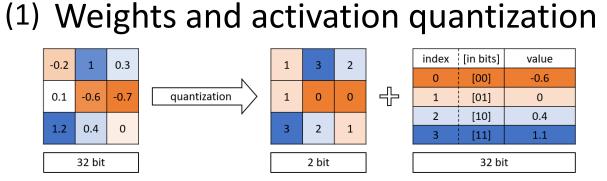
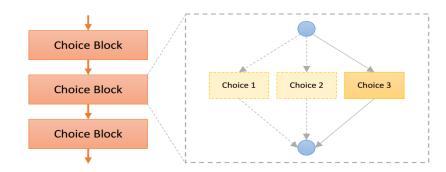
Computer Vision – Efficiency, Hardware Friendliness and Applications

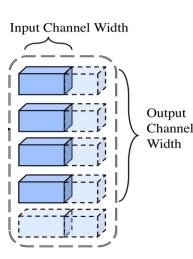
K.-T. Tim Cheng, HKUST

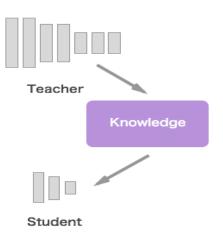

Vision & System Design Lab

Computer Vision

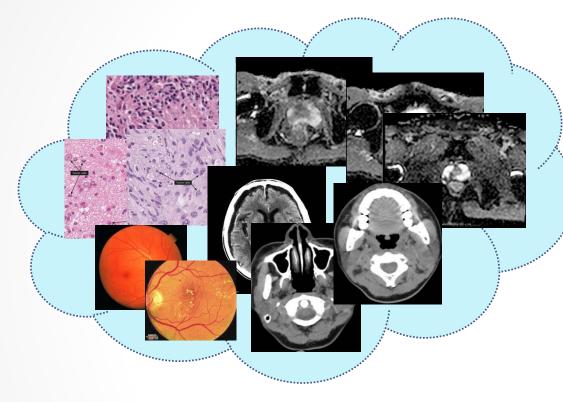

- Efficiency and Hardware Friendliness:
 - Neural network compression via quantization, channel pruning and neural architecture search (NAS)
- Medical and AIoT Applications:
 - Medical image analysis detection, segmentation, and diagnosis
 - Smart drone cinematography for filming human motion
 - Wellness analytics for seniors in elderly care centers
 - Food waste analytics in Canteens and visual feedback for behavior changes
- AI Chips/Accelerators

Neural Network Compression and HW implementation (AI Accelerator)


4 ways of compressing and accelerating the neural networks:


(4) Compact neural network design and search

(2) Network channel pruning

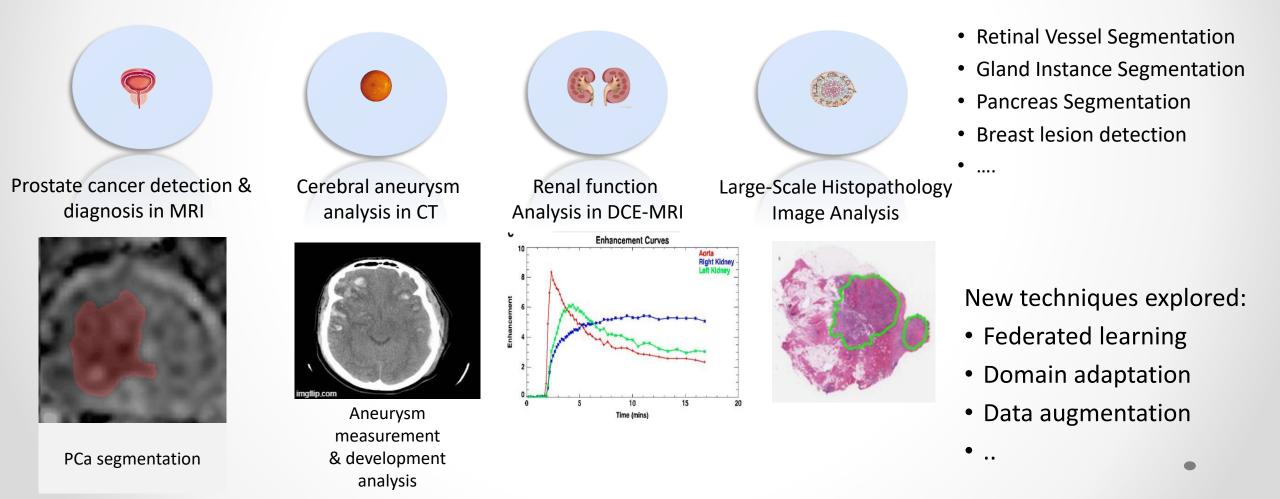


• Quantization:

- Bi-Real Net (ECCV 2018 & IJCV 2019)
- ReActNet (ECCV 2020)
- Binarizing MobileNet via Evolutionary Search (CVPR 2020)
- Network Channel Pruning:
 - MetaPruning (ICCV 2019)
- Neural Architecture Search:
 - Data-free Neural Architecture Search (submitted for publication)
- Knowledge distillation
 - Label Smoothing (ICLR 2021)

AI for Medical Imaging Aided Diagnosis

 \rightarrow


 AI + Medical Imaging Analysis

- Tremendous amount of Medical imaging data
 - **40 billion RMB** in 2015, **80%** of all medical data
 - **70%** clinical diagnosis and treatment rely on imaging data
- Lack of expertise's for reading data (10-year growth cycle)
- $\checkmark\,$ Objective and quantitative results
- ✓ Better efficiency and accuracy
- ✓ Optimized medical resources

Our Research in AI for MID

AI for Medical Imaging Diagnosis — 2nd Pair of Eyes of a Clinician

Vision & System Design Lab

Computer Vision

- Efficiency and Hardware Friendliness:
 - Neural network compression via quantization, channel pruning and neural architecture search (NAS)
- Medical and AIoT Applications:
 - Medical image analysis detection, segmentation, and diagnosis
 - Smart drone cinematography for filming human motion
 - Wellness analytics for seniors in elderly care centers
 - Food waste analytics in Canteens and visual feedback for behavior changes
- AI Chips/Accelerators

Existing Intelligent Applications in Consumer Drones

Captured by DJI Mavic QuickShot mode

Captured by DJI Mavic ActiveTrack mode

- 1. Predefined camera trajectory
- 2. No camera-subject interaction

- 1. Oversimplify the video content
- 2. Fixed viewpoint

Imitation Learning to Automate Drone Filming of Human Motion Video

Our approach: Imitating given professional videos

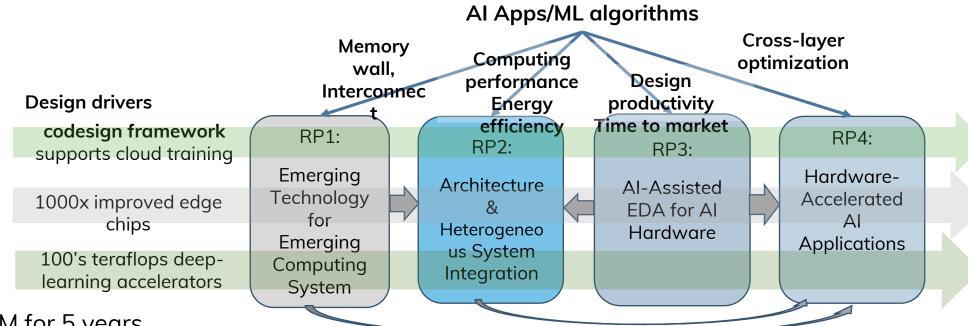
Autonomously Captured Video with Style D

Vision & System Design Lab

Computer Vision

- Efficiency and Hardware Friendliness:
 - Neural network compression via quantization, channel pruning and neural architecture search (NAS)
- Medical and AIoT Applications:
 - Medical image analysis detection, segmentation, and diagnosis
 - Smart drone cinematography for filming human motion
 - Wellness analytics for seniors in elderly care centers
 - Food waste analytics in Canteens and visual feedback for behavior changes
- AI Chips/Accelerators

AIR@InnoHK



Lead University: Participating Univ.: Project Investigator

HKUST

Stanford, UIUC, CUHK, HKU Tim Cheng, HKUST

ACCESS: AI Chip Center for Emerging Smart Systems Mission: Realizing *ubiquitous AI applications in society by*:
1. Improving AI chip performance/energy efficiency by 1,000X
2. Accelerating AI chip design productivity and time-to-market

* Initial funding: \$443.9M for 5 years

A Unique Team of World Leading Experts with Complementary Expertise

AIR@InnoHK

IC Design

ACCESS: AI Chip Center for Emerging Smart Systems

Tim CHENG EDA, IC design and Computer Vision **Boris MURMANN** IC design

Deming CHEN EDA, Al accelerator

Architecture

CY TSUI IC design, architecture & embedded systems Parallel computing Privanka RAINA Al Accelerator, Architecture

Nanoelectronics & Emerging Devices

Mansun CH Philip WONG Nanoelectronics VLSI, Nanoelectronics, emerging devices

AN	Francois ANDRIEU Nanoelectronics
	Led industrial projects of STMicroelectonics, Globalfoundries and IBM IEEE/SEE Brillouin Award, 2018

Design Methodology & EDA

fartin WONG	Evan
DA	YOU
IEEE and ACM Fellows	Physica
Former Executive	• Foun
Associate Dean of	CED/
Engineering, UIUC	Chap
	 Exect Int'l c 2019 4 bes

geline ١G synthesis, EDA

Elyse ROSEBAUM Nanoelectronics, circuits

Embedded & Reconfigurable AI/Machine Learning & Applications

Jiang XU Architecture, silicon photonics system

David TSE Stephen BOYD Information theory Optimization for ML, circuit design, etc.

Edmund LAM Imaging systems