The Next Frontier in Type Inference

Lionel Parreaux, HKUST CSE
Research and Technology Forum 2022

About Myself

Lionel Parreaux Origin: France

PhD at EPFL, Lausanne

Sep 2014—Jun 2020
Thesis: Type-Safe Metaprogramming and Compilation Techniques For Designing Efficient Systems in High-Level Languages

Assistant Professor at HKUST, Hong Kong

Since Feb 2021
Current focus:
e Type inference with advanced features
e Compiler optimization
e Dependent type systems, metaprogramming
e Performance-oriented software systems

Problem of Type Inference

An old dilemma

Static typing

List<Integer> foo(Integer init) {
List<Integer> xs =
List.of<Integer>(init);
System.out.println(xs);

return xs;

Dynamic typing

def foo(init):
xs = List.of(init)
System.out.println(xs)

return xs

more concise, readable
X error-prone
X slower to execute

Problem of Type Inference

The best of both worlds

Static typing + type inference

Infer type annotations at compilation time
Report possible errors to users early on
more concise, readable

type checked at compile time
can compile to efficient code

Type Inference State of the Art

Two schools of type inference

in object-oriented languages in functional languages
Incomplete, ad-hoc, often unsound Solid formal foundations
Still require lots of annotations Applies on limited type systems

my work: bridge the gap

Type Inference State of the Art

Many directions to push

[—

~>

x \ overloading

dynamic languages

biect orientati , :
object orientation higher-kinded types

subtyping

dependent types first-class polymorphism

Type Inference for Dynamic Languages

Dynamic languages are moving towards static typing

P Python
& MatLab

JS JavaScript

TS TypeScript

Example: The MLscript language

Goal: be a better TypeScript qithub.com/hkust-taco/mlscript

interoperable type system, with
sound type system
formally-proven full type inference
concise, functional syntax

cu rrent ContribUtorS: Lionel Parreaux Luyu Cheng Tony Chau Elise Rouille

Assistant Professor PhD Student MPhil Student MPhil Student

https://github.com/hkust-taco/mlscript
http://github.com/hkust-taco/mlscript

Example: The MLscript language

Goal: be a better TypeScript

interoperable type system, with
sound type system
formally-proven full type inference
concise, functional syntax

github.com/hkust-taco/mlscript

web demo:

val x: "oops"
val f: int -> int
Type mismatch in application:
1l.4: £ x
string literal of type " "oops" does not match type “int"

1.0: x = "oops"

but it flows into reference with expected type “int~
1.4is £ x

Note: constraint arises from reference:
1.2: £ y = succ y

https://github.com/hkust-taco/mlscript
http://github.com/hkust-taco/mlscript

Challenges of Type Inference

complexity, decidability

find sweet spot between expressiveness and complexity

predictability

should be intuitive for users, easy to understand

error messages

explain type errors in terms of user-level concepts

