility. Insertions in NSM are on average = 2 times faster
than in PSP. The main reason is that with NSM a single
write suffices to push all the attributes of a tuple, while
with PSP, an additional effort is needed for sub-page reor-
ganizations. Although TDSM performance are penalized by
the fact that the operating system scheduler handles write
requests for multiple relations, TDSM exhibits good perfor-
mance. Note that TDSM performance should be worst if
more than one attribute is updated at a time.

Query Cost. To evaluate the query cost, we consider a
moderately agile temporal relation, 6 = 5%, and a highly
agile temporal relation, § = 15%. For each temporal rela-
tion, eight query workloads are considered; each one consist-
ing of 100 queries. Queries in a workload involve the same of
number of consecutive entity surrogates, gs, the same num-
ber of consecutive timestamps, ¢:, and the same number of
temporal attributes, g,. The surrogate intervals and the
time intervals of queries of a given workload are uniformally
distributed in the surrogate-timestamp space. The reported
results for a given workload are the average of performance
achieved by the 100 queries composing it. The first four
query workloads involve a relatively large surrogate inter-
val, gs = 2000, a small time interval, ¢; = 10, and different
numbers of time-varying attributes: ¢, varies from 1 to 4.
The latter ones involve a small ¢; = 20, a relatively large
g+ = 100, and different q,: g, varies from 1 to 4.

Figure 10 depicts the average numbers of data pages loaded
in main memory to answer the query workloads described
above. As expected, TDSM outperforms PSP and NSM
when a single attributes is involved (¢go = 1). In all cases,
TDSM and PSP outperform NSM. Figure 11 depicts the
average query execution time when the requested pages are
fetched from disk. As expected TDSM and PSP outperform
NSM in all casses: TDSM is on average ~ 2.74 times faster
than NSM; PSP is on average ~ 3.6 times faster than NSM.
Figure 12 depicts the average numbers of L2 cache misses,
when the requested pages are main-memory resident. As
shown in figure 12, in all cases, PSP and TDSM generate
less L2 cache misses than NSM. In particular, PSP gener-
ates up to 9 times less L2 cache misses than NSM. Figure
13 depicts the average execution time, when the requested
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Figure 13: Queries: average execution time when
data are fetched from main memory
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pages are main-memory resident. TDSM has a better be-
havior than PSP when a single attribute is involved. How-
ever, TDSM performance deteriorates very quickly as q,, the
number of involved attributes in a query, increases. This is
due to temporal joins. As shown in figure 13, PSP is in gen-
eral faster than either NSM and TDSM: on average =~ 6.54
times faster than NSM and = 3.66 faster than TDSM, when
data are already in main memory.

S. RELATED WORK

Several approaches have been proposed in order to achieve
high performance for read operations. In [9], [2] and [15]
cache-conscious page layouts have been proposed, namely
Data Morphing, Partition Attributes Across (PAX) and Clo-
tho. Among these, PAX is closest to PSP in design philos-
ophy. Given a relation R with arity n, PAX partitions each
page into n minipages. The i*" minipage stores all the values
of the i*" attribute of R. PAX provides a high degree of spa-
tial locality for sequential access to values of one attribute.
Nevertheless, PAX stores data in entry sequence (probably
to achieve good performance for updates). Thus, using PAX
for temporal data does not avoid version redundancy.

A number of academic and commercial read-optimized
systems implement DSM: Sybase 1Q [20], Fractured Mirrors
[14], Monet [5], C-Store [16, 21], etc.. These systems re-
duce the tuple reconstruction cost of DSM using techniques
such as join indexes and chunk-based reconstructions [14,
16]. However, except C-Store and Fractured Mirrors, as
they store data in entry sequence order, their performance
suffer from the same problems as NSM.

Fractured Mirrors [14] stores two copies of a relation, one
using DSM and the other using NSM. The read requests
generated during query execution are appropriately sched-
uled between mirrors. With this approach, Fractured Mir-
rors provides better query performance than either storage
model can provide separately. However, as Fractured Mir-
rors have not been designed to handle temporal data the
problem of version redundancy has not been considered.

C-Store [16] implements a relation as a collection of ma-
terialized overlapping projections. To achieve high perfor-
mance reads, C-Store: (i) sorts projections from the same
relation on different attributes; (i7) allows a projection from
a given relation to contain any number of other attributes
from other relations (i.e. pre-joins); (éit) stores projections
using DSM; and (4v) uses join indexes to reconstruct tuples.
The implementation of C-Store implicitly assumes that pro-
jections from the same relation have the same number of
tuples. Thus, C-Store is unable to avoid version redundancy.

