
The Next Frontier in Type Inference

Lionel Parreaux, HKUST CSE
Research and Technology Forum 2022

About Myself
Lionel Parreaux Origin: France

PhD at EPFL, Lausanne
Sep 2014—Jun 2020
Thesis: Type-Safe Metaprogramming and Compilation Techniques For Designing Efficient Systems in High-Level Languages

Assistant Professor at HKUST, Hong Kong
Since Feb 2021
Current focus:

● Type inference with advanced features
● Compiler optimization
● Dependent type systems, metaprogramming
● Performance-oriented software systems

An old dilemma

Static typing

List<Integer> foo(Integer init) {

List<Integer> xs =

List.of<Integer>(init);

System.out.println(xs);

return xs;

}

Problem of Type Inference

Dynamic typing

def foo(init):

xs = List.of(init)

System.out.println(xs)

return xs

✅ more concise, readable
❌ error-prone
❌ slower to execute

The best of both worlds

Static typing + type inference

Infer type annotations at compilation time

Report possible errors to users early on

Problem of Type Inference

✅ more concise, readable
✅ type checked at compile time
✅ can compile to efficient code

in functional languages

 Solid formal foundations

 Applies on limited type systems

Two schools of type inference

in object-oriented languages

 Incomplete, ad-hoc, often unsound

 Still require lots of annotations

Type Inference State of the Art

my work: bridge the gap

Many directions to push

Type Inference State of the Art

subtyping
first-class polymorphismdependent types

object orientation

dynamic languages

higher-kinded types

overloading

dynamic languages

Dynamic languages are moving towards static typing

Type Inference for Dynamic Languages

JavaScript

TypeScript
MatLab

Python

Goal: be a better TypeScript

interoperable type system, with

sound type system

formally-proven full type inference

concise, functional syntax

current contributors:

Example: The MLscript language
github.com/hkust-taco/mlscript

https://github.com/hkust-taco/mlscript
http://github.com/hkust-taco/mlscript

Goal: be a better TypeScript

interoperable type system, with

sound type system

formally-proven full type inference

concise, functional syntax

current contributors:

Example: The MLscript language
github.com/hkust-taco/mlscript

web demo:

https://github.com/hkust-taco/mlscript
http://github.com/hkust-taco/mlscript

complexity, decidability

find sweet spot between expressiveness and complexity

predictability

should be intuitive for users, easy to understand

error messages

explain type errors in terms of user-level concepts

Challenges of Type Inference

