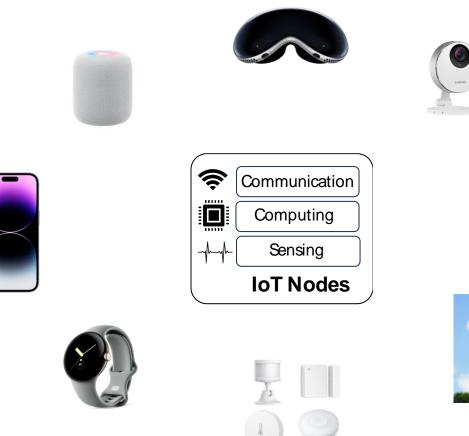
Advancing AI in IoT Systems for Smart Health

Xiaomin Ouyang

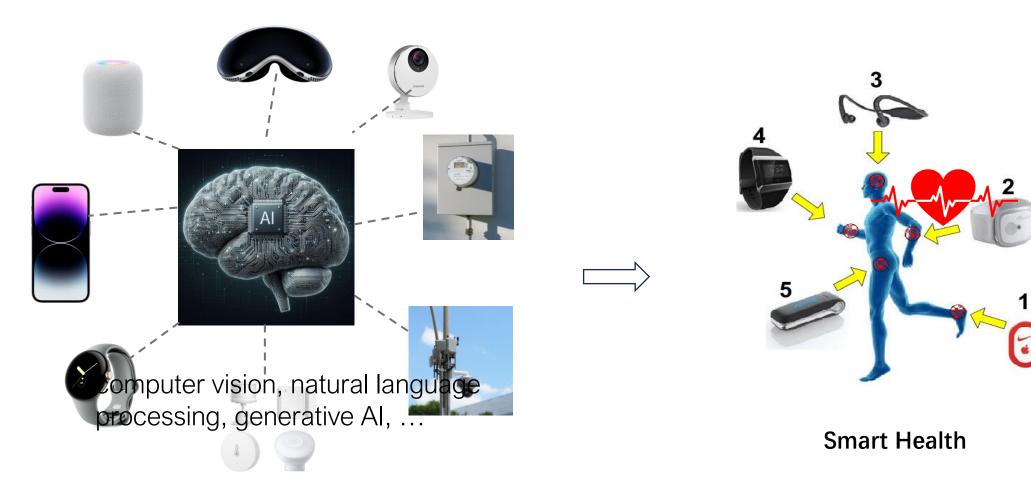
Assistant Professor Department of Computer Science and Engineering Hong Kong University of Science and Technology

LOTS of IoT and Mobile Devices in Daily Life



 In-situ sensing and networked computing

On-Device AI for Smart Health



On-device AI for In-home and Community-based Health: *transfer reactive healthcare* practice to proactive, personalized, and seamless healthcare and well-being.

