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Text-to-Image: A Blockbuster GenAl Service

* Generate high-quality, contextually accurate images from textual prompts
* Killer apps: e-commerce, advertisement, entertainment, and creative workflows...

* A blockbuster GenAl service in the cloud
* OpenAl, Midjouney, Google, Adobe, Alibaba, Tencent, ByteDance...
* Adobe Firefly has generated two billion images by 2023
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Diffusion-based Text-to-Image Generation

* The magic of generating an image from a noise latent with diffusion model
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Diffusion-based Text-to-Image Generation

* The magic of generating an image from a noise latent with diffusion model

* Text-to-image service is more than a base diffusion model
* Textual prompts alone are hard to precisely specify layouts, styles...
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Text-to-Image Serving w/ Many Adapters

* Text-to-image service is more than a base diffusion model

* Augment the base model with many adapters

* ControlNet: allow a referenece image to control compositions

* LoRA: control the stylistic effects

Reference image
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ControlNets and LoRAs are
orevalent in today’s T2l services



Characterization in a production platform

* Prevalence of adapters
* A 20-day production trace collected in May and June 2024
e 500k requests to two T2l core services in a production platform
e A total number of 141 ControlNets and 14,371 LoRAs

Adapters Number Service A Service B

0 0 1.9%
1 30.5% 25.1%

ControlNet 2 69.5% 69.9%
3 0 3.1%

0 0.2% T2%

LoRA 1 8.8% 73.6%

2 91% 19.2%




Performance issues

* The use of adapters (e.g., ControlNets and LoRAs) introduces significant delays
* Delays accumulate as more adapters are in use

Where does the latency come from?
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ControlNet Characterization

=

o

o
1

» Skewed popularity
* A few popular adapters contribute most invocations
e Caching is effective
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* ControlNets are large in size, ~3 GiB each
e Usually maintained in remote storage

| mmm Diffusers 13.9 liﬁ

s Katz

1.6x 7.6
il 5 — 4.5 8.2
| &21.7 .1.7.1\.3 1.9 2.0 8820

* Compute-heavy
* Each ControlNet adds extra 1.6s latency
 Accumulates as more ControlNets are in use
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LoRA Characterization

* Long-tailed popularity

* Many invocations contributed by less popular LoRAs

* |neffective caching

* Compute-light

* High loading and patching overhead
* Loading + patching one LoRA takes >3s
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How to efficiently serve a T2l
workflow with many adapters ?



This Talk

Challenges

Katz design
* ControlNet-as-a-Service: Efficient ControlNet serving
* Bounded Asynchronous Loading: Efficient LoRA loading
* Optimized Base Model Execution

Evaluation

* Conclusion
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Katz design
e ControlNet-as-a-Service: Efficient ControlNet serving

* Bounded Asynchronous Loading: Efficient LoRA loading
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Challenge #1

» Adapter loading (and patching)
* Desired ControlNets and LORAs vary across requests
* On average, each request undergoes 1 ControlNet and 1 LoRA loading.
e Accounts for 37% of end-to-end serving latency
* Naive pre-caching all adapters is infeasible
* 141 ControlNets (~3GiB each) and 14,371 LoRAs (hundreds of MiB each) for SDXL
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Challenge #2

* Computation
e ControlNet is compute-intensive
e Using one ControlNet increase serving latency by 1.6x

* Base model serving is compute-heavy
* Limited to none performance gains offered by batching
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Ch

allenges

* Adapter loading & patching
* ControlNet and base model are compute-heavy
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This Talk

e Katz design
* ControlNet-as-a-Service: Efficient ControlNet serving



Optimizing ControlNet: Opportunity #1

» Skewed popularity of ControlNets
* Service-A: Top-5 most popular ControlNets account for 98% invocations
* Service-B: Top-8 account for 95% invocations

e Caching a few popular ControlNets in GPU can largely eliminate loading overhead
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Optimizing ControlNet: Opportunity #2

* ControlNet parallelization
* Concurrently execute ControlNet(s) with base model on multiple GPUs
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Putting It Together: ControlNet-as-a-Service

