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File Accesses in Deep Learning Training
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IO Time vs. Total Training time
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Problems of Existing Systems — Metadata Bottleneck

Metadata access (e.g., list names)
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« Dataset contains lots of small files (e.g., ImageNet has 1.28 million files with
average size 110KB)

« Existing storage systems have poor scalability on metadata access



Our Solution 1: Metadata Snapshot
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Evaluation Results of Metadata Snapshot
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Our system achieves linear scalability on metadata access.



Our Solution 2: Chunk-Based File Organization
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Merge small files to large data chunks
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Chunk-wise shuffle converts
small file reads to large chunk
reads to utilize the maximum
read bandwidth of underlying
storage system.



Evaluation Results of Chunk-wise Shuffle Method
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With Chunk-wise shuffle our system is hundreds of times faster than the Lustre file system.



Problems of Existing Systems — Global caching
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Our Solution 3: Task-Grained Distributed Cache
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Evaluation Results on Distributed Cache

Files per second (x1000)

1200 | —*— DIESEL-API

DIESEL-FUSE
1000 4 === Memcached
—a—  Lustre
800 -

200 -

N /./-

200 - ./l’

Number of nodes

The task-grained distributed cache outperforms
existing caching and storage systems.
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IO Time

Our system halves the data loading time of an existing storage system:
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End-to-End Training Time
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Our system reduced the 10 time by 51-58% and the total time by 15-27%.
The reduction in training time is about 8-9 hours: from 37-66 hours to 29-57 hours.
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Summary

We design and implement a custom storage and caching system for deep

learning training.

e To remove the bottleneck on metadata access, we create metadata
snapshots for datasets

e To improve repeated shuffled accesses to small files, we introduce chunk-
based storage and apply chunk-wise shuffle

e To reduce the impact of node failures, we develop task-grained distributed
caches to contains node failure within each training task

Simple ldeas, Efficient Implementations, Ease of Use
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