
SECURE CRYPTOGRAPHIC TOOLS
FOR CLOUD & BLOCKCHAIN APPLICATIONS

Dimitris Papadopoulos
CSE Research and Technology Forum 2021

mail: dipapado@cse.ust.hk

site:

mailto:dipapado@cse.ust.hk

SEARCHING ON ENCRYPTED DATA

• Data outsourced to remote servers usually needs to be encrypted for privacy purposes

SEARCHING ON ENCRYPTED DATA

• Data outsourced to remote servers usually needs to be encrypted for privacy purposes

SEARCHING ON ENCRYPTED DATA

• Data outsourced to remote servers usually needs to be encrypted for privacy purposes

SEARCHING ON ENCRYPTED DATA

• Data outsourced to remote servers usually needs to be encrypted for privacy purposes

• Impossible to query it at the server due to encryption!

• Our solution: Searchable Encryption

SELECT * FROM TABLE
WHERE DEPT = “HR” ???

SEARCHING ON ENCRYPTED DATA

• Data outsourced to remote servers usually needs to be encrypted for privacy purposes

• Impossible to query it at the server due to encryption!

• Our solution: Searchable Encryption

SELECT * FROM TABLE
WHERE DEPT = “HR”

token tkHR

SEARCHING ON ENCRYPTED DATA

• Data outsourced to remote servers usually needs to be encrypted for privacy purposes

• Impossible to query it at the server due to encryption!

• Our solution: Searchable Encryption

Ø Data remains always encrypted at the server à Privacy

Ø Separate tokens for each column or value à Access control

Ø Based on simple symmetric-key encryption à Efficiency

Ø Generalizes to data from many users or complex queries

SELECT * FROM TABLE
WHERE DEPT = “HR”

token tkHR

Our scheme published in
CCS 2018 is the state-of-
the-art-dynamic SE:
à Extracting 1000 records
from a dataset of 1M takes
less than 10ms

• Many decentralized applications require user-provided randomness for execution:

VERIFIABLE (PSEUDO-)RANDOMNESS

blockchain protocol with
committee-based consensus

• Many decentralized applications require user-provided randomness for execution:

• How can we ensure the users’ random values are sampled honestly??

• Our solution: Verifiable (pseudo-)Random Functions (VRF)

VERIFIABLE (PSEUDO-)RANDOMNESS

blockchain protocol with
committee-based consensus

Public key pk
Secret key sk

• Many decentralized applications require user-provided randomness for execution:

• How can we ensure the users’ random values are sampled honestly??

• Our solution: Verifiable (pseudo-)Random Functions (VRF)

VERIFIABLE (PSEUDO-)RANDOMNESS

blockchain protocol with
committee-based consensus

Public key pk
Secret key sk

Random(sk, seed) à val, proof
Verify(pk, seed, val, proof) à accept/reject

seed

• Each user computes “random” value val
• Everybody can verify val using pk

à Our constructions are used in many deployed cryptocurrencies
(e.g., ALGORAND with 600M USD market cap)

à Currently being standardized by the Internet Engineering Task Force

• Smart contracts are programs that are stored and executed on the blockchain

ZERO-KNOWLEDGE SMART CONTRACTS

• Smart contracts are programs that are stored and executed on the blockchain

ZERO-KNOWLEDGE SMART CONTRACTS

Foo(int x, int y){

…
}

• Smart contracts are programs that are stored and executed on the blockchain

• Input data is provided via blockchain transactions

ZERO-KNOWLEDGE SMART CONTRACTS

Foo(int x, int y){

…
}

int
x

in
t
y

• Smart contracts are programs that are stored and executed on the blockchain

• Input data is provided via blockchain transactions

à publicly visible to everyone!

à cannot run smart contracts on sensitive data

ZERO-KNOWLEDGE SMART CONTRACTS

Foo(int x, int y){

…
}

int
x

in
t
y

• Smart contracts are programs that are stored and executed on the blockchain

• Input data is provided via blockchain transactions

à publicly visible to everyone!

à cannot run smart contracts on sensitive data

• Our solution: Zero-knowledge proofs

ZERO-KNOWLEDGE SMART CONTRACTS

Foo(int x, int y){

…
}

int
x

in
t
y

• Smart contracts are programs that are stored and executed on the blockchain

• Input data is provided via blockchain transactions

à publicly visible to everyone!

à cannot run smart contracts on sensitive data

• Our solution: Zero-knowledge proofs

• Data is encrypted on the chain and only
revealed to the smart contract owner

• Owner evaluates contract and provides
a zero-knowledge proof for the validity

à nothing is revealed publicly about the data

à saves effort as verifying the proof can be very fast!

ZERO-KNOWLEDGE SMART CONTRACTS

int
x

in
t
y

owner

int x int y

proof p

Our scheme published in USENIX 2020 achieves the shortest proofs:
à 160 bytes proof for any smart contract and verify takes 2ms

