
Efficient Workflow Serving
for Diffusion Models with
Many Adapters1

Wei Wang

CSE@HKUST

April 2025

1
1Joint work with Alibaba

Text-to-Image: A Blockbuster GenAI Service

• Generate high-quality, contextually accurate images from textual prompts
• Killer apps: e-commerce, advertisement, entertainment, and creative workflows…

• A blockbuster GenAI service in the cloud
• OpenAI, Midjouney, Google, Adobe, Alibaba, Tencent, ByteDance…

• Adobe Firefly has generated two billion images by 2023

2

Adobe FireFly Alibaba Tongyi Wanxiang (通义万相)OpenAI DALL·E 3

• The magic of generating an image from a noise latent with diffusion model

Diffusion-based Text-to-Image Generation

3

Latent
Space

UNet

Skip

connection

1st step 2nd step 50th step

CFG Latent

tensor

Pixel
Space

VAE Decoder

Diffusion-based Text-to-Image Generation

• The magic of generating an image from a noise latent with diffusion model

• Text-to-image service is more than a base diffusion model
• Textual prompts alone are hard to precisely specify layouts, styles…

4

Base Diffusion
Model

Racing Game car,
yellow Ferrari

Or

Hard to control image compositions

Text-to-Image Serving w/ Many Adapters

• Text-to-image service is more than a base diffusion model

• Augment the base model with many adapters
• ControlNet: allow a referenece image to control compositions

• LoRA: control the stylistic effects

5

Base Diffusion
Model

Racing Game car,
yellow Ferrari

Reference image

ControlNet

ControlNet LoRA

Base Diffusion
Model + LoRA

ControlNet

ControlNets and LoRAs are
prevalent in today’s T2I services

6

Characterization in a production platform

• Prevalence of adapters
• A 20-day production trace collected in May and June 2024

• 500k requests to two T2I core services in a production platform

• A total number of 141 ControlNets and 14,371 LoRAs

7

Performance issues

• The use of adapters (e.g., ControlNets and LoRAs) introduces significant delays
• Delays accumulate as more adapters are in use

8

A base SDXL model augmented with m ControlNets and n LoRA
(mC/nL) on H800 GPUs

Where does the latency come from?

ControlNet Characterization

• Skewed popularity
• A few popular adapters contribute most invocations

• Caching is effective

• High loading overhead
• ControlNets are large in size, ~3 GiB each

• Usually maintained in remote storage

• Compute-heavy
• Each ControlNet adds extra 1.6s latency

• Accumulates as more ControlNets are in use

9

Adapters Number ServiceA Service B

ControlNet

0 0 1.9%

1 30.5% 25.1%

2 69.5% 69.9%

3 0 3.1%

LoRA

0 0.2% 7.2%

1 8.8% 73.6%

2 91% 19.2%

Table 1: The distribution of the number of ControlNets and

LoRAsused by each request in two production services.

0 5 10 15
Top-k popular Cont rolNets

0

50

100

In
v

o
c
a

ti
o

n

 P
e

rc
e

n
t

(%
)

Service A
Service B

0 1500 3000 4500
Top-k popular LoRAs

0

25

50

75

100

In
v

o
c

a
ti

o
n

 P

e
rc

e
n

t
(%

)

Service A
Service B

Figure5: Left: ControlNet hasasmall population andexhibits

askewed popularity; the long tail of thegraph is truncated for

abetter presentation. Right: LoRA hasa largequantity and

exhibitsa long-tailed distribution in popularity.

model inference, fall short in workf ow serving with many

adapters, resulting in extended latency and quality loss.

3 Character ization Study

In thissection, wepresent acharacterization study on a20-day

workload tracecollected in May and June 2024 on aproduc-

tion platform. The trace contains more than 500k inference

requests to two coreT2I services for online retailing applica-

tions.2 Our characterization not only ref ects thedeployment

scenarios of diffusion models in production, but also reveals

the ineff ciency of current T2I serving systems.

3.1 ControlNet Character ization

Prevalence. Table 1 shows the distribution of the number

of ControlNets utilized by each request in two services. Con-

trolNet is used by almost all requests for image generation

control; approximately 70% of these requestsutilize two or

moreControlNetssimultaneously.

Skewed popular ity. Compared to a large quantity of re-

quests, only 141 ControlNets are used in two services, where

ServiceA offers47 distinct ControlNetsand ServiceB pro-

vides 94. These ControlNets exhibit a severe skewness in

access frequency. As shown in Fig. 5-Left, the top-5 most

popular ControlNets (11% in population) account for 98%

of total invocations in ServiceA. When it comes to Service

B, the top-8 most popular ControlNets (9% in population)

contribute to 95% of total invocations.

Theneed for ControlNet caching. ControlNetsare large in

size (3 GiB each) and usually maintained in remotestorage,

2Weareworking on releasing the trace for public access.

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

2

A
v

g
.

#

 l
o

a
d

in
g

 t
im

e
s

Cont rolNet
LoRA

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

1

A
v

g
.

#

 l
o

a
d

in
g

 t
im

e
s

Cont rolNet
LoRA

Figure6: Conf guring a larger LRU cache effectively elimi-

nates theadapter loading overhead for ControlNets, but not

for LoRAs. Left: ServiceA; Right: ServiceB.

introducing signif cant loading overhead. Given that Control-

Nets havea limited quantity and skewed popularity, caching

asmall number of top popular ControlNets in GPU memory

effectively eliminates the loading overhead for most requests.