6. CONCLUSION

This paper compares the conventional page layout, NSM,
to TDSM and PSP, two read-optimized, cache-conscious,
page layouts specifically tailored for temporal data. TDSM
exhibits interesting features that need to be further explored.
In particular, TDSM performance can be substantially im-
proved if join techniques, more adapted to vertical decompo-
sition than those commonly used for temporal data, are de-
signed. PSP optimizes performance at all levels of the mem-
ory hierarchy: () it avoids version redundancy (as opposed
to NSM and DSM); and (i) it allows easy tuple reconstruc-
tions, (as opposed to vertical decomposition). In addition
to the advantages aforementioned, PSP can be used for non

temporal data with the same performance as NSM.
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ABSTRACT

Comparisons between the merits of row-wise storage (NSM)
and columnar storage (DSM) are typically made with re-
spect to the persistent storage layer of database systems. In
this paper, however, we focus on the CPU efficiency trade-
offs of tuple representations inside the query execution en-
gine, while tuples flow through a processing pipeline. We
analyze the performance in the context of query engines us-
ing so-called ”block-oriented” processing — a recently popu-
larized technique that can strongly improve the CPU effi-
ciency. With this high efficiency, the performance trade-offs
between NSM and DSM can have a decisive impact on the
query execution performance, as we demonstrate using both
microbenchmarks and TPC-H query 1. This means that
NSM-based database systems can sometimes benefit from
converting tuples into DSM on-the-fly, and vice versa.

1. INTRODUCTION

As computer architecture evolves, and the “make the com-
mon case fast” rule is applied to more and more CPU fea-
tures, the efficiency of an application program can no longer
be measured by the number of instructions it executes, as
instruction throughput can vary enormously due to many
factors, among which: (i) CPU cache and TLB miss ratio,
resulting from the data access patterns; (4i) the possibility of
using SIMD operations (e.g. SSE) to process multiple data
items with one instruction; (i7) the average amount of in-
flight instructions unbound by code- or data-dependencies,
thus available to keep the instruction pipelines filled.

While such factors and their (significant) impact on per-
formance may be well-understood, even in the specific con-
text of data management tasks, and a range of so-called
architecture-conscious query processing algorithms has been
proposed, our goal is to investigate how such ideas can be
integrated in real database systems. Therefore, we study
how architectural-conscious insights can be integrated into
the (typical) architecture of query engines.

The central question addressed in this research is how tu-
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ple layout in a block-oriented query processor impacts perfor-
mance. This work is presented from the context of the Mon-
etDB/X100 prototype [5], developed at CWI. MonetDB /X100
uses the standard open-next-close iterator execution model,
but its most notable characteristic is the pervasive use of
block-oriented processing [15, 5], under the moniker “vector-
ized execution”. In block-oriented processing, rather than
processing a single tuple per next() call, in each iteration
the operator returns a block of tuples. This block can con-
tain from a few tens to hundreds of tuples, thereby striking
middle ground between tuple-at-a-time processing and full
table materialization. Typically, performance increases with
increasing block size, as long as the the cumulative size of
tuple-blocks flowing between the operators in a query plan
fits in the CPU cache. The main advantage of block-oriented
processing is a reduction in the amount of method calls (i.e.,
query interpretation overhead). Additional benefit comes
from the fact that the lowest level primitive functions in the
query engine now expose independent work on multiple tu-
ples (arrays of tuples). This can help compiler and CPU —
and sometimes the algorithm designer — to achieve higher
efficiency at run-time.

While MonetDB/X100 is known as a column-store!, our
focus here is not persistent storage, rather the representa-
tion of tuples as they flow through a block-oriented query
processing engine, which can be different from the storage
format. In particular, we experiment with both horizontal
tuple layout (NSM) and vertical layout (DSM) and also dis-
cuss indirect value addressing (to avoid tuple copying).

Our main research questions are: (i) what are the advan-
tages and disadvantages of DSM and NSM for tuple repre-
sentations during query execution? (%) what specific oppor-
tunities and challenges arise when considering tuple layout in
the context of block-oriented processing (SIMD, prefetching,
block size)? (iii) can query executors be made to work on
both representations, and allowed to (dynamically) switch
between them, given that depending on the situation, and
even depending on the query sub-expression, either DSM or
NSM can be better?

1.1 Outline and Findings.

In Section 2 we first describe the NSM and DSM lay-
outs considered. Section 3 starts with a number of micro-
benchmarks contrasting the behavior of DSM and NSM in
sequential and random-access algorithms. DSM is signifi-
cantly faster in sequential scenarios thanks to simpler ad-

n fact, it also supports the hybrid PAX layout [4].
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dressing, larger vector sizes fitting in the L2 cache, whereas
the higher spatial locality of NSM makes it the method of
choice when operators access memory areas larger than the
L1 cache randomly. SIMD instructions give an advantage to
DSM in all sequential operators such as Project and Select,
whereas in Aggregation only NSM allows to exploit SIMD
(in some cases). Therefore, ideally, a query processing en-
gine should be able to operate on data in both formats, even
allowing tuple blocks where some columns are in NSM, and
others in DSM. Further micro-benchmarks demonstrate that
thanks to block-oriented processing, converting NSM tuples
into DSM (and vice versa) can be done with high efficiency.

