3D Contents Understanding and Remodeling

Sai-Kit Yeung CSE Research and Technology Forum Jan 28th, 2021

Research Interest

- Computer Vision
 - 3D content acquisition and understanding
- Computer Graphics and Computational Design
 - Develop algorithms for content generation
 - For Human to Co-Design with AI

COMPUTER VISION RESEARCH: OVERVIEW

Tool for Scene Understanding

• Annotation Tool for 3D Scenes Semantic Segmentation

Tool for Scene Understanding

A Robust 3D-2D Interactive Tool for Scene Segmentation and Annotation

Duc Thanh Nguyen¹

Binh-Son Hua¹

Lap-Fai Yu²

Sai-Kit Yeung¹

¹ Singapore University of Technology and Design

² University of Massachusetts Boston

Dataset for Scene Understanding

(a) Cluttered office

(b) Cluttered office

First Real-World scene meshes dataset for scene understanding 3DV 2016 Best Paper Honorable Mension

Real-time Semantic 3-D Reconstruction

WACV 2019

Deep learning on 3-D Point cloud

Develop different convolutional operators for 3-D Point cloud:

Simple implementation CVPR 2018

Fast to train network ICCV 2019 oral

Rotational Invariant operator 3DV 2019

Global context aware operator 3DV 2020 oral

Deep learning on 3-D Point cloud

3D Point cloud instance segmentation CVPR 2019 Oral

2D-3D Cross-Domain Descriptors AAAI 2020 Oral

First Real-World Object Dataset for object understanding ICCV 2019 Oral

Object affordance understanding

Containability understanding of 3D Shape ICCV 2015

Object affordance understanding

Recent research activities: apply latest CV algorithms to robotics application, e.g., Autonomous fine-grained operation

Demo by HaptX in 2019 Jan

Research – Computer Graphics and Computational Design

- Scene and Layout Design
 - Make It Home: Automatic furniture arrangement – SIGGRAPH 2011
 - Crowd Driven Mid-Scale Layout Design SIGGRAPH 2016
 - Language-Driven Synthesis of 3D Scenes SIGGRAPHAsia 2018

Replace the desk and monitors.

RESEARCH GRANT: VIRTUAL SINGAPORE PROJECT

Research – Computer Graphics and Computational Design

- Product/Geometry Design/Modeling
 - Zoomorphic Design SIGGRAPH 2015
 - Interchangeable Components for Hands-On Assembly Based Modelling – SIGGRAPHAsia 2016
 - Approximate Dissections SIGGRAPHAsia 2017

(h) United States to Trump

Research – Computational Design: Develop algorithms to co-design with AI

Research – Computational Design: Develop algorithms to co-design with AI

Optimize

Zoomorphic Design. SIGGRAPH 2015

Research – Computational Design: Develop algorithms to co-design with AI

Zoomorphic Design. SIGGRAPH 2015