To illustrate this, weconf gurean LRU cacheof varying size

for ControlNet caching. We replay the trace and measure

the average number of times that the desired ControlNets

are not resident on GPU and must be fetched from storage

(i.e., cachemiss) when serving two consecutive requests that

desire different ControlNets. As illustrated in Fig. 6 (blue

curves), caching only a handful of top popular ControlNets is

suff cient to eliminate the loading overhead for both services

(top-5 for ServiceA and top-8 for ServiceB).

Computational overhead. ControlNet is compute-heavy as

it sharesasimilar architectureto theUNet encoder and middle

block (§2). As illustrated in Fig. 2 (bluebars), augmenting the

basediffusion model with oneControlNet increases theserv-

ing latency by 1.6× (up from 2.9 seconds to 4.5 seconds). As

moreControlNets areutilized, their computational overhead

accumulates because current T2I serving systems [49] se-

quentially compute theoutputs of the requested ControlNets

before executing thebasemodel at each denoising step.

3.2 LoRA Character ization

Prevalence. Similar to ControlNet, themajority of T2I re-

quests utilize one or two LoRAs to stylize the generated

image, assummarized in Table1. Specif cally, over 90% of

requests in Service A desire two LoRAs, while nearly 93%

of requests in Service B demand at least oneLoRA.

Long-tailed popular ity distr ibution. Compared to Control-

Nets, LoRAshaveasignif cantly larger population but smaller

sizes. Our trace reports 6,908 distinct LoRAs for ServiceA

and 7,463 LoRAs for Service B. Each LoRA is a few hun-

dreds of MiB. Unlike ControlNets, the popularity of LoRAs

followsa long-tailed distribution; that is, asignif cant portion

of LoRA invocations are contributed by a large number of

lesspopular adapters, as illustrated in Fig. 5-Right.

IneffectiveLoRA caching. Given the long-tailed popularity

distribution of LoRAs, caching thetoppopular LoRA adapters

offers limited benef ts. To demonstrate this, weconf gurean

LRU cache of varying sizes for LoRA caching. We replay

the trace and measure the average number of times that the

4

A base SDXL model with m ControlNets and n
LoRA (mC/nL) on H800 GPUs

1.6x

LoRA Characterization

• Long-tailed popularity
• Many invocations contributed by less popular LoRAs

• Ineffective caching

• Compute-light

• High loading and patching overhead
• Loading + patching one LoRA takes >3s

10

A base SDXL model with m ControlNets and n
LoRA (mC/nL) on H800 GPUs

Adapters Number ServiceA ServiceB

ControlNet

0 0 1.9%

1 30.5% 25.1%

2 69.5% 69.9%

3 0 3.1%

LoRA

0 0.2% 7.2%

1 8.8% 73.6%

2 91% 19.2%

Table 1: The distribution of the number of ControlNets and

LoRAs used by each request in two production services.

0 5 10 15
Top-k popular Cont rolNets

0

50

100

In
v

o
c
a

ti
o

n

 P
e

rc
e

n
t

(%
)

Service A
Service B

0 1500 3000 4500
Top-k popular LoRAs

0

25

50

75

100

In
v

o
c
a

ti
o

n

 P
e

rc
e

n
t

(%
)

Service A
Service B

Figure5: Left: ControlNet hasasmall population and exhibits

askewed popularity; the long tail of thegraph is truncated for

abetter presentation. Right: LoRA hasa large quantity and

exhibitsa long-tailed distribution in popularity.

model inference, fall short in workf ow serving with many

adapters, resulting in extended latency and quality loss.

3 Character ization Study

In thissection, wepresent acharacterization study on a20-day

workload tracecollected in May and June2024 on aproduc-

tion platform. The trace contains more than 500k inference

requests to two coreT2I services for online retailing applica-

tions.2 Our characterization not only ref ects thedeployment

scenariosof diffusion models in production, but also reveals

the ineff ciency of current T2I serving systems.

3.1 ControlNet Character ization

Prevalence. Table 1 shows the distribution of the number

of ControlNetsutilized by each request in two services. Con-

trolNet is used by almost all requests for image generation

control; approximately 70% of these requestsutilize two or

moreControlNetssimultaneously.

Skewed popular ity. Compared to a large quantity of re-

quests, only 141 ControlNets are used in two services, where

ServiceA offers47 distinct ControlNetsand ServiceB pro-

vides 94. These ControlNets exhibit a severe skewness in

access frequency. As shown in Fig. 5-Left, the top-5 most

popular ControlNets (11% in population) account for 98%

of total invocations in ServiceA. When it comes to Service

B, the top-8 most popular ControlNets (9% in population)

contribute to 95% of total invocations.

The need for ControlNet caching. ControlNets are large in

size (3 GiB each) and usually maintained in remotestorage,

2Weareworking on releasing the trace for public access.

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

2

A
v

g
.

#

 l
o

a
d

in
g

 t
im

e
s

ControlNet
LoRA

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

1

A
v

g
.

#

 l
o

a
d

in
g

 t
im

e
s

Cont rolNet
LoRA

Figure6: Conf guring a larger LRU cache effectively elimi-

nates theadapter loading overhead for ControlNets, but not

for LoRAs. Left: ServiceA; Right: ServiceB.

introducing signif cant loading overhead. Given that Control-

Nets havea limited quantity and skewed popularity, caching

asmall number of top popular ControlNets in GPU memory

effectively eliminates the loading overhead for most requests.

