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Data outsourced to remote servers usually needs to be encrypted for privacy purposes
Impossible to query it at the server due to encryption!

Our solution: Searchable Encryption

e SELECT * FROM TABLE
WHERE DEPT = “HR”

C "

Our scheme published in

CCS 2018 is the state-of-
the-art-dynamic SE:

—> Extracting 1000 records
from a dataset of |M takes
Based on simple symmetric-key encryption = Efficiency less than |0ms

Data remains always encrypted at the server = Privacy

Separate tokens for each column or value > Access control

Generalizes to data from many users or complex queries



VERIFIABLE (PSEUDO-)RANDOMNESS

Many decentralized applications require user-provided randomness for execution:

‘ /
aa z ® ~ el blockchain protocol with
X -/ “ @ committee-based consensus
[ o



VERIFIABLE (PSEUDO-)RANDOMNESS

Many decentralized applications require user-provided randomness for execution:
(_ (] —
e’ ® A ) blockchain protocol with
X -‘\/' " 6 committee-based consensus

How can we ensure the users’ random values are sampled honestly??

Our solution: Verifiable (pseudo-)Random Functions (VRF)

Public key pk
Secret key sk



VERIFIABLE (PSEUDO-)RANDOMNESS

Many decentralized applications require user-provided randomness for execution:
Seed 1 ‘ /
\ . ® — el blockchain protocol with
-/ " committee-based consensus

How can we ensure the users’ random values are sampled honestly??

Our solution: Verifiable (pseudo-)Random Functions (VRF)

‘ Random(sk, seed) = val, proof * Each user computes “random” value val
- Verify(pk, seed, val, proof) = accept/reject < Everybody can verify val using pk

Public key pk :
Secret key sk —> Our constructions are used in many deployed cryptocurrencies

(e.g., ALGORAND with 600M USD market cap)
—> Currently being standardized by the Internet Engineering Task Force
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Smart contracts are programs that are stored and executed on the blockchain

Input data is provided via blockchain transactions

—> publicly visible to everyone!

—> cannot run smart contracts on sensitive data

Our solution: Zero-knowledge proofs

Data is encrypted on the chain and only
revealed to the smart contract owner Lo

. X \ 4
Owner evaluates contract and provides A 5

a zero-knowledge proof for the validity I.I

=> nothing is revealed publicly about the data

-> saves effort as verifying the proof can be very fast!

Our scheme published in USENIX 2020 achieves the shortest proofs:
—> 160 bytes proof for any smart contract and verify takes 2ms




