Introduction to Ciphers

Last Revised -May 3, 2006

Cunsheng Ding
cding@cs.ust.hk www.cs.ust.hk/ ${ }^{\text {cding }}$

Mordecai Golin
golin@cs.ust.hk www.cs.ust.hk/~golin

WELCOME TO HKUST.
THANK YOU FOR COMING TO THIS CLASS.
I WILL TRY TO MAKE THIS
AS MUCH FUN I CAN.

YGNEQOG VQ JMWUV
VJCPM AQW HQT EQOKPI VQ VJKU ENCUU
K YKNN VTA VQ OCMG VJKU
CU OWEJ HWP CU K ECP

DVOXLNV GL SPFHG
GSZMP BLF ULI XLNRMT GL GSRH XOZHH
R DROO GIB GL NZPV GSRH
ZH NFXS UFM ZH R XZM

Monoalphabetic Substitution Ciphers

plaintext
WELCOME TO HKUST.
THANK YOU FOR COMING TO THIS CLASS.
I WILL TRY TO MAKE THIS
AS MUCH FUN I CAN.

shift every letter forward by two
YGNEQOG VQ JMWUV
VJCPM AQW HQT EQOKPI VQ VJKU ENCUU
K YKNN VTA VQ OCMG VJKU
CU OWEJ HWP CU K ECP
reverse the alphabet. $\mathrm{A} \rightarrow \mathrm{Z}, \mathrm{B} \rightarrow \mathrm{Y}$, etc.
DVOXLNV GL SPFHG
GSZMP BLF ULI XLNRMT GL GSRH XOZHH
R DROO GIB GL NZPV GSRH
ZH NFXS UFM ZH R XZM

Cryptography: The science of analyzing and deciphering codes and ciphers.

Cipher: Letters are replaced by other letters

Code: Words/phrases/concepts replaced by other words.

In a Monoalphabetic Substitution Cipher every character of a message is replaced with a uniquel alternate character. The mapping (replacement) is the key.

Monoalphabetic Substitution Ciphers (more)

Atbash Cipher: A MSC in which the alphabet is reversed, i.e., $A \rightarrow Z, B \rightarrow Y$, etc.
Very easy to remember.

Caesar Cipher: A MSC in which each letter is shifted (forwards or backwards) by the same amount.
The key is the shift amount.
Number of possible keys is 26 .
Still easy to remember.

For an arbitrary MSC, the key is a permutation of

$$
\{a, b, c, \ldots, z\} .
$$

Number of possible keys is $26!\sim 4 * 10^{26}$.
Much harder to remember (must write down the key and it can be lost/stolen).

Tentative Plan

- Review of Modulo Arithmetic
- Additive, Multiplicative and Affine Ciphers
- Cryptanalysis: Breaking some Simple Ciphers

Review of Modulo Arithmetic

1) $x(\bmod n)$ is the remainder when x is divided by n.
$5(\bmod 3)=2 ; \quad 32(\bmod 26)=6$.
2) We use $-x$ to represent $n-x$.
$-7=3(\bmod 10)$
3) $[[x(\bmod n)]+[y(\bmod n)]](\bmod n)$

$$
=[x+y](\bmod n)
$$

$[[28(\bmod 10)]+[19(\bmod 10])]=17(\bmod 10)$

$$
=7(\bmod 10)
$$

$$
=[28+19](\bmod 10)
$$

4) $[[x(\bmod n)] *[y(\bmod n)]](\bmod n)$

$$
=[x * y](\bmod n)
$$

$[[28(\bmod 10)] *[19(\bmod 10])]=72(\bmod 10)$

$$
\begin{aligned}
& =2(\bmod 10) \\
& =572(\bmod 10) \\
& =[28 * 19](\bmod 10)
\end{aligned}
$$

Map the letters in the alphabet to the integers modulo 26.

A	B	C	D	\ldots	W	X	Y	Z
1	2	3	4	\ldots	23	24	25	0

We can define at least three natural types of ciphers:

- Additive (Caesar) Ciphers with shift k.
$f(x)=x+k(\bmod 26)$
- Multiplicative Ciphers

$$
f(x)=x * k(\bmod 26)
$$

- Affine Ciphers

$$
f(x)=s(x+k)(\bmod 26)
$$

Additive (Caesar) Ciphers with shift k

To encipher, map letter x to $f(x)=x+k(\bmod 26)$

To deciphermap letter x to $f(x)=x+(-k)(\bmod 26)$

Example with $k=3$.
meet me at the usual place at eight oclock phhw ph dw wkh xvxdo sodfh dw hljkw rforfn

Note that after the enciphering step we will often ignore the word boundaries and write the text in blocks of fixed size, e.g.,
phh wph dww khx vxd oso
dfh dwh ljk wrf orf n

Multiplicative Ciphers

To encipher, map letter x to $f(x)=x * k(\bmod 26)$
To deciphermap letter x to $f(x)=x *\left(k^{-1}\right)(\bmod 26)$ k^{-1} is number t such that $k * t=1(\bmod 26)$.