To illustrate this, weconf gurean LRU cacheof varying size

for ControlNet caching. We replay the trace and measure

the average number of times that the desired ControlNets

are not resident on GPU and must be fetched from storage

(i.e., cachemiss) when serving two consecutive requests that

desire different ControlNets. As illustrated in Fig. 6 (blue

curves), caching only a handful of top popular ControlNets is

suff cient to eliminate the loading overhead for both services

(top-5 for ServiceA and top-8 for Service B).

Computational overhead. ControlNet is compute-heavy as

it sharesasimilar architectureto theUNet encoder and middle

block (§2). As illustrated in Fig. 2 (bluebars), augmenting the

basediffusion model with oneControlNet increases theserv-

ing latency by 1.6× (up from 2.9 seconds to 4.5 seconds). As

moreControlNetsareutilized, their computational overhead

accumulates because current T2I serving systems [49] se-

quentially compute theoutputs of the requested ControlNets

beforeexecuting the basemodel at each denoising step.

3.2 LoRA Character ization

Prevalence. Similar to ControlNet, themajority of T2I re-

quests utilize one or two LoRAs to stylize the generated

image, assummarized in Table 1. Specif cally, over 90% of

requests in Service A desire two LoRAs, while nearly 93%

of requests in ServiceB demand at least oneLoRA.

Long-tailed popular ity distr ibution. Compared to Control-

Nets, LoRAshaveasignif cantly larger population but smaller

sizes. Our trace reports6,908 distinct LoRAs for Service A

and 7,463 LoRAs for Service B. Each LoRA is a few hun-

dredsof MiB. Unlike ControlNets, thepopularity of LoRAs

followsa long-tailed distribution; that is, asignif cant portion

of LoRA invocations are contributed by a large number of

lesspopular adapters, as illustrated in Fig. 5-Right.

IneffectiveLoRA caching. Given the long-tailed popularity

distribution of LoRAs, caching thetoppopular LoRA adapters

offers limited benef ts. To demonstrate this, weconf gurean

LRU cache of varying sizes for LoRA caching. We replay

the trace and measure the average number of times that the

4

LoRA

Storage

LoRA (AB)
Load Patch

UNet (W)

Adapted UNet

(W+AB)

How to efficiently serve a T2I
workflow with many adapters ?

11

This Talk

• Challenges

• Katz design
• ControlNet-as-a-Service: Efficient ControlNet serving

• Bounded Asynchronous Loading: Efficient LoRA loading

• Optimized Base Model Execution

• Evaluation

• Conclusion

12

This Talk

• Challenges

• Katz design
• ControlNet-as-a-Service: Efficient ControlNet serving

• Bounded Asynchronous Loading: Efficient LoRA loading

• Optimized Base Model Execution

• Evaluation

• Conclusion

13

Challenge #1

• Adapter loading (and patching)
• Desired ControlNets and LoRAs vary across requests

• On average, each request undergoes 1 ControlNet and 1 LoRA loading.

• Accounts for 37% of end-to-end serving latency

• Naïve pre-caching all adapters is infeasible

• 141 ControlNets (~3GiB each) and 14,371 LoRAs (hundreds of MiB each) for SDXL

14

LoRA

Storage

LoRA (AB)
Load Patch

UNet (W)

Adapted UNet

(W+AB)

Challenge #2

• Computation
• ControlNet is compute-intensive

• Using one ControlNet increase serving latency by 1.6x

• Base model serving is compute-heavy

• Limited to none performance gains offered by batching

15

E M E M D

Ref. image

ControlNet UNet

Encoder

Decoder

Middle

Block

Skip connection

M

latents

Prompt

0 2000
of requests

0

2000

#
 o

f
u

n
iq

u
e

L
o

R
A

s

0 2500 5000
of requests

0

1000

#
 o

f
u

n
iq

u
e

L
o

R
A

s

Figure 7: Scatter plots illustrating the number of requests

received on each worker node (X-axis) against the number

of unique LoRAs required by those requests (Y-axis). Left:

ServiceA; Right: ServiceB.

1 2 4 8 16
Batch size

0

50

100

L
a

te
n

c
y

 (
s
)

15.2
29.6

59.9

8.6
15.9

32.0

62.3

123.8

3.0 4.8 8.8
16.5

32.9

A10
A100
H800

End2End

ControlNet
LoRA Base

0

10

L
a

te
n

c
y

 (
s
)

15.6

4.9

7.7

2.82.0
0.1 0.1

1.6

Diffusers Katz

Figure 8: Left: Ineffective Batching for SDXL inference.

Right: End-to-end latency and component breakdowns for a

3C/2L request, using Diffusers [49] and KATZ on H800.

desired LoRAsarenot availableon GPU and must bebrought

from storage (i.e., cache miss) when serving two consecutive

requests that demand different LoRAs. As illustrated in Fig. 6

(orange curves), conf guring a larger LRU cache only slightly

reduces the loading overhead caused by cache misses. As

another evidence, Fig. 7 depicts ascatter plot illustrating the

number of requests served on each node in the trace and

the number of unique LoRAs utilized by those requests on

that node. Weobserve the linear correlation between the two

numbers, invalidating the benef ts of LoRA caching. Our

production system hence chooses not to cache LoRAs but

loads them from storage in an on-demand fashion.

