Accommodating LLM Service over Heterogeneous Computational Resources

Binhang Yuan

12.04.2024
Amazing Progress of ML/AI

Gemini

Make a picture of a white family

While I understand your request, I'm unable to generate images that specify ethnicity or race. It's against my guidelines to create content that could be discriminatory or promote harmful stereotypes.

Instead, I can offer you images of families that celebrate diversity and inclusivity, featuring people of various ethnicities and backgrounds. Would you be interested in that?

OpenAI Sora

Sure, here are some images featuring Black families:
The challenge of Today:

Building ML Applications at SOTA scale is expensive!

Further scaling is facing non-linear bottlenecks.
Optimizing Communications for Distributed and Decentralized LLM Service.
Communication Bottlenecks across Infrastructure

communication becomes slower, open up more choices (and some can be cheaper)

Data Center (Multi-cloud) Spot Instances Serverless Environment Decentralized Network

The more we can optimize communications, the more choices we have when building our infrastructure.
From Cloud to Decentralized Compute Resource

This is $4.09/hour for an A100 GPU.

This is what you can get from a decentralized GPU pool!
Accommodate LLM training through heterogeneous network.
Pipeline Parallelism

1. How to schedule the communication to accommodate the decentralized connections?
2. How to compress forward activations and backward gradients?
Decentralized Training of Foundation Models

- **Decentralized training of FM**: the network is $100 \times$ slower, but the pre-training throughput is only $1.7 \sim 3.5 \times$ slower!

- **Decentralized fine-tuning of FM**: *AQ-SGD* communication-efficient pipeline training with activation compression.

Decentralized Training of Foundation Models in Heterogeneous Environments

Binhang Yang, Yu-Hao Yang, Junjie Quinyao Wang, Tianyi Zhang, Yiming Ji, Jiawei Zhang

ETH Zurich, Switzerland

Stanford University, USA

Department of Electrical Engineering and Computer Science, University of California, Berkeley

School of Computing, National University of Singapore

[NeurIPS 2022-(a)]

Fine-tuning Language Models over Slow Networks using Activation Compression with Guarantees

Jie Wu, Jianfeng Zhang, Yang Wang, Jiawei Zhang, Yiming Ji, Xi Chen, Christopher Re, Gi-Chang Kang

ETH Zurich, Switzerland

Stanford University, USA

[NeurIPS 2022-(b)]
Accommodate Communication in a Decentralized network

A bi-level scheduling algorithm based on an extended balanced graph partition to estimate the communication cost:

- **Data parallel communication cost**: nodes handling the same stage need to exchange gradients;
- **Pipeline parallel communication cost**: nodes handling nearby stages for the same micro-batch need to communicate activation in the forward propagation and gradients of the activation in the backward propagation.

(a) Communication Topology Graph G over N devices

(b) Each partition C_i deals with one stage, running data parallel within each partition

(c) Coarsened graph \tilde{G} decoding the cost of pipeline parallel

(d) perfect matching corresponds to how devices in C_i and devices in C_j communicate in a pipeline.

(e) Open-loop-traveling-salesman provides a pipeline structure
\[\min_{x \in \mathbb{R}^d} f(x) = \mathbb{E}_{\xi \sim \mathcal{D}} F(b(a(\xi, x^{(a)}), x^{(b)})) \]

Direct quantization only works to some degree.

\[m \leq \mathbb{E}_{\eta \sim \mathcal{D}} F(\theta - b(a(\eta, x^{(a)}), x^{(b)})) \]

AQ-SGD

-(A1: Lipschitz assumptions) We assume that \(\nabla f \), \(\nabla (f \circ b) \) and \(a \) are \(L_f \), \(L_{f \circ b} \), and \(L_a \)-Lipschitz, respectively, recalling that a function \(g \) is \(L_g \)-Lipschitz if

\[\| g(x) - g(y) \| \leq L_g \| x - y \|, \quad \forall x, y. \]

Furthermore, we assume that \(a \) and \(f \circ b \) have gradients bounded by \(C_a \) and \(C_{f \circ b} \), respectively, i.e.

\[\| \nabla a(x) \| \leq C_a, \quad \text{and} \quad \| \nabla (f \circ b)(x) \| \leq C_{f \circ b}. \]

-(A2: SGD assumptions) We assume that the stochastic gradient \(g_k \) is unbiased, i.e. \(\mathbb{E}[g_k(x)] = \nabla f(x) \), for all \(x \), and with bounded variance, i.e. \(\mathbb{E}[\| g_k(x) - \nabla f(x) \|^2] \leq \sigma^2 \), for all \(x \).

Theorem 3.1. Suppose that Assumptions A1, A2 hold, and consider an unbiased quantisation function \(Q(x) \) which satisfies that there exists \(c_Q < \sqrt{1/2} \) such that \(\mathbb{E}[\| x - Q(x) \|] \leq c_Q \| x \| \), for all \(x \). Let \(\gamma = \frac{4c_Qa(1 + C_a) L_{f \circ b} N}{(C + L_f)(f(x_i) - f_i)^2 + 2c^2(\sigma^2 C_a C_{f \circ b})^2} \) be the learning rate, where

\[C = \frac{4c_Qa(1 + C_a) L_{f \circ b} N}{\sqrt{1 - 2c_Q^2}}. \]

Then after performing \(T \) updates one has

\[\frac{1}{T} \sum_{t \in [T]} \mathbb{E}[\| \nabla f(x_t) \|^2] \leq \left(\frac{C + L_f}{\sqrt{T}} \right) + \frac{2c^2(\sigma^2 C_a C_{f \circ b})^2}{\sqrt{T}}. \]

\[\text{[NeurIPS 2022-(b)]} \]
LLM service is NOT all about training.

“90% of the machine learning demand in the cloud is for inference.”

-- AWS Report
FlexGen

High-Throughput Generative Inference of Large Language Models with a Single GPU

- **OPT-175B Scale Inference on a single GPU:**
 - 6.5K stars on Github;
 - Top discussion on Hacker News;
 - High throughput scenario: 1 token/s.
HexGen

Generative Inference of Foundation Model over Heterogeneous Environment

• An implementation that accommodates tensor model parallelism and pipeline parallelism.

• A scheduling algorithm that optimizes pipeline partitions and parallel strategies over heterogeneous GPUs.

Network Layers 1-8

TP-3, TP-2, TP-1, TP-0

Network Layers 9-16

TP-0, TP-1, TP-2, TP-3

PP Comm

[Preprint: arxiv.2311.11514]
Summary

• *Communication* is a key bottleneck of distributed learning, both for centralized data center network and decentralized environments.

• We can develop *Algorithms* to alleviate communication bottlenecks:
 • *LLM Training*: system scheduling and algorithm relaxation.
 • *LLM Inference*: latency and throughput orientated scenarios.

Personal page: https://binhangyuan.github.io/site/