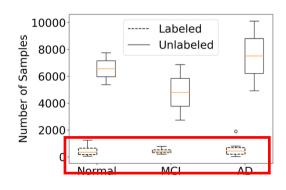
Embedded AI Systems

Smart Health

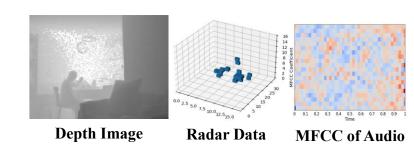
Understanding Real-World Challenges

Data Challenges

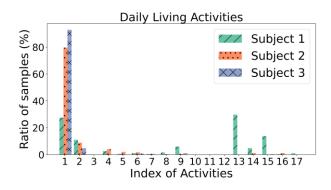
• Limited labeled data



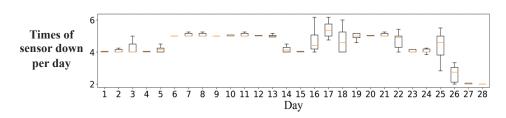
• Fusing heterogeneous modalities

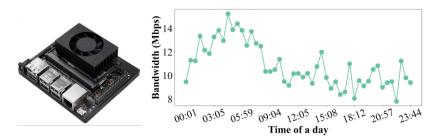


• Non-i.i.d. distributions

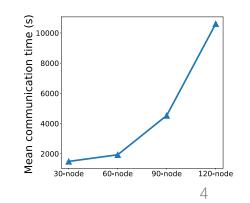


- System Challenges
- Sensor dynamics





Scalability

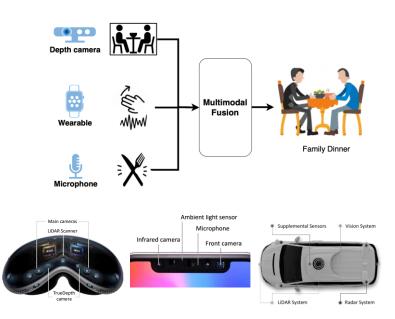


Limited resources

- How to harness distributed and imperfect IoT data?
- How to make the system more scalable, resource-efficient and robust to real-world dynamics?

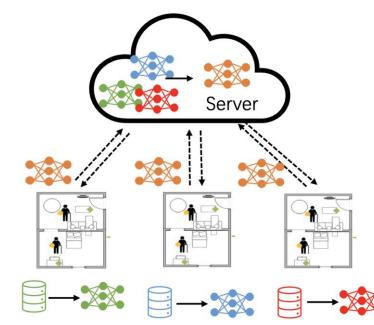
Embedded AI Systems

- Tackling real-world data and system challenges \triangleright
 - Multimodal Learning \succ
- Distributed (Federated) Learning > Physics-Strengthened AI \succ



Harness distributed and imperfect data

- MMBind (SenSys'25): foundational dataset •
- Cosmo (MobiCom'22): small labeled data ٠

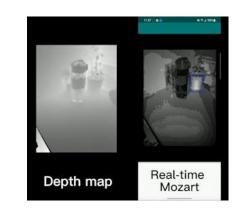


Address data and resource heterogeneity

ClusterFL (MobiSys'21): scalability

Harmony (MobiSys'23): modality heterogeneity

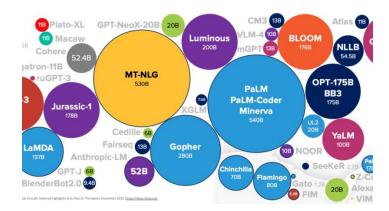
Latent space Encoder Decode Physics model of sensors End-to-end enhancement



Enhance sensing quality

- Mozart (MobiSys'23 Best Paper) •
- UltraDepth (SenSys'21) •

Multimodal Learning with Distributed and Incomplete Data



Big Data in CV and NLP

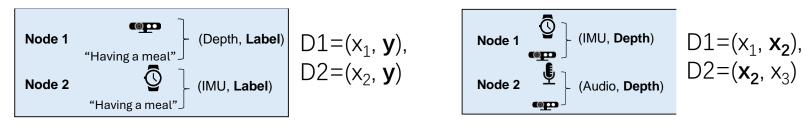
Node 1									
Node 2									
Setting	Dataset	Modality	Nodes (Subjects)	Class	Sample				
Cross	UTD	Acc, Gyro, Skeleton	4/2/2	27	864				
Node (Intra	MMFi	Depth, Radar, Skeleton, WiFi	20/10/20	27	1,080				
Dataset)	PAMAP2	Acc, Gyro, Mag	4/2/2	30	9,611				
	SUN-RGBD	Image, Depth, SemSeg	N/A	5	4,620				
Cross	MotionSense	Acc, Gyro	24	6	12,636				
Dataset	Shoaib-right	Acc, Mag	10	7	4,500				
(Activity)	Shoaib-left	Acc, Mag	10	7	4,500				
	Shoaib-wrist	Acc, Mag	10	7	4,500				
	RealWorld	Acc, Gyro, Mag	15	8	21,663				
Cross	GR4DHCI	Skeleton, IR	16	7	7,339				
Dataset	DHG	Skeleton, Depth	20	14	2,800				
(Gesture)	Briareo	Skeleton, Depth, IR	40	12	1,440				

Small and Distributed Data in IoT

Multimodal Learning with Distributed and Incomplete Data

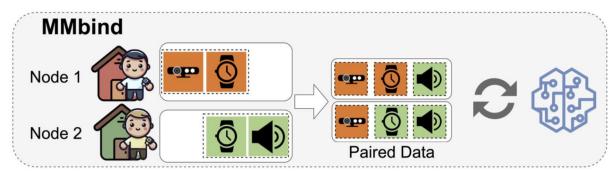
Key Question:

• Can we learn joint multimodal embeddings with **distributed and incomplete data in IoT**?