LoRA loading and patching overhead. Compared to Con-

trolNets, LoRAs arecompute-light and LoRA serving isbot-

tlenecked by theloading and patching overhead (Fig. 4-Right).

Our measurements show that fetching two LoRAs (total size

of approximately 800 MiB) from a remotedistributed cache

takes more than one second, delaying the base model serving

by 34% (up from 2.9 seconds to 3.9 seconds). In addition,

simply patching LoRA weights to thebasemodel, as imple-

mented in existing systems [35, 49], incurs high overhead,

which weelaborate in §6.

3.3 Character izing Base Model Serving

Currently, UNet-based diffusion models, such as SDXL [38],

arepredominately deployed to handle themajority of requests

in production platforms. These models are supported by a

plethora of well-trained ControlNets [66] and LoRAs [27].

In the meantime, there is an emerging trend of deploying

transformer-based diffusion models (DiT) [18,31], but thede-

velopment of corresponding adapters remains lagging behind

at the moment. In this paper, we primarily focus on UNet-

based models; our observationsand optimization designsalso

apply to the transformer backbone.

Notation Descr iption

S Number of denoising steps

M Number of ControlNets used

N Number of LoRAs used

TLoad
Ci

, TComp
Ci

Time to load and computeControlNet Ci

TLoad
L j

, TPat ch
L j

Time to load and patch LoRA L j

TComp
Enc Time to compute the text encoder inference

TComp
VAE Time to compute theVAE decoder inference

TComp
B Time to compute thebase model inference

TComp
B∗ Optimized base model inference time

Table 2: Notations used to model T2I inference latency.

Ineffectiveness of batching. Diffusion model serving is

computationally intensive, asevidenced by our experiments

with varying batch sizes for astandard SDXL model [38] on

NVIDIA A10, A100, and H800 GPUs(Fig. 8-Left). Across

all threeGPUs, doubling thebatch size results in an approx-

imately 2× in serving latency, indicating minimal benef ts

from batching. In fact, generating a single image already

saturates the computational resources of a high-end GPU.

Consequently, production T2I services typically conf gurea

constant batch sizeof 1 to minimizeserving latency.

Dominated CFG computation. To understand thecomputa-

tion of thebasediffusion model, webreak down itsexecution

and f nd that over 90% of the inference time is spent on CFG

computation (§2). Current CFG implementation employs la-

tent batching. That is, at each denoising step, the latent tensor

is duplicated and the two replicas are fed into the base model

to perform conditional and unconditional denoising in one

batch on a GPU. However, as the two denoising operations

arecompute-heavy, batch-executing them yieldsminimal ben-

ef ts. In fact, latent batching results in up to 1.7× slowdown in

base model serving compared to our optimized design (§9.5).

3.4 Ineff ciency of Current Serving Pipeline

To sum up, current T2I systems serve the base model and the

associated adapters in a sequential execution pipeline. Specif-

ically, assumearequest utilizing mControlNetsand n LoRAs.

Upon request arrival, thesystem loads all thedesired Control-

Netsand LoRAs into GPU memory, followed by patching the

n LoRAs to thebasemodel. Thesystem then encodes the text

prompt and proceeds to the denoising process in N steps. At

each step, it sequentially executes the m ControlNets and the

LoRA-patched base model to generate a latent representation.

The f nal latent representation is then sent to the VAE de-

coder to generate the output image. The end-to-end workf ow

serving latency is given by Eq. (1), where the notations are

def ned in Table2:

T =
M

∑
i= 1

TLoad
Ci

+
N

∑
j= 1

(TLoad
L j

+ TPat ch
L j

)

time to load and patch adapters

+ TComp
Enc + (

M

∑
i= 1

TComp
Ci

+ TComp
B)× S+ TComp

VAE .

computation time for multi-step image generation

(1)

5

Challenges

• Adapter loading & patching

• ControlNet and base model are compute-heavy

16

A base SDXL model augmented with m ControlNets
and n LoRA (mC/nL) on H800 GPUs

0 2000
of requests

0

2000

#
 o

f
u

n
iq

u
e

L
o

R
A

s

0 2500 5000
of requests

0

1000

#
 o

f
u

n
iq

u
e

L
o

R
A

s

Figure 7: Scatter plots illustrating the number of requests

received on each worker node (X-axis) against the number

of unique LoRAs required by those requests (Y-axis). Left:

ServiceA; Right: ServiceB.

1 2 4 8 16
Batch size

0

50

100

L
a

te
n

c
y

 (
s
)

15.2
29.6

59.9

8.6
15.9

32.0

62.3

123.8

3.0 4.8 8.8
16.5

32.9

A10
A100
H800

End2End

ControlNet
LoRA Base

0

10

L
a

te
n

c
y

 (
s
)

15.6

4.9

7.7

2.82.0
0.1 0.1

1.6

Diffusers Katz

Figure 8: Left: Ineffective Batching for SDXL inference.