The consequences of these findings can be startling: we
show in case of TPC-H query 1, that systems with NSM
storage turn out to benefit from converting tuples on-the-fly
to DSM, pulling up the selection operator to achieve SIMD-
ized expression calculation, then followed by conversion back
into NSM, to exploit SIMD Aggregation.

We wrap up by discussing related work in Section 4 and
outlining conclusions and future work in Section 5.

2. TUPLE REPRESENTATIONS

To analyze different aspects of the DSM and NSM data
organization, for the experiments presented in this paper
we try to isolate the actual data access functionality from
unnecessary overheads. This is achieved with following the
block-oriented execution model, and analyzing the computa-
tionally simplest DSM and NSM data representations, pre-
sented in this section.

2.1 DSM tuple-block representation

Traditionally, the Decomposed Storage Model [9] proposed
for each attribute column to hold two columns: a surrogate
(or object-id) column and a value column. Modern column-
based systems [5, 16] choose to avoid the former column,
and use the natural order for the tuple reorganization pur-
poses. As a result, the table representation is a set of bi-
nary files, each containing consecutive values from a differ-
ent attribute. This format is sometimes complicated e.g.
by not storing NULL values and other forms of data com-
pression [21, 1]. In this case, some systems keep the data
compressed for some part of the execution [1], and some per-
form a fully-transparent decompression, providing a simple
DSM structure for the query executor [21]. Here, we choose
a straightforward DSM representation, with columns stored
as simple arrays of values. This results in the following sim-
ple code to access a specific value in a block:

value = attribute[position];

2.2 Direct vs. Indirect Storage

Variable-width datatypes such as strings cannot be stored
directly in arrays. A solution is to represent them as mem-
ory pointers into a heap. In MonetDB/X100, a tuple stream
containing string values uses a list of heap buffers that con-
tain concatenated, zero-separated strings. As soon as the
last string in a buffer has left the query processing pipeline,
the buffer can be reused.

Indirect storage can also be used to reduce value copying
between the operators in a pipeline. For instance, in Mon-
etDB/X100, the Select operator leaves all tuple-blocks from
the data source operator intact, but just attaches an array
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Figure 1: Diagram of the access-time optimized
NSM data organization during computation of TPC-
H Query 1

of selected offsets, called the selection vector. All primitive
functions support this optional index array:

value = attribute[selection[position]];

Other copy-reduction mechanisms are also possible. For in-
stance, MonetDB/X100 avoids copying result vectors alto-
gether if an operator is known to leave them unchanged (i.e.
columns that just pass through a Project or the left side of
an N-1 Join). Note that the use of index arrays (selection
vectors) is not limited to the Select operator. Other pos-
sibilities include e.g. not copying the build-relation values
in a HashJoin, but instead storing references to them. In
principle each column could have a different (or no) selec-
tion vector, which brings multiple optimization opportuni-
ties and challenges. In this paper, however, we focus on a
simple, direct data storage.

2.3 NSM tuple-block representation.

Typically, database systems use some form of a slotted
page for the NSM-stored tuples. The exact format of the
tuples in this model can be highly complex, mostly due to
storage considerations. For example, NULL values can be
materialized or not, variable-width fields result in non-fixed
attribute offsets, values can be stored explicitly or as ref-
erences (e.g. dictionary compression or values from a hash
table in a join result). Even fixed-width attributes can be
stored using variable-width encoding, e.g. length encod-
ing [17] or Microsoft’s Vardecimal Storage Format [3].

Most of the described techniques have a goal of reducing
the size of a tuple, which is crucial for disk-based data stor-
age. Unfortunately, in many cases, such tuples are carried
through into the query executor, making the data access and
manipulation complex and hence expensive. In traditional
tuple-at-a-time processing, the cost of accessing a value can
be an acceptable compared to other overheads, but with
block processing handling complex tuple representations can
consume the majority of time.

To analyze the potential of NSM performance, we define
a simple structure for holding NSM data, that results in a
very fast access to NSM attributes. Figure 1 presents the
layout of the tuples used for the processing of TPC-H Q1,
visualized in Figure 4, and analyzed in Section 3.3. Tuples
in a block are stored continuously one after another. As a
result, tuple offset in a block is a result of the multiplication
of the tuple width and its index. The attributes are stored
in an order defined by their widths. Assuming attributes
with widths of power of 2, this makes every value naturally
aligned to its datatype within the tuple. Additionally, the
tuple is aligned at the end to make its width a multiple of
the widest stored attribute. This allows accessing a value of
a given attribute at a given position with this simple code:

value = attribute[position * attributeMultiplier];
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Figure 2: Sequential access: performance of the SUM and ADD routines with DSM and NSM and varying

tuple widths.