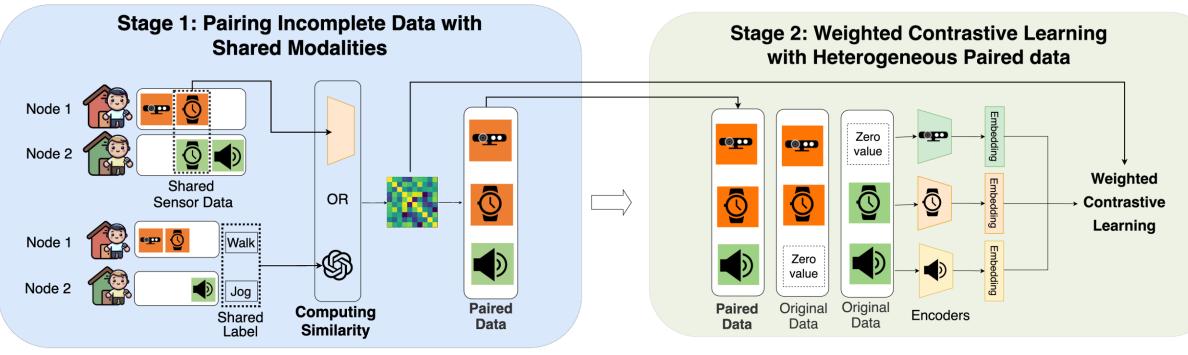
≻ Key Idea:

- Bind data from disparate sources and incomplete modalities with the shared modality
 - Shared modality: sensor data or labels



MMBind: System Overview

Construct Pseudo-Paired Data



Learning with Heterogeneous Paired Data

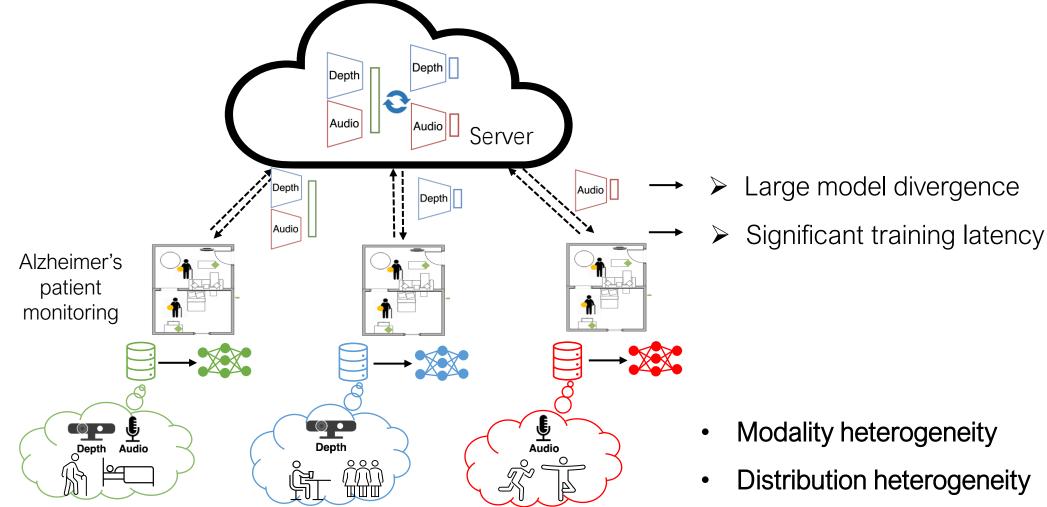
Imperfect paring

- Data of different modalities observing similar events can be effectively used for multimodal training.
 - Generate a foundational multimodal dataset for IoT applications

X. Ouyang, et al. MMBind: Unleashing the Potential of Distributed and Heterogeneous Data for Multimodal Learning in IoT. (SenSys '25)