Right: End-to-end latency and component breakdowns for a

3C/2L request, using Diffusers [49] and KATZ on H800.

desired LoRAsarenot availableon GPU and must bebrought

from storage (i.e., cache miss) when serving two consecutive

requests that demand different LoRAs. As illustrated in Fig. 6

(orange curves), conf guring a larger LRU cache only slightly

reduces the loading overhead caused by cache misses. As

another evidence, Fig. 7 depicts ascatter plot illustrating the

number of requests served on each node in the trace and

the number of unique LoRAs utilized by those requests on

that node. Weobserve the linear correlation between the two

numbers, invalidating the benef ts of LoRA caching. Our

production system hence chooses not to cache LoRAs but

loads them from storage in an on-demand fashion.

LoRA loading and patching overhead. Compared to Con-

trolNets, LoRAsarecompute-light and LoRA serving is bot-

tlenecked by theloading and patching overhead (Fig. 4-Right).

Our measurements show that fetching two LoRAs(total size

of approximately 800 MiB) from aremote distributed cache

takes more than one second, delaying the base model serving

by 34% (up from 2.9 seconds to 3.9 seconds). In addition,

simply patching LoRA weights to thebasemodel, as imple-

mented in existing systems [35, 49], incurs high overhead,

which weelaborate in §6.

3.3 Character izing BaseModel Serving

Currently, UNet-based diffusion models, such as SDXL [38],

arepredominately deployed to handlethemajority of requests

in production platforms. These models are supported by a

plethora of well-trained ControlNets [66] and LoRAs [27].

In the meantime, there is an emerging trend of deploying

transformer-based diffusion models (DiT) [18,31], but thede-

velopment of corresponding adapters remains lagging behind

at the moment. In this paper, we primarily focus on UNet-

based models; our observationsand optimization designsalso

apply to the transformer backbone.

Notation Descr iption

S Number of denoising steps

M Number of ControlNets used

N Number of LoRAsused

TLoad
Ci

, TComp
Ci

Time to load and compute ControlNet Ci

TLoad
L j

, TPat ch
L j

Time to load and patch LoRA L j

TComp
Enc Time to compute the text encoder inference

TComp
VAE Time to compute theVAE decoder inference

TComp
B Time to compute thebase model inference

TComp
B∗ Optimized base model inference time

Table2: Notationsused to model T2I inference latency.

Ineffectiveness of batching. Diffusion model serving is

computationally intensive, asevidenced by our experiments

with varying batch sizes for astandard SDXL model [38] on

NVIDIA A10, A100, and H800 GPUs(Fig. 8-Left). Across

all threeGPUs, doubling thebatch size results in an approx-

imately 2× in serving latency, indicating minimal benef ts

from batching. In fact, generating a single image already

saturates the computational resources of a high-end GPU.

Consequently, production T2I services typically conf gurea

constant batch sizeof 1 to minimizeserving latency.

Dominated CFG computation. To understand thecomputa-

tion of thebase diffusion model, webreak down itsexecution

and f nd that over 90% of the inference time is spent on CFG

computation (§2). Current CFG implementation employs la-

tent batching. That is, at each denoising step, the latent tensor

is duplicated and the two replicas are fed into the base model

to perform conditional and unconditional denoising in one

batch on a GPU. However, as the two denoising operations

arecompute-heavy, batch-executing them yieldsminimal ben-

ef ts. In fact, latent batching results in up to 1.7× slowdown in

base model serving compared to our optimized design (§9.5).

3.4 Ineff ciency of Current Serving Pipeline

To sum up, current T2I systems serve the base model and the

associated adapters in a sequential execution pipeline. Specif-

ically, assumearequest utilizing mControlNetsand n LoRAs.

Upon request arrival, the system loadsall thedesired Control-

Netsand LoRAs into GPU memory, followed by patching the

n LoRAs to thebasemodel. Thesystem then encodes the text

prompt and proceeds to the denoising process in N steps. At

each step, it sequentially executes them ControlNetsand the

LoRA-patched base model to generate a latent representation.

The f nal latent representation is then sent to the VAE de-

coder to generate the output image. The end-to-end workf ow

serving latency is given by Eq. (1), where the notations are

def ned in Table2:

T =
M

∑
i= 1

TLoad
Ci

+
N

∑
j= 1

(TLoad
L j

+ TPat ch
L j

)

time to load and patch adapters

+ TComp
Enc + (

M

∑
i= 1

TComp
Ci

+ TComp
B)× S+ TComp

VAE .

computation time for multi-step image generation

(1)

5

This Talk

• Challenges

• Katz design
• ControlNet-as-a-Service: Efficient ControlNet serving

• Bounded Asynchronous Loading: Efficient LoRA loading

• Optimized Base Model Execution

• Evaluation

• Conclusion

17

Optimizing ControlNet: Opportunity #1

• Skewed popularity of ControlNets
• Service-A: Top-5 most popular ControlNets account for 98% invocations

• Service-B: Top-8 account for 95% invocations

• Caching a few popular ControlNets in GPU can largely eliminate loading overhead

18

Adapters Number ServiceA ServiceB

ControlNet

0 0 1.9%

1 30.5% 25.1%

2 69.5% 69.9%

3 0 3.1%

LoRA

0 0.2% 7.2%

1 8.8% 73.6%

2 91% 19.2%

Table 1: The distribution of thenumber of ControlNets and

LoRAsused by each request in two production services.

