SECURE CRYPTOGRAPHIC TOOLS
FOR CLOUD & BLOCKCHAIN APPLICATIONS

Dimitris Papadopoulos
CSE Research and Technology Forum 2021

COMPUTER SCIENCE & ENGINEERING

THE HONG KONG
UNIVERSITY OF SCIENCE
AND TECHNOLOGY

@

mailto:dipapado@cse.ust.hk

SEARCHING ON ENCRYPTED DATA

Data outsourced to remote servers usually needs to be encrypted for privacy purposes

SEARCHING ON ENCRYPTED DATA

Data outsourced to remote servers usually needs to be encrypted for privacy purposes

SEARCHING ON ENCRYPTED DATA

Data outsourced to remote servers usually needs to be encrypted for privacy purposes

SEARCHING ON ENCRYPTED DATA

Data outsourced to remote servers usually needs to be encrypted for privacy purposes
Impossible to query it at the server due to encryption!

Our solution: Searchable Encryption

SELECT * FROM TABLE
WHERE DEPT = *“HR”

SEARCHING ON ENCRYPTED DATA

Data outsourced to remote servers usually needs to be encrypted for privacy purposes
Impossible to query it at the server due to encryption!

Our solution: Searchable Encryption

SELECT * FROM TABLE

WHERE DEPT = *“HR”
>

SEARCHING ON ENCRYPTED DATA

Data outsourced to remote servers usually needs to be encrypted for privacy purposes
Impossible to query it at the server due to encryption!

Our solution: Searchable Encryption

e SELECT * FROM TABLE
WHERE DEPT = “HR”

C "

Our scheme published in

CCS 2018 is the state-of-
the-art-dynamic SE:

—> Extracting 1000 records
from a dataset of |M takes
Based on simple symmetric-key encryption = Efficiency less than |0ms

Data remains always encrypted at the server = Privacy

Separate tokens for each column or value > Access control

Generalizes to data from many users or complex queries

VERIFIABLE (PSEUDO-)RANDOMNESS

Many decentralized applications require user-provided randomness for execution:

‘ /
aa z ® ~ el blockchain protocol with
X -/ “ @ committee-based consensus
[o

VERIFIABLE (PSEUDO-)RANDOMNESS

Many decentralized applications require user-provided randomness for execution:
(_ (] —
e’ ® A) blockchain protocol with
X -‘\/' " 6 committee-based consensus

How can we ensure the users’ random values are sampled honestly??

Our solution: Verifiable (pseudo-)Random Functions (VRF)

Public key pk
Secret key sk

VERIFIABLE (PSEUDO-)RANDOMNESS

Many decentralized applications require user-provided randomness for execution:
Seed 1 ‘ /
\ . ® — el blockchain protocol with
-/ " committee-based consensus

How can we ensure the users’ random values are sampled honestly??

Our solution: Verifiable (pseudo-)Random Functions (VRF)

‘ Random(sk, seed) = val, proof * Each user computes “random” value val
- Verify(pk, seed, val, proof) = accept/reject < Everybody can verify val using pk

Public key pk :
Secret key sk —> Our constructions are used in many deployed cryptocurrencies

(e.g., ALGORAND with 600M USD market cap)
—> Currently being standardized by the Internet Engineering Task Force

ZERO-KNOWLEDGE SMART CONTRACTS

Smart contracts are programs that are stored and executed on the blockchain

ZERO-KNOWLEDGE SMART CONTRACTS

Smart contracts are programs that are stored and executed on the blockchain

ZERO-KNOWLEDGE SMART CONTRACTS

Smart contracts are programs that are stored and executed on the blockchain

Input data is provided via blockchain transactions

ZERO-KNOWLEDGE SMART CONTRACTS

Smart contracts are programs that are stored and executed on the blockchain

Input data is provided via blockchain transactions

—> publicly visible to everyone!

—> cannot run smart contracts on sensitive data

ZERO-KNOWLEDGE SMART CONTRACTS

Smart contracts are programs that are stored and executed on the blockchain

Input data is provided via blockchain transactions

—> publicly visible to everyone!

—> cannot run smart contracts on sensitive data

Our solution: Zero-knowledge proofs

ZERO-KNOWLEDGE SMART CONTRACTS

Smart contracts are programs that are stored and executed on the blockchain

Input data is provided via blockchain transactions

—> publicly visible to everyone!

—> cannot run smart contracts on sensitive data

Our solution: Zero-knowledge proofs

Data is encrypted on the chain and only
revealed to the smart contract owner Lo

. X \ 4
Owner evaluates contract and provides A 5

a zero-knowledge proof for the validity I.I

=> nothing is revealed publicly about the data

-> saves effort as verifying the proof can be very fast!

Our scheme published in USENIX 2020 achieves the shortest proofs:
—> 160 bytes proof for any smart contract and verify takes 2ms

