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What We Do: Extending Language Models from Shallow Textual Understanding
to Richer Capabilities as the Connecting Bridge Across Modalities and Tasks
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Let’s Start with an Acuity Test on LVLM Reasoning Robustness to
Simple Visual Variations, which is Key for Real-World Generalization

“ Our automated data generation framework to conduct a holistic sweep of visual
variations on LVLMSs, along with our metric definitions.
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Impact of direction, position and scale variation on LVLM

“-(a)(b): The accuracy of the LVLM is higher in the peripheral than the center, meaning
that LVLMs have the tendency to infer from the context, rather than focus on the

objects.

“*-(c) The LVLMs experience a sharp decline on a visual threshold, resembling the
human visual acuity
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Figure 2: (a) Demonstration of position bias effects. (b) Accuracy heatmaps for object recognition and direction
recognition, across object scales and position variations. (c¢) Model accuracy as a function of relative object scale.

Fan et al. V2R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations. Preprint, 2025.
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The LVLM component analysis - multimodal projector

Feature Space Visualization
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“ (a)Feature space of the alignhed feature does not align with that of the text embedding.

“*-(b)We directly decode the output of mm-projector using the language embedding
matrix. The output is not coherent natural languages.

“-(c) Demonstration of the features varies as the object position changes. This lead to
error accumulation in the LVLM pipeline

Fan et al. V2R-Bench: Holistically Evaluating LVLM Robustness to Fundamental Visual Variations. Preprint, 2025.
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In addition to Perception Robustness, LVLM Cross-Context Reasoning
is also a Largely Overlooked Challenge!
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“*Cross-context visual reasoning is
extremely simple and straightforward for
the human cognitive process...

“*But it is quite challenging for current
large vision language models
(LVLMs), especially across multiple
images and videos!

Why, and how can we improve?

Zhang et al. VLM”2-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues. Preprint, 2025. 6
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How Well VLMs Implicitly Link Explicit Matching Visual Cues: VLM?*-Bench

S22 VLM2-Bench: A Closer Look at How Well VLMs Implicitly Link s»Statistical overview: 9 subtasks across the

Explicit Matching Visual Cues 3 main categories of visual cues.
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Figure 2: Overview of VLM*-Bench. The benchmark is categorized into three subsets based on visual cues: GC Figure 3: Construction of GC: (i) We start by manually verifying the edited image data based on three key criteria.
(General Cue), OC (Object-centric Cue), and PC (Person-centric Cue), each comprising multiple sub! == "0 (ii) A VLM is then prompted to generate captions for each image, followed by salient score-based filtering to retain
comprehensively evaluate VLMs’ ablllty to visually link matching cues, the benchmark includes diverse aueston the challenging cases. (iii) Finally, visual cues are extracted from two sources and incorporated into a QA j:oiint,
formats—T/F &%, multiple-choice %, numerical €, and open-ended * —ensuring a comprehensive evaluation. guiding an LLM to generate both positive and negative answer pairs.
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SOTA LVLMs Still Lag Far Behind Human Performance
. \/
Baselines or Models GC oC PC Overall* 2 Note that models perfO rm better
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< Interestingly, reasoning in language via COT helps, but visual prompting yields mixed results.
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The First Step is Benchmark Assessments for Gleaning Insights...
Then We Also Propose Novel Solutions to Train Models Better

““'MACAROON: Training Vision-Language Models To
Be Your Engaged Partners

May Fung' ShaLi' Yixin Wan® Kai-Wei Chang’® Heng Ji'
1Un'wcrsity of Illinois Urbana-Champaign

2University of Southern California 3Unjwersitj.f of California, Los Angeles
{shujinwu}@usc.edu {yifung2, hengji}@illinois.edu

Shujin Wa'**

Question:

What calor is the hair of the person in the image? More human-centered
More difficult for current

LLaVA says: LVLMs to perform well

The persan in the picture has blond hair. ,
=% Tier I: Invalid
Human will say:

There are two persons in the image, may | know
which one you are referring to specifically?

Tier | Examples:

Unansweroble Question: What's the name of this cow in brown?
False Premise: How deep is the pond they are drinking from?

Question:

|

Is the person in orange pants male or female?

LLaVA says:

b4
+ i igui iling?
o P" The perscn in orange pants is mala. Sub{wt_ﬁmbrgwqr. = . =i ng: .
== Subjective Interpretation: |s the man in blue shirt ?
Human will say: b, Unclear User Background: Is the pattern of that blue shirt the
i %, 2
‘? Sarry, I'm not able to determine the gender of o I same as the -

that person from the image alone.