0 5 10 15
Top-k popular Cont rolNets

0

50

100

In
v

o
c

a
ti

o
n

 P

e
rc

e
n

t
(%

)

Service A
Service B

0 1500 3000 4500
Top-k popular LoRAs

0

25

50

75

100

In
v

o
c
a

ti
o

n

 P
e

rc
e

n
t

(%
)

Service A
Service B

Figure5: Left: ControlNet hasasmall population and exhibits

askewed popularity; the long tail of thegraph is truncated for

abetter presentation. Right: LoRA hasa largequantity and

exhibitsa long-tailed distribution in popularity.

model inference, fall short in workf ow serving with many

adapters, resulting in extended latency and quality loss.

3 Character ization Study

In thissection, wepresent acharacterization study on a20-day

workload tracecollected in May and June2024 on aproduc-

tion platform. The trace contains more than 500k inference

requests to two coreT2I services for online retailing applica-

tions.2 Our characterization not only ref ects thedeployment

scenarios of diffusion models in production, but also reveals

the ineff ciency of current T2I serving systems.

3.1 ControlNet Character ization

Prevalence. Table 1 shows the distribution of the number

of ControlNetsutilized by each request in two services. Con-

trolNet is used by almost all requests for image generation

control; approximately 70% of these requestsutilize two or

more ControlNets simultaneously.

Skewed popular ity. Compared to a large quantity of re-

quests, only 141 ControlNets are used in two services, where

ServiceA offers47 distinct ControlNetsand ServiceB pro-

vides 94. These ControlNets exhibit a severe skewness in

access frequency. As shown in Fig. 5-Left, the top-5 most

popular ControlNets (11% in population) account for 98%

of total invocations in ServiceA. When it comes to Service

B, the top-8 most popular ControlNets (9% in population)

contribute to 95% of total invocations.

The need for ControlNet caching. ControlNets are large in

size (3 GiB each) and usually maintained in remotestorage,

2Weareworking on releasing the trace for public access.

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

2

A
v

g
.

#

 l
o

a
d

in
g

 t
im

e
s

Cont rolNet
LoRA

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

1

A
v

g
.

#

 l
o

a
d

in
g

 t
im

e
s

ControlNet
LoRA

Figure 6: Conf guring a larger LRU cache effectively elimi-

nates theadapter loading overhead for ControlNets, but not

for LoRAs. Left: ServiceA; Right: ServiceB.

introducing signif cant loading overhead. Given that Control-

Netshavea limited quantity and skewed popularity, caching

asmall number of top popular ControlNets in GPU memory

effectively eliminates the loading overhead for most requests.

To illustrate this, weconf gurean LRU cacheof varying size

for ControlNet caching. We replay the trace and measure

the average number of times that the desired ControlNets

are not resident on GPU and must be fetched from storage

(i.e., cachemiss) when serving two consecutive requests that

desire different ControlNets. As illustrated in Fig. 6 (blue

curves), caching only a handful of top popular ControlNets is

suff cient to eliminate the loading overhead for both services

(top-5 for ServiceA and top-8 for ServiceB).

Computational overhead. ControlNet is compute-heavy as

it sharesasimilar architectureto theUNet encoder and middle

block (§2). As illustrated in Fig. 2 (bluebars), augmenting the

basediffusion model with oneControlNet increases theserv-

ing latency by 1.6× (up from 2.9 seconds to 4.5 seconds). As

moreControlNetsareutilized, their computational overhead

accumulates because current T2I serving systems [49] se-

quentially compute theoutputs of the requested ControlNets

beforeexecuting thebase model at each denoising step.

3.2 LoRA Character ization

Prevalence. Similar to ControlNet, themajority of T2I re-

quests utilize one or two LoRAs to stylize the generated

image, assummarized in Table1. Specif cally, over 90% of

requests in Service A desire two LoRAs, while nearly 93%

of requests in ServiceB demand at least one LoRA.

Long-tailed popular ity distr ibution. Compared to Control-

Nets, LoRAshaveasignif cantly larger population but smaller

sizes. Our trace reports6,908 distinct LoRAs for ServiceA

and 7,463 LoRAs for Service B. Each LoRA is a few hun-

dreds of MiB. UnlikeControlNets, thepopularity of LoRAs

followsa long-tailed distribution; that is, asignif cant portion

of LoRA invocations are contributed by a large number of

less popular adapters, as illustrated in Fig. 5-Right.

IneffectiveLoRA caching. Given the long-tailed popularity

distribution of LoRAs,caching thetop popular LoRA adapters

offers limited benef ts. To demonstrate this, weconf gurean

LRU cache of varying sizes for LoRA caching. We replay

the trace and measure the average number of times that the

4

Optimizing ControlNet: Opportunity #2

• ControlNet parallelization
• Concurrently execute ControlNet(s) with base model on multiple GPUs

19

E M E M D

Ref. image

ControlNet UNet

latents

Prompt

Standard ControlNet

Encoder

Decoder

Middle

Block

Skip connection

M

E M

E M D

Ref. image

UNet

latents

Prompt

ControlNet Parallelization

• ControlNet-as-a-Service: deploy ControlNets as a separate, independently scaled
service on dedicated GPUs
• Caching popular ControlNets

• ControlNet parallelization

• Shared ControlNet service among workflows

Putting It Together: ControlNet-as-a-Service

20

ControlNet

Base

Model

Base

Model

a dragon breathing
fire on a castle

A helicopter flies
over Yosemite.