3. EXPERIMENTS

In this section we analyze the performance of NSM and
DSM data organization schemas on database performance.
We start with a series of micro-benchmarks, presenting the
baseline performance on some basic data access and ma-
nipulation activities. Then we demonstrate how these mi-
crobenchmark results are confirmed during the processing of
the TPC-H Query 1. There, we also discuss some optimiza-
tion techniques, that depend heavily on data organization,
as well as on-the-fly data conversion.

3.1 Experimental setup

The experimental platform used is a Core2 Quad Q6600
2.4GHz with 8GB RAM running Linux with kernel 2.6.23-
15. The per-core cache sizes are: 16KB L1 I-cache, 16KB L1
D-cache, 4MB L2 cache (shared among 2 cores). All experi-
ments are single-core and in-memory. We used 2 compilers,
GCC 4.1.2% and ICC 10.0°.

We have performed similar experiments on a set of other
CPUs: Athlon 64 X2 3800+ (2GHz), Itanium 2 and Sun
Niagara. For Athlon and Itanium the results were mostly
in line with the Core2 results. On Niagara the performance
benefit of DSM was typically higher, and the impact of the
data location was lower. This is caused by lower perfor-
mance of Niagara in terms of sequential execution: it has a
lower clock speed and in-order execution pipeline. Since Ni-
agara was designed with multi-threaded processing in mind,
it would be interesting to see how the presented, currently
single-threaded, benchmarks perform when running in par-
allel. This might be a topic for future research.

3.2 Microbenchmarks

In this section we analyze the baseline performance of
the DSM and NSM models in typical data-processing op-
erations: sequential computations, random-access, and data
copying.

2compilation: gcc -06 -Wall -g -mtune=core2
3compilation: icc -03 -Wall -axT

3.2.1 Sequential data access

The left part of Figure 2 present the results of the experi-
ment in which a SUM aggregate of a 4-byte integer column is
computed repeatedly in a loop over a fixed dataset. The size
of the data differs, to simulate different block sizes, which al-
lows identifying the impact of the interpretation overhead,
as well as the location (cache, memory) in block-oriented
processing. We used GCC, using standard processing, and
additionally ICC to generate SIMD-ized DSM code (NSM
did not benefit from SIMD-ization). In the NSM imple-
mentation, we use tuples consisting of a varying number of
integers, represented with NSM-z.

To analyze the impact of the data organization on CPU
efficiency, we look at the performance of NSM-1, which has
exactly the same memory access pattern and requirements
as the DSM implementation. The GCC results show that
for a single-integer table the performance of the DSM and
NSM-1 is very close. The small benefit of DSM, ca. 15%
in the optimal case, comes from the fact that thanks to a
simpler data access the compiler is able to generate slightly
more efficient code. However, with ICC-generated SIMD
instructions, DSM is a clear winner, being almost 5 times
faster in the optimal case. Note that SIMD can only be ap-
plied if the same operation is executed on adjacent memory
locations, therefore it can only be used in DSM.

The other aspect of this benchmark is the impact of the
interpretation overhead and data location. While for small
block sizes the performance is dominated by the function
calls, for larger sizes, when the data does not fit in the
L1 cache anymore, the data location aspect becomes cru-
cial. Performance of NSM-1 and DSM without SIMD is
relatively flat, since even for main-memory sized data (1M+
tuples), the sequential bandwidth is close enough to balance
the CPU activity. However, with the highly efficient (sub-
cycle cost) SIMD DSM implementation, it operates fastest
while the block still fits in the L1 CPU cache, then goes to
an intermediate plateau when its fits L2, to become mem-

“In a real DBMS, function call overhead is significantly
larger [5] — this was a hard-coded micro-benchmark.
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Figure 3: Random access: running a grouped SUM aggregate on DSM input data, using a DSM or NSM
hash table, with or without prefetching, and a varying number of GROUP BY keys (X-axis)

ory bandwidth limited for larger sizes (i.e. L1 bandwidth
exceeds L2 bandwidth which exceeds RAM bandwidth).

Looking at the performance of wider NSM tuples, we
see that the performance degrades with the increasing tu-
ple width. As long as the tuples are in L1, all widths are
roughly equal. However, for NSM-16 and higher (64 byte
tuples or longer) once the data shifts to L2, the impact is
immediately visible. This is caused by the fact, that only a
single integer from the entire cache-line is used. For NSM-
2 to NSM-8, the results show that the execution is limited
by the L2 bandwidth: when a small fraction of a cache-line
is used (e.g. NSM-8) the performance is worse than when
more integers are touched (e.g. NSM-2). Similar behavior
can be observed for the main-memory datasets.

The SUM primitive has a relatively low memory demand
compared to the CPU activity, as it only consumes a sin-
gle attribute. The right part of Figure 2 presents a similar
experiment, that uses an ADD routine which consumes two
attributes and produces a new result attribute. Results fol-
low the trends of the SUM operation, but there are some
important differences. First, the higher number of parame-
ters passed to the NSM routine (pointers + tuple widths VS
only pointers) results in a higher interpretation overhead.
Secondly, comparing DSM and NSM-1 for L1-resident data,
shows that multiple more complex value-access computa-
tions in NSM have a higher impact on the CPU performance.
Finally, with a higher memory demand, the impact of data
locality on performance is significantly bigger, making even
the DSM implementation fully memory-bound and in par
with the NSM-1 version.