Example with $k=3$.

meet me at the usual place at eight oclock mooh mo ch hxo kekcj vjcio ch oauxh sijsig

$$
\begin{array}{rlrlrl}
m & =13 & 13 * 3 & =13(\bmod 26) \\
e & =5 & 5 * 3 & =15(\bmod 26) & 15 & =o \\
t & =20 & & 20 * 3 & =8(\bmod 26) & 8
\end{array}
$$

To decipher multiply every letter in coded message by $9=3^{-1}(\bmod 26)$.

$$
\begin{array}{rlrlrl}
m & =13 & 13 * 9 & =13(\bmod 26) & \\
o & =15 & 15 * 9 & =5(\bmod 26) & 5 & =e \\
h & =8 & 8 * 9 & =20(\bmod 26) & 20 & =t
\end{array}
$$

Multiplicative Ciphers (more) $f(x)=x * k(\bmod 26)$

- If $\operatorname{gcd}(k, n)=1$ we say that k, n are relatively prime.
- If k, n are relatively prime then
$\{k, 2 k, 3 k, \ldots(n-1) k\}$
is a permutation of
$\{1,2,3, \ldots, n-1\}$
- If k, n are not relatively prime then there exists
some $r<n$ such that $r k=0(\bmod n)$
Then $\{k, 2 k, 3 k, \ldots(n-1) k\}$
is not a permutation of
$\{1,2,3, \ldots, n-1\}$
- If k, n are relatively prime, then there exists some r such that $r=k^{-1}(\bmod n)$.

Multiplicative Ciphers (more) $f(x)=x * k(\bmod 26)$

- No matter what k is, z always gets mapped to z. $f(0)=k * 0=0(\bmod 26)$
- For cipher to work correctly, must have that k and 26 are relatively prime,
i.e., $k \in\{1,3,5,7,11,15,17,19,21,23,25\}$ In this case, $f(x)$ defines a cipher, since it induces a permutation of the letters.
- If k and 26 are not relatively prime,
$\exists r$ such that $k * r=0(\bmod 26)$.
Then $f(r)=0$ so two letters get mapped to z and $f(x)$ is not a cipher.
Example: $k=4$.
$f(13)=72(\bmod 2) 6=0$
so "m" (13) maps to "z".
Also, both "a" (1) and " n " (14) would map into "d" (4) since
$14 * 4=56=4(\bmod 26)$

Affine Ciphers $f(x)=s(x+k)(\bmod 26)$

In order to ensure that $f(x)$ defines a cipher we must, as in multiplicative ciphers, require that s and 26 be relatively prime.

To decipher use function
$g(y)=s^{-1} * y-k(\bmod 26)$
Note that $g(f(x))=x$.

Example with $k=11$ and $s=7$.
meet me at the usual place at eight oclock An additive shift of $k=11$ gives
xppe xp le esp fdflw awlnp le ptrse znwznv A further multiplicative "shift" of $s=7$ gives
lhhi lh fi ich pbpfe gefth fi hjvci zteztx

Cryptanalysis: Breaking some Simple Ciphers

Use Statistical Analysis. In a given language, each character has a characteristic frequency. By trying to match these frequencies to frequencies of characters appearing in coded message, one could try and guess the key.

More sophisticated analyses would use digraph (pairs of letters) frequencies or even trigraph (triples of letters) frequencies.

Example: The coded message is

YQQ FYQ MFF TQQ EGM XBX
MOQ MFQ UST FAO XAO W

Frequency table is

Letter	A	B	E	F	G	M	O	Q	S	T	U	W	X	Y
Frequency	2	1	1	5	2	4	3	6	1	2	1	1	3	2

Since Q is the most frequent letter in the message we guess that e in the plaintext maps to Q in the code. If this is an additive cipher then $k=12$ (since $e=5$ and $Q=17$).

Decoding under this assumption gives
mee tme att heu sua lpl
ace ate igh toc lock

Life is usually not this easy!

Next time we will see more sophisticated statistical attacks.