This Talk

• Challenges

• Katz design
• ControlNet-as-a-Service: Efficient ControlNet serving

• Bounded Asynchronous Loading: Efficient LoRA loading

• Optimized Base Model Execution

• Evaluation

• Conclusion

21

The Loading Bottleneck of LoRA Serving

• In production, LoRA is fetched from a remote storage or disk
• Fetching LoRAs of size 800 MiB takes more than 1 second, delaying serving latency by 34%

• LoRA caching is ineffective
• LoRA population follows a long-tail distribution

22

Adapters Number ServiceA ServiceB

ControlNet

0 0 1.9%

1 30.5% 25.1%

2 69.5% 69.9%

3 0 3.1%

LoRA

0 0.2% 7.2%

1 8.8% 73.6%

2 91% 19.2%

Table 1: The distribution of thenumber of ControlNets and

LoRAsused by each request in two production services.

0 5 10 15
Top-k popular Cont rolNets

0

50

100

In
v

o
c

a
ti

o
n

 P

e
rc

e
n

t
(%

)

Service A
Service B

0 1500 3000 4500
Top-k popular LoRAs

0

25

50

75

100

In
v

o
c
a

ti
o

n

 P
e

rc
e

n
t

(%
)

Service A
Service B

Figure5: Left: ControlNet hasasmall population and exhibits

askewed popularity; the long tail of thegraph is truncated for

abetter presentation. Right: LoRA hasa largequantity and

exhibitsa long-tailed distribution in popularity.

model inference, fall short in workf ow serving with many

adapters, resulting in extended latency and quality loss.

3 Character ization Study

In thissection, wepresent acharacterization study on a20-day

workload tracecollected in May and June2024 on aproduc-

tion platform. The trace contains more than 500k inference

requests to two coreT2I services for online retailing applica-

tions.2 Our characterization not only ref ects thedeployment

scenarios of diffusion models in production, but also reveals

the ineff ciency of current T2I serving systems.

3.1 ControlNet Character ization

Prevalence. Table 1 shows the distribution of the number

of ControlNetsutilized by each request in two services. Con-

trolNet is used by almost all requests for image generation

control; approximately 70% of these requestsutilize two or

more ControlNets simultaneously.

Skewed popular ity. Compared to a large quantity of re-

quests, only 141 ControlNets are used in two services, where

ServiceA offers47 distinct ControlNetsand ServiceB pro-

vides 94. These ControlNets exhibit a severe skewness in

access frequency. As shown in Fig. 5-Left, the top-5 most

popular ControlNets (11% in population) account for 98%

of total invocations in ServiceA. When it comes to Service

B, the top-8 most popular ControlNets (9% in population)

contribute to 95% of total invocations.

The need for ControlNet caching. ControlNets are large in

size (3 GiB each) and usually maintained in remotestorage,

2Weareworking on releasing the trace for public access.

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

2

A
v

g
.

#

 l
o

a
d

in
g

 t
im

e
s

Cont rolNet
LoRA

1 2 3 4 5 6 7 8 9 10
Cache size (# adapters)

0

1

A
v

g
.

#

 l
o

a
d

in
g

 t
im

e
s

ControlNet
LoRA

Figure 6: Conf guring a larger LRU cache effectively elimi-

nates theadapter loading overhead for ControlNets, but not

for LoRAs. Left: ServiceA; Right: ServiceB.

introducing signif cant loading overhead. Given that Control-

Netshavea limited quantity and skewed popularity, caching

asmall number of top popular ControlNets in GPU memory

effectively eliminates the loading overhead for most requests.

To illustrate this, weconf gurean LRU cacheof varying size

for ControlNet caching. We replay the trace and measure

the average number of times that the desired ControlNets

are not resident on GPU and must be fetched from storage

(i.e., cachemiss) when serving two consecutive requests that

desire different ControlNets. As illustrated in Fig. 6 (blue

curves), caching only a handful of top popular ControlNets is

suff cient to eliminate the loading overhead for both services

(top-5 for ServiceA and top-8 for ServiceB).

Computational overhead. ControlNet is compute-heavy as

it sharesasimilar architectureto theUNet encoder and middle

block (§2). As illustrated in Fig. 2 (bluebars), augmenting the

basediffusion model with oneControlNet increases theserv-

ing latency by 1.6× (up from 2.9 seconds to 4.5 seconds). As

moreControlNetsareutilized, their computational overhead

accumulates because current T2I serving systems [49] se-

quentially compute theoutputs of the requested ControlNets

beforeexecuting thebase model at each denoising step.

3.2 LoRA Character ization

Prevalence. Similar to ControlNet, themajority of T2I re-

quests utilize one or two LoRAs to stylize the generated

image, assummarized in Table1. Specif cally, over 90% of

requests in Service A desire two LoRAs, while nearly 93%

of requests in ServiceB demand at least one LoRA.

Long-tailed popular ity distr ibution. Compared to Control-

Nets, LoRAshaveasignif cantly larger population but smaller

sizes. Our trace reports6,908 distinct LoRAs for ServiceA

and 7,463 LoRAs for Service B. Each LoRA is a few hun-

dreds of MiB. UnlikeControlNets, thepopularity of LoRAs

followsa long-tailed distribution; that is, asignif cant portion

of LoRA invocations are contributed by a large number of

less popular adapters, as illustrated in Fig. 5-Right.