Distributed Model Training after Deployment

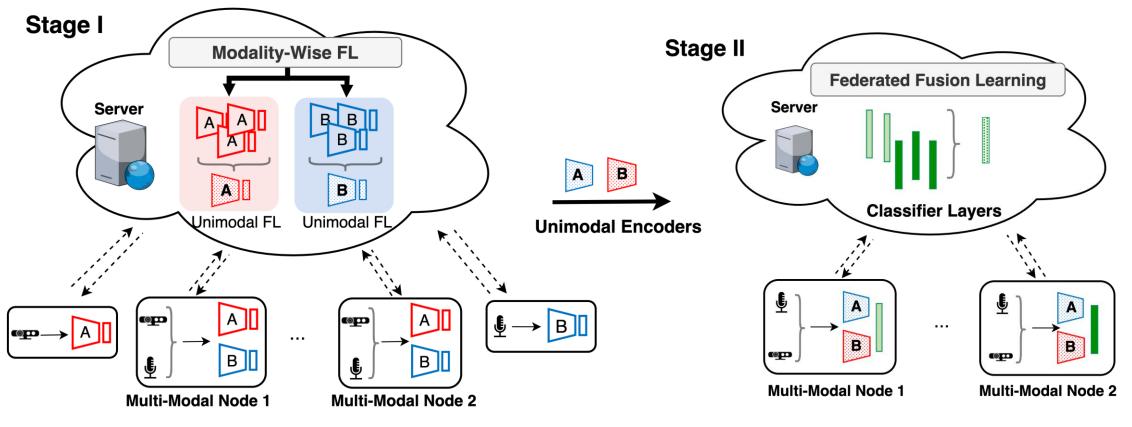
Challenges of Multi-Modal Federated Learning



A Two-Stage Framework for Multi-Modal FL

Modality-Wise Federated Learning

Federated Fusion Learning



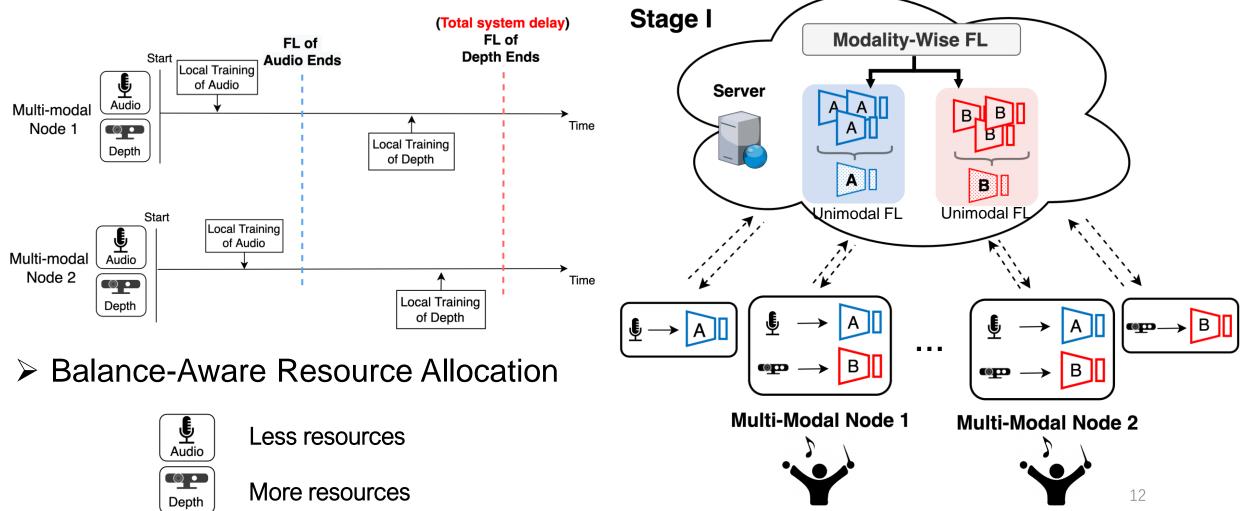
• Collaboratively train **unimodal encoders**