Concluding, we see that if access is purely sequential,
DSM outperforms NSM for multiple reasons. First, the
array-based structure allows simple value-access code. Sec-
ond, individual primitive functions (e.g. SUM,ADD) use
cache lines fully in DSM, and L2 bandwidth is enough to
keep up. As mentioned before, during query processing, all
tuple blocks in use in a query plan should fit the CPU cache.
If the target for this is L2, this means significantly larger
block sizes than if it were L1, resulting in reduced function
call overhead. Finally, the difference in sequential process-
ing between DSM and NSM can be huge if the operation is
expressible in SIMD, especially when the blocks fit in L1,
and is still significant when in L2.

3.2.2 Random data access

For this experiment, we use a table that consists of a single
key column and multiple data columns. The table contains
4M tuples, is stored in DSM for efficient sequential access,
number of data columns varies, and the range of the key
column differs from 1 to 4M. We perform an experiment
equivalent to this SQL query:

SELECT SUM(datal), ., SUM(dataN)
FROM TABLE GROUP BY key;

To store the aggregate results, we use an equivalent of a
hash-table in the hash-aggregation, but instead of the hash-
value processing, we use the key column as a direct index.
In DSM, the result table it is just a collection of arrays, one
for each data attribute. In NSM, it is a single array of a
size equal to the number of tuples multiplied by the num-
ber of data attributes. We apply block-oriented processing,
using a block size of 256 tuples. In each iteration, all values
from different data attributes are added to the respective
aggregates, stored at the same vertical position in the table.

Figure 3 presents the results of this experiment for 1, 4
and 16 data columns. For a single column, the faster access
code of the DSM version makes it slightly (up to 10%) faster
than NSM as long as the aggregate table fits in the L1 cache.
Once it enters L2 or main memory, the results of DSM and
NSM are equal as they are memory-latency limited.

For wider tuples, DSM maintains its advantage for L1-
based key ranges. However, once the data expands into L2
or main-memory, the performance of DSM becomes signifi-
cantly worse than that of NSM. This is caused by the fact,
that in DSM every memory access is expected to cause a
cache-miss. In contrast, in NSM, it can be expected that
a cache-line accessed during processing of one data column,
will be accessed again with the next data column in the
same block, as all the columns use the same key position.
With the increasing number of computed aggregates, the
same cache-line is accessed more often, benefiting NSM over
DSM.

Figure 3 also shows experiments that use software prefetch-
ing, that is, we interspersed SUM computations with explicit
prefetch instructions on the next tuple block. On Core2 we
used the prefetcht0 instruction. We also made sure the ag-
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gregate table was stored using large TLB pages, to minimize
TLB misses. In general, our experience with prefetching is
that it is highly sensitive to the platform, and prefetch dis-
tances are hard to get right in practice. The end result is
that prefetching does improve NSM performance when the
aggregate table exceeds the CPU caches, however in con-
trast to [8] we could not obtain a straight performance line
(i.e. hide all memory latency).

These simple random and sequential DSM vs. NSM mi-
cro benchmarks echo the debate on cache-conscious join and
aggregation between partitioning and prefetching. In parti-
tioning [7], the randomly accessed (e.g. aggregate) table is
partitioned into chunks that fit the L1 cache. This table can
be stored in DSM and probed very efficiently. The disad-
vantage of this approach is the cost of partitioning, possibly
needing multiple sequential passes to achieve a good mem-
ory access pattern. The alternative is to have a NSM hash
table exceed the CPU cache sizes, and pay a cache miss
for each random probe. Unlike DSM, where random access
generates a huge bandwidth need that cannot be sustained
using prefetching, random probing in NSM benefits from
prefetching.

In the following, we study on-the-fly conversion between
DSM and NSM tuples. Using tuple conversion, it would
e.g. become possible for a DSM-based system like Mon-
etDB/X100 to use NSM (and prefetching) inside certain
random-access query processing operators.

3.2.3 Data conversion

Many column stores use a traditional query processor based
on NSM, calling for on-the-fly format conversion during the
Scan operator. In case of C-Store [16]°, this is done us-
ing (slow) tuple-at-a-time conversion logic. We rather per-
form conversion using block-oriented processing, avoiding
loop and function call overhead, where a single function call
copies all values from one column in a block of NSM tuples
into DSM representation (and vice versa):

NSM2DSM(int input[n], int width)
for(pos=0; pos<n; pos++]
output [pos] = input[pos * width]

: output [n]

We performed micro-benchmarks, in which an NSM/DSM
layout conversion is performed for datatypes of different
widths. Table 1 shows that this can be done very efficiently,
typically below 1 nanosecond per data value (ca. 2 CPU
cycles on our test machine).