IneffectiveLoRA caching. Given the long-tailed popularity

distribution of LoRAs,caching thetop popular LoRA adapters

offers limited benef ts. To demonstrate this, weconf gurean

LRU cache of varying sizes for LoRA caching. We replay

the trace and measure the average number of times that the

4

The Magic of LoRA

23

Inference Progress

Inference with LoRA

Inference with LoRAInference w/o LoRA

Inference w/o LoRA

Semantics-planning Artistic-planning

Cosine similarities between the latents
generated with LoRA and those without LoRA
at each denoising step.

Bounded Async LoRA Loading (BAL)

• Overlap LoRA loading and base model execution in the initial stage

• Impose an asynchrony bound K to ensure good image quality

• Engineering optimizations: use shared mem and in-place LoRA patching

24

LoRA
loading

A request
arrives

Denoising
w/o LoRA

Denoising with
LoRA

Transfer weights via shared
memory and patch on

Time

Base model

inference

Bounded at step kLoRA
loading

A request
arrives

Denoising with LoRA

Transfer weights via shared
memory and patch on

Time

Base model

inference

This Talk

• Challenges

• Katz design
• ControlNet-as-a-Service: Efficient ControlNet serving

• Bounded Asynchronous Loading: Efficient LoRA loading

• Optimized Base Model Execution

• Evaluation

• Conclusion

25

Optimized Base Model Execution

• CFG computation accounts for 90% of base model execution time

• Latent parallelism
• Parallelize the CFG computation in image generation
• Accelerate base model execution with multiple GPUs

• Kernel-level optimization
• CUDA graph
• Kernel optimization specific to UNet in SDXL

26

Latents

UNet

UNet

Step 1 Step K+1

UNet

UNet

Time

Data flow CFG operator

Katz: Putting It Altogether

27

C.N.: ControlNets

ControlNet-as-a-Service

Latent parallelism

Bounded Async LoRA Loading

This Talk

• Challenges

• Katz design
• ControlNet-as-a-Service: Efficient ControlNet serving

• Bounded Asynchronous Loading: Efficient LoRA loading

• Optimized Base Model Execution

• Evaluation

• Conclusion

28

Methodology

• Testbed
• NVIDIA H800 SuperPOD, 400 Gbps IB
• Base model: SDXL1

• Baselines
• Diffusers: standard workflow; image quality

upper bound
• Nirvana [NSDI’24]: accelerate image

generation by skipping κ steps
• DistriFusion [CVPR’24]: accelerate image

generation using multiple GPUs

• Serving metrics:
• Serving latency
• Image quality

• Quantitative: CLIP(↑), FID(↓), SSIM(↑)
• Qualitive: User study

291Our design can generalize to DiT-based models with details in our paper.

Evaluation: Serving Latency

• Up to 7.8x speedup in end-to-end latency of generating an image of 1024x1024

• Up to 1.7x per GPU throughput improvement

• End-to-End latency and component breakdowns for a 3C/2L request, using Diffusers and Katz
• Overhead associated with adapters are virtually eliminated.

30

Evaluation: Image quality

• Quantitative

• Qualitive
• Collect 1.2k data points from 75 human participants

• No image quality loss compared with Diffusers

31

This Talk

• Challenges

• Katz design
• ControlNet-as-a-Service: Efficient ControlNet serving

• Bounded Asynchronous Loading: Efficient LoRA loading

• Optimized Base Model Execution

• Evaluation

• Conclusion

32

Conclusion

33

• First comprehensive characterization study of text-to-image serving workflows
• Adapters are effective and prevalent in production workloads.

• Adapters poses new performance challenges: loading and computation

• ControlNet-as-a-Service
• Caching popular ControlNets; ControlNets parallelization; ControlNets multiplexing

• Bounded async LoRA loading
• Overlapping LoRA loading and base model execution in the initial image generation stage

• Optimized base model execution
• Latent parallel

• Kernel-level optimizations

	Slide 1: Efficient Workflow Serving for Diffusion Models with Many Adapters1
	Slide 2: Text-to-Image: A Blockbuster GenAI Service
	Slide 3: Diffusion-based Text-to-Image Generation
	Slide 4: Diffusion-based Text-to-Image Generation
	Slide 5: Text-to-Image Serving w/ Many Adapters
	Slide 6: ControlNets and LoRAs are prevalent in today’s T2I services
	Slide 7: Characterization in a production platform
	Slide 8: Performance issues
	Slide 9: ControlNet Characterization
	Slide 10: LoRA Characterization
	Slide 11: How to efficiently serve a T2I workflow with many adapters ?
	Slide 12: This Talk
	Slide 13: This Talk
	Slide 14: Challenge #1
	Slide 15: Challenge #2
	Slide 16: Challenges
	Slide 17: This Talk
	Slide 18: Optimizing ControlNet: Opportunity #1
	Slide 19: Optimizing ControlNet: Opportunity #2
	Slide 20: Putting It Together: ControlNet-as-a-Service
	Slide 21: This Talk
	Slide 22: The Loading Bottleneck of LoRA Serving
	Slide 23: The Magic of LoRA
	Slide 24: Bounded Async LoRA Loading (BAL)
	Slide 25: This Talk
	Slide 26: Optimized Base Model Execution
	Slide 27: Katz: Putting It Altogether
	Slide 28: This Talk
	Slide 29: Methodology
	Slide 30: Evaluation: Serving Latency
	Slide 31: Evaluation: Image quality
	Slide 32: This Talk
	Slide 33: Conclusion