Collaboratively train the multi-modal classifier

11

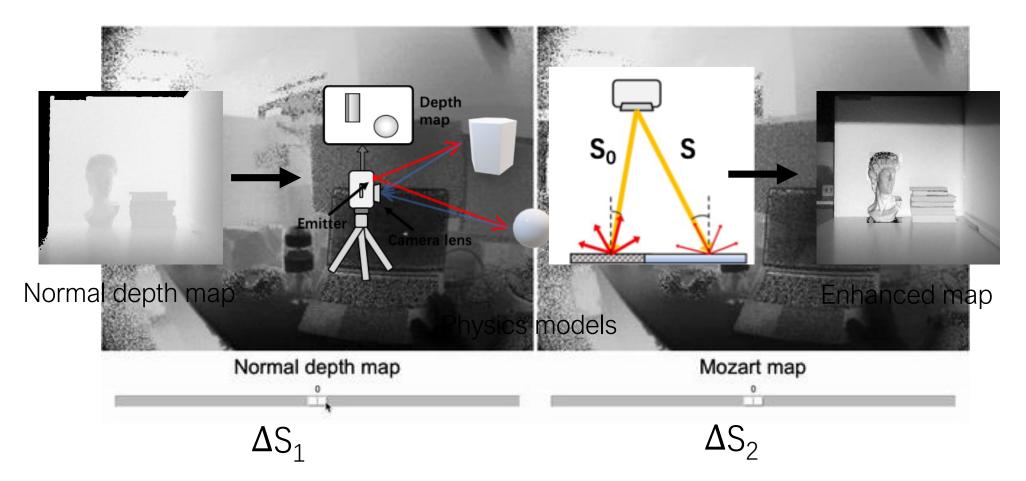
Reducing Training Latency

Imbalanced Training Delays



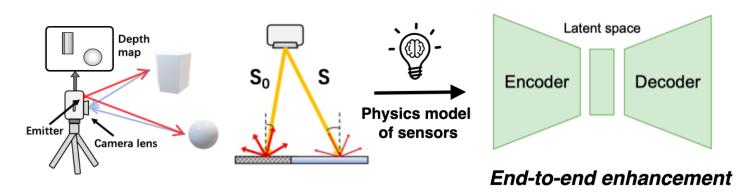
Physics-Strengthened AI for Robust Sensing

• Enhancing ToF Depth Sensing with Lambertian Reflection Model

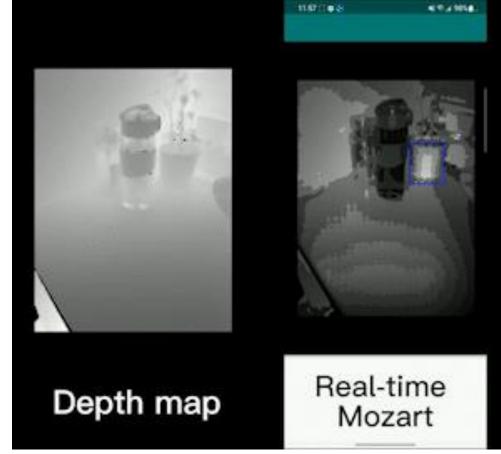


Physics-Strengthened AI for Robust Sensing

• Integrate First-principle Model with ML



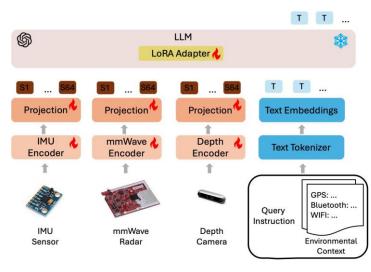
Enhancing Mobile Sensing



Embedded AI Systems

Tackling real-world data and system challenges

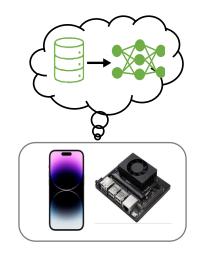
Ongoing Works



LLMs for sensing

Activity Hour	Sleeping	Watching TV	•••	Having a meal
00:00 - 01:00 am	\bigcirc			
:				
10:00 – 11:00 am		\bigcirc		
11:00 – 12:00 am				\bigcirc
:				

Weak labels