Therefore, given the different strengths and weaknesses
of DSM and NSM, it becomes conceivable for a query op-
timizer to select the most appropriate storage format for
certain sub-expressions in the query plan, and insert con-
version operators to change the representation on-the-fly,
potentially even multiple times. This could even lead to a
situation where a query processing operator gets some input
columns in DSM, and some in NSM (and the same for pro-
duced columns), similar as the persistent data is organized
in the data-morphing technique [12].

We also measured the performance of copying a full NSM
tuple into a different NSM representation. Such situation
can occur e.g. during the merge join, where rows from both
inputs need to be combined®. In this situation there are

®see Operators/TupleGenerator.cpp in C-Store 0.2
SNaturally, with more complex tuple representation the

Data conversion speed (ns / operation)
unit NSM=-DSM|DSM=-NSM|NSM=-NSM
8-byte tuple, block size 1024
1-byte char 0.85 0.85 0.65
4-byte int 0.74 0.66 1.06
full tuple - - 8.42
16-byte tuple, block size 512
1-byte char 0.86 0.87 0.67
4-byte int 0.82 0.65 1.07
full tuple - - 9.62
32-byte tuple, block size 512
1-byte char 0.93 0.87 0.72
4-byte int 0.79 0.71 1.11
full tuple - - 9.76
64-byte tuple, block size 256
1-byte char 0.90 0.90 1.57
4-byte int 0.89 0.74 1.62
full tuple - - 10.09
128-byte tuple, block size 128
1-byte char 0.97 0.90 1.43
4-byte int 0.87 0.76 1.45
full tuple - - 13.17

Table 1: Data conversion speed for different tuple
widths and different conversion units. For each tuple
width, the best block size was chosen.

two choices: value-by-value copying and full-tuple copying
(e.g. with memcpy equivalent). In tuple-at-a-time processing,
the first choice will be typically significantly slower, due to
high overheads of function calls and attribute-list iteration.
However, Table 1 shows that in block-oriented processing,
with the overheads amortized over a set of tuples, value-by-
value copying can be very efficient. Full tuple copying, while
fast, still suffers from overheads, as seen with a minimal
performance difference between copying 8-byte and 128-byte
wide tuples. As a result, for many types of tuples, attribute-
by-attribute copying can be more efficient. This is especially
useful, if copying includes only a subset of attributes, or if
the field order in the result tuple needs to be different than
in the source.

3.3 TPC-H Query 1

To see the impact of data organization in a more realistic
scenario, we have evaluated the performance of the TPC-
H Query 1 with different settings. A sketch containing the
main primitives used in its query plan is presented in Fig-
ure 4. For simplicity, it does not include selection computa-
tion, connections between count and sum primitives to the
aggregates table, and post-processing of the aggregate re-
sults. As Figure 4 shows, the computation in Query 1 con-
sists mostly of 2 phases: sequential computation of input
for aggregation, and random-access computation of aggre-
gates. The microbenchmarks presented above suggest, that
the best data organization for the first phase is DSM, and
for the second phase it is NSM.

In this query plan we exploit the fact that 1_returnflag
and 1_linestatus are char datatypes. This makes the pos-
sible key combinations limited to 65536 values (in fact, there
are only 4 used). In this situation, instead of following the

copying can be avoided, but we assume simple (hence fast)
NSM organization
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Sequential computations

Figure 4: Simplified plan of TPC-H Query 1 (omit-
ted date selection, links to the aggregates table, and
post-aggregation computations)

traditional hash-table based processing, we use direct aggre-
gation [5], in which the position in the aggregates table is
computed directly from the key attributes. Since the origi-
nal Query 1 only uses 4 GROUP BY key combinations, we also
tested a slightly modified version of it that adds a 3rd ex-
trakey column, and artificially fills all three key columns to
simulate different numbers of GROUP BY combinations.

3.3.1 Pull Selections Up

In DSM, calculations on simple directly addressed arrays
(i.e. without selection vector) are amendable for SIMD-
ization, hence execute significantly faster. Therefore, if a
Select does not eliminate many tuples and is followed by
computation (e.g. a Project), it becomes beneficial to first
do the calculations with SIMD, and the selection only after-
wards. This counter-intuitive “pull selections up” strategy is
in fact applicable to TPC-H Q1. Note that for this optimiza-
tion, it is not strictly necessary to put the Select on top of
the Project. In MonetDB /X100, the Select is still executed
first, but for each tuple-block by looking at the selectivity
(the length of the selection vector m) Project primitives may
choose to ignore the selection vector sel and compute results
for all n tuples, benefiting from SIMD:

ADD(long alln],a2[n]; int sellm]): int output[n]
if (m > n/2) // if many selected, compute on all
for(pos=0; pos<n; pos+t+)
output [pos] = ADD(al[pos],a2[pos]) // SIMD
else
for(idx=0; idx<n; idx++)
pos = sel[idx]
output [pos] = ADD(al[pos],a2[pos])

In fact, this performance boost makes it beneficial for a plan
that starts with NSM tuples to switch to DSM.