* ControlNet-as-a-Service: deploy ControlNets as a separate, independently scaled
service on dedicated GPUs
e Caching popular ControlNets
e ControlNet parallelization
* Shared ControlNet service among workflows
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This Talk

e Katz design

* Bounded Asynchronous Loading: Efficient LoRA loading



The Loading Bottleneck of LoRA Serving

* |n production, LoRA is fetched from a remote storage or disk
* Fetching LoRAs of size 800 MiB takes more than 1 second, delaying serving latency by 34%

* LoRA caching is ineffective
* LoRA population follows a long-tail distribution
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The Magic of LoRA

Semantics-planning Artistic-planning

Inference vlv/o LoRA
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\

Bounded Async LoRA Loading (BAL)

* Overlap LoRA loading and base model execution in the initial stage

* Impose an asynchrony bound K to ensure good image quality

* Engineering optimizations: use shared mem and in-place LoRA patching
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This Talk

e Katz design

* Optimized Base Model Execution



Optimized Base Model Execution

* CFG computation accounts for 90% of base model execution time

e Latent parallelism

* Parallelize the CFG computation in image generation
* Accelerate base model execution with multiple GPUs
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* Kernel optimization specific to UNet in SDXL



Katz: Putting It Altogether
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This Talk

Challenges

Katz design
e ControlNet-as-a-Service: Efficient ControlNet serving

* Bounded Asynchronous Loading: Efficient LoRA loading
* Optimized Base Model Execution

Evaluation

* Conclusion
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Methodology

* Testbed
* NVIDIA H800 SuperPOD, 400 Gbps IB
* Base model;: SDXL!

* Baselines

* Diffusers: standard workflow; image quality
upper bound

* Nirvana [NSDI’24]: accelerate image
generation by skipping K steps

* DistriFusion [CVPR’24]: accelerate image
generation using multiple GPUs

* Serving metrics:
e Serving latency
* Image quality
* Quantitative: CLIP(1), FID({,), SSIM(TM)
e Qualitive: User study

10ur design can generalize to DiT-based models with details in our paper.
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Evaluation: Serving Latency

* Up to 7.8x speedup in end-to-end latency of generating an image of 1024x1024

* Upto 1.7x per GPU throughput improvement

* End-to-End latency and component breakdowns for a 3C/2L request, using Diffusers and Katz

* Overhead associated with adapters are virtually eliminated.
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Evaluation: Image quality

A helicopter an old-fashioned a peaceful a squirrel
Prompts flies over windmill surrounded lakeside driving
Yosemite

by flowers landscape

* Quantitative

Y
LoRA Setting System CLIP(T) FID({) SSIM (1)
DIFFUSERS 341 - - Diffusers
NoLoRA 32.9 11.4 0.63
One LoRA: NIRVANA-10 33.5 9.5 0.45
Papercut [46] NIRVANA-20 33.7 10.9 0.44
DISTRIFUSION 34.0 1.7 0.86
KATZ (ours) 34.1 2.1 0.83
DIFFUSERS 342 N N (Katz)
. NoLoRA 31.3 13.4 0.67 ours
;Ylfn];‘ffgi NIRVANA-10 33.3 9.0 0.51
NIRVANA-20 32.8 94 0.47
Photography [47]  pigrRIFUSION 34.1 2.9 0.86
KATZ (ours) 34.1 3.1 0.78

e Qualitive DistriFusion

* Collect 1.2k data points from 75 human participants
* No image quality loss compared with Diffusers

Nirvana-10



This Talk

Challenges

Katz design
e ControlNet-as-a-Service: Efficient ControlNet serving

* Bounded Asynchronous Loading: Efficient LoRA loading
* Optimized Base Model Execution

e Evaluation

* Conclusion
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Conclusion

* First comprehensive characterization study of text-to-image serving workflows
* Adapters are effective and prevalent in production workloads.
* Adapters poses new performance challenges: loading and computation

* ControlNet-as-a-Service
e Caching popular ControlNets; ControlNets parallelization; ControlNets multiplexing

* Bounded async LoRA loading

* Overlapping LoRA loading and base model execution in the initial image generation stage

* Optimized base model execution
* Latent parallel
* Kernel-level optimizations
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