. . . . . Latent Human Preferences: Could you SOME Cars
Figure 1: Existing LVLMs fail to ask clarifying ques- that can handie this severe weather conditian ?
tions or acknowledge their knowledge boundary, result-

ing in biased and hallucinated responses. Figure 2: Typical examples for each question type

within our defined hierarchy.
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Figure 6: Overview of MACAROON. In the data construction stage, MACAROON avoids using extensive human or
teacher model supervision via self-imagined desirable and undesirable responses based on human-written criteria.
The contrastive response pairs, together with general vision-language instruction tuning samples, are effectively
utilized through conditional reinforcement learning.

arXiv:2501.18457v2 [cs.CL] 10 Feb 2025

¢ CALM: Unleashing the Cross-Lingual Self-Aligning Ability of
Language Model Question Answering

Qingyun Wang' Yi R. (May) Fung?* Heng Ji'*
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Abstract

Large Language Models (LLMs) are pretrained
on extensive multilingual corpora to acquire
both language-specific cultural knowledge and
general knowledge. Ideally, while LLMs
should provide consistent responses to culture-
independent questions across languages, we
observe significant performance disparities. To
address this, we explore the Cross-Lingual Self-
Aligning ability of Language Models (CALM)
to align knowledge across languages. Specifi-
cally, for a given question, we sample multiple
responses across different languages, and se-
lect the most self-consistent response as the
target, leaving the remaining responses as neg-
ative examples. We then employ direct prefer-
ence optimization (DPO) to align the model’s
knowledge across different languages. Evalu-
ations on the MEDQA and X-CSQA datasets
demonstrate CALM’s effectiveness in enhanc-
ing cross-lingual knowledge question answer-
ing, both in zero-shot and retrieval-augmented
settings. We also found that increasing the num-
ber of languages involved in CALM training
leads to higher accuracy and consistency. We
offer a qualitative analysis of how cross-lingual
consistency can enhance knowledge alignment
and explore the method’s generalizability'.

1 Introduction

LILMs have been pre-trained on various knowledge
domains in multiple languages, capturing extensive
world knowledge (Yu et al., 2024). This knowledge
can be either sociocultural-dependent (Sun et al.,
2023; Liu et al., 2025) or sociocultural-independent

yrfung@ust.hk

hengji@illinois.edu

Cross-lingual bidirectional
knowledge alignment
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Figure 1: Knowledge is not well-aligned across lan-
guages. (1) represents knowledge encoded in English
that is difficult to retrieve from other languages. (2) is
the knowledge that is already well-aligned across lan-
guages. (3) is the knowledge encoded in other languages
that is difficult to retrieve in English. Ideally, we want
all the culture-independent knowledge to fall into (2).

et al., 2024; Wu et al., 2025a). Research indicates
that LLLMs exhibit varying proficiency when ad-
dressing the same task across different languages
(Xu et al., 2024; Huang et al., 2024b). This variabil-
ity stems from the difficulty of accessing knowl-
edge encoded in one language while using others.

To bridge the gap, recent papers introduced
cross-lingual consistency (Qi et al., 2023), which
pertains to the capacity to provide comnsistent re-
sponses across different languages when presented
with the same query. The ultimate goal is to achieve
language-agnostic question-answering proficiency
in LL.Ms, enabling them to generalize effectively
in multilingual environments. Gao et al. (2024)
highlighted the positive impact of multilingual pre-
training and instruction tuning on enhancing cross-

2503.19551v2 [cs.CL] 26 Mar 2025
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Scaling Laws of Synthetic Data for Language Models

Zeyu Qin; Qingxiu Dong, Xingxing Zhang, Li Dong, Xiaolong Huang, Ziyi Yang
Mahmoud Khademi, Dongdong Zhang, Hany Hassan Awadalla, Yi R. Fung
Weizhu Chen, Minhao Cheng, Furu Wei

Abstract

Large language models (LLMs) achieve strong performance across diverse tasks,
largely driven by high-quality web data used in pre-training. However, recent
studies indicate this data source is rapidly depleting. Synthetic data emerges as
a promising alternative, but it remains unclear whether synthetic datasets exhibit
predictable scalability comparable to raw pre-training data. In this work, we system-
atically investigate the scaling laws of synthetic data by introducing SYNTHLLM,
a scalable framework that transforms pre-training corpora into diverse, high-quality
synthetic datasets. Our approach achieves this by automatically extracting and
recombining high-level concepts across multiple documents using a graph algo-
rithm. Key findings from our extensive mathematical experiments on SYNTHLLM
include: (1) SYNTHLLM generates synthetic data that reliably adheres to the
rectified scaling law across various model sizes; (2) Performance improvements
plateau near 300B tokens; and (3) Larger models approach optimal performance
with fewer training tokens. For instance, an 8B model peaks at 1T tokens, while a
3B model requires 4T. Moreover, comparisons with existing synthetic data genera-
tion and augmentation methods demonstrate that SYNTHLLM achieves superior
performance and scalability. Our findings highlight synthetic data as a scalable and
reliable alternative to organic pre-training corpora, offering a viable path toward
continued improvement in model performance.

Scaling Curves on Liama-3.2-38

Scaling Curves on Llama-3.2-18 Scaling Curves on Liama-3.1-88

»  Synthetic Data
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—— Synthetic Data fit
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—— Synthetic Data fit
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Figure 1: Scaling laws on different model sizes. The x axis denotes the number of training tokens. The y axis
represents the models’ error rates on MATH. The green points represent the data sizes used to fit the scaling
laws, while the red points are used to test the prediction performance of the fitted curves.
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Overarching Goal: Advance human-centered trustworthy Al with multimedia
knowledge reasoning capability and scalable alignment principles for
helping solve real-world problems. 10
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