3.3.2 SIMD Aggregation

Another SIMD optimization concerns grouped aggrega-
tion in NSM. If multiple identical aggregate functions must
be computed (e.g. TPC-H Q1 has 5 grouped SUMs), we can
SIMD-ize the aggregate update operation. This means that
we have a primitive SUM2 function, that sums two adjacent
NSM columns of 64-bit longs (its start pointer is denoted

col2 here) with two adjacent 64-bits aggregate totals (tot2):

SUM2(long tot2[m],col2[n]; int grpln],wl,w2)
for(pos=0;pos<n;pos++)
simd_t* dst = (simd_t*) (tot2 + w2*group[pos])
simd_t* src = (simd_t*) (col2 + wl*pos)
*dst = SIMD_ADD2_LONG(*dst, *src)

As grouped aggregation takes more than half of the execu-
tion time in TPC-H Q1, applying SIMD here significantly
affects performance. In fact, SIMD Aggregation makes it
beneficial to switch back from DSM to NSM after the cal-
culations to profit from SIMD.

3.3.3  On-the-Fly NSM/DSM Conversions

We run TPC-H on data that is in both NSM and DSM
storage layouts, but consider switching layout before and
after doing the calculations (i.e. Select and Project). Also,
the format of the aggregate table can be DSM or NSM.

The results of the experiment, presented in Figure 5, con-
firm the trends from the micro-benchmarks. The DSM-
formatted input (A,B,C) achieves significantly better per-
formance. However, the DSM-formatted hash table suffers
from random memory accesses (A,D,E). Using an NSM hash
table removes this problem (B,G), and converting the DSM
data on the fly into NSM allows to perform SIMD-based
aggregation, further improving the performance (C,H). For
NSM input we see that converting it into DSM allows faster
sequential computation (E,G). For additional analysis of the
performance, Table 2 presents the profiling of different sce-
narios for a case with 32K unique GROUP BY keys. It shows,
that the extra data conversion before doing the projection
and the aggregation phase can be in some cases more than
balanced by the performance improvement gained in the fol-
lowing computation.

The performance benefits presented in this section are lim-
ited due to a fact that most of the computation is based on
8-byte integers. The currently available SSE3 SIMD instruc-
tion set provides only 128-bit SIMD operations, allowing just
2 operations to be executed at once. Since SIMD function-
ality is continuously improving, we expect these gains to
become more significant in the future.

4. RELATED WORK

Block-oriented processing [15, 5] recently gained popu-
larity as a technique to improve query processor efficiency.
Traditionally, its main goal was to reduce the number of
function calls [15]. Further research demonstrated that it
also can result in a much higher CPU instruction cache
hit-ratio [19]. Block-oriented processing is also an enabling
technique for different performance optimizations that re-
quire multiple tuples to work on: exploiting SIMD instruc-
tions [18], memory-prefetching [8], and performing efficient
data (de)compression [20].

The trade-offs between NSM and DSM as disk storage for-
mats were analyzed in [13], where it is demonstrated that
DSM performs better when only a fraction of the attributes
is accessed. In contrast to what our paper proposes, the
system described in [13] forces a conversion of DSM data
on disk into NSM before entering the block-oriented itera-
tor pipeline, allowing DSM layout only in the early scan-
select stages. Avoiding early materialization of NSM tuples
in column stores also was the topic of [2], but this work
still requires forming NSM tuples at some moment in the
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Figure 5: TPC-H Q1, with a varying number of keys and different data organizations (ht — hash table)

Table 2: Primitive function profile of a modified TPC-H Q1 (SF=1) with different data organizations. Star

Time (millions of CPU cycles)
Source data DSM DSM DSM NSM NSM NSM NSM NSM
Projection phase DSM DSM DSM NSM NSM | *DSM *DSM | *DSM
Aggregation input DSM DSM | *NSM NSM NSM DSM DSM | *NSM
Aggregation table DSM NSM NSM DSM NSM DSM NSM NSM
Primitive (A) (B) (©) (D) (E) (F) (G) (H)
nsm2dsm_discount 0.00 0.00 0.00 0.00 0.00 | 325.07 340.47 | 337.72
nsm2dsm_extendedprice 0.00 0.00 0.00 0.00 0.00 17.73 18.24 17.99
nsm2dsm_tax 0.00 0.00 0.00 0.00 0.00 25.17 20.03 19.64
nsm2dsm_quantity 0.00 0.00 0.00 0.00 0.00 16.84 17.14 16.93
nsm2dsm_shipdate 0.00 0.00 0.00 0.00 0.00 19.70 20.02 19.45
nsm2dsm_linestatus 0.00 0.00 0.00 0.00 0.00 22.30 19.21 19.10
nsm2dsm_returnflag 0.00 0.00 0.00 0.00 0.00 22.76 19.31 19.12
select 28.40 27.98 27.96 || 330.37 | 338.77 | 38.93 39.77 | 39.00
tmp = 100 - discount 53.57 52.36 52.07 30.31 30.17 14.85 14.14 13.89
discountprice = tmp * Lextendedprice 47.52 4717 | 47.33 40.67 | 40.99 18.52 17.56 17.80
tmp = 100 + l_tax 50.08 50.18 49.89 27.76 27.83 13.64 13.93 13.70
charge = tmp * discountprice 18.04 17.10 17.35 40.08 44.63 20.89 18.18 17.83
key = 256 * Lreturnflag 20.66 20.09 20.12 28.85 28.69 19.43 19.77 19.39
key = key + Llinestatus 22.43 21.84 21.92 39.42 39.42 21.11 21.54 21.42
key = 256 * key + extrakey 33.66 32.95 33.07 64.39 64.46 32.38 32.78 32.24
dsm2nsm_charge 0.00 0.00 18.73 0.00 0.00 0.00 0.00 20.41
dsm2nsm_discountprice 0.00 0.00 20.07 0.00 0.00 0.00 0.00 20.09
dsm2nsm_discount 0.00 0.00 17.50 0.00 0.00 0.00 0.00 17.54
dsm2nsm_extendedprice 0.00 0.00 17.54 0.00 0.00 0.00 0.00 17.55
COUNTY() 50.71 51.75 50.56 56.80 72.81 52.67 58.65 50.24
SUM( charge ) 55.05 80.24 0.00 59.49 0.00 56.98 104.75 0.00
SUM( Ldiscount ) 52.49 56.47 0.00 62.92 0.00 51.69 62.81 0.00
SUM( discountprice ) 52.24 | 48.02 0.00 58.46 0.00 | 52.01 47.47 0.00
SUM( extendedprice ) 55.43 48.65 0.00 69.11 0.00 56.97 48.71 0.00
SIMD-SUM 0.00 0.00 | 107.68 0.00 | 226.44 0.00 0.00 | 130.98
SUM( Lquantity ) 64.05 52.23 53.87 70.64 | 68.01 58.03 50.20 | 48.66
TOTAL 603.98 | 608.17 | 553.65 || 981.47 | 981.47 | 956.30 | 1006.63 | 931.14

(*) denotes an explicit format conversion phase. Block size 128-tuples, 32K unique aggregation keys.
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query plan. Comparing DSM and NSM execution is also
the focus of a recent paper [10], though the methodology is
a high-level systems comparison without investigating the
interaction with computer architecture.

Some performance analysis of DSM and NSM data struc-
tures has been presented in [11] where the authors propose
“super-tuples” for both rows and columns. Related research
is PAX [4], a storage format that combines low NSM costs
for getting a single tuple from disk with good cache behavior
of "thinner” DSM storage. In memory PAX is almost equiv-
alent to DSM (the only difference is a possible impact on the
possible block sizes), it has the same properties during the
processing. The PAX idea has been generalized in [12] in the
data-morphing technique, that allows part of the attributes
in a given disk page to be stored in DSM and part in NSM,
depending on the query load. This research, focused only
on persistent data reorganization based on the query load.
Our technique goes further, by proposing dynamic reorga-
nization of transient, in-flight data.

On many architectures, SIMD instructions expect the in-
put data to be stored in simple arrays, as in DSM. Since
most database systems work on NSM, the potential of SIMD
can often not be used. Notable exceptions include [18], as
well as the family of MonetDB processing kernels [6, 5].
SIMD instructions are also becoming more relevant due to
appearance of architectures such as Cell that provide SIMD
only [14]. Interestingly, in this context it was already shown
that grouped aggregates can only be SIMD-ized when using
a NSM-like data organization (array of structures).

S. CONCLUSIONS AND FUTURE WORK

We have shown how different tuple layouts in the pipeline
of a block-oriented query processor can strongly influence
performance. For sequential access, DSM is the best repre-
sentation, usually as long as the tuple blocks fit L2; DSM
also wins for random access inside L1. If a sequential op-
erator is amendable for SIMD-ization, this causes DSM to
strongly outperform NSM; the difference sometimes even
making it profitable to pull selections upwards to keep data
densely organized for SIMD. NSM, on the other hand, is
more efficient for random access operations (hash join, ag-
gregation) into memory regions that do not fit L1. Unlike
DSM, random access memory latency to NSM can be hidden
using software prefetching. Finally, grouped Aggregation al-
lows SIMD calculations only in case of NSM.

This means that it depends on the query which data lay-
out is the most efficient in a given part of the plan. With the
conversion between NSM and DSM being relatively cheap,
we show that query plans such as TPC-H Q1 can be ac-
celerated by using both formats with on-the-fly conversions.
Therefore, we think that this work opens the door for future
research into making tuple layout planning a query opti-
mizer task. Additionally, more complex data representations
should be investigated, including mixing NSM and DSM in
one data block, as well as using indirect data storage.
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