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Machine Learning Pipeline
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The devil Is In the detalls
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Automated Machine Learning

* AutoML simplifies each step in the machine learning process,
from handling a raw dataset to deploying a practical machine

learning model.
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Model Matters!
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Automated Machine Learning

* AutoML: simplifies each step in the machine learning process,
from handling a raw dataset to deploying a practical machine

learning model.

* Neural Architecture Search (NAS) [ICLR 21°ECCV 21]
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Automated Machine Learning

* AutoML:
* Neural Architecture Search (NAS)
* Hyperparameter optimization (HPO)
* Meta learning and Learning to learn

* Automated Reinforcement learning
* AutoML in Physical World
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Researchers trick Tesla Autopilot into
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INDUSTRY

Microsoft silences its new A.l bot Tay, after
Y L Twitter users teach it racism [Updated]
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Breaking: Two Explosions in the Whil
Hnuxndnm.uiﬁt-_ hqj jured

Microsoft's o newly launched A | -powered bot called Tay, which was responding to tweets and chats on
Grauphle and Kik, has already been shut down due to concems with its inability to recognize when it was
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miaking offensive or racist statements. Of course, the bol wasn| coded o be racest, but it “learns” from
those it interacts with. And naturally, gven that this is the Infemet. one of the first things orline users
taught Tay was how to be racist. and how to spout back iil-informed or inflammatory pelitical opinions.
[Update: Microsofl now says il's “making adjustments™ to Tay in light of thes problem.]
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Trustworthy ML

* Not alchemy
* Explainability
* Robustness
* Security
* Privacy
* Fairness

e Establish model
understanding
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Accuracy # Robustness

* Solely pursuing for high-
accuracy Al model may
get us In trouble-

Tradeoff between Accuracy and £, CLEVER Score
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Model understanding

* Debugging
e Bias detection

* Provide recourse to individuals
who are adversely affected by
model predictions

* Assess If and when to trust
model predictions
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Thant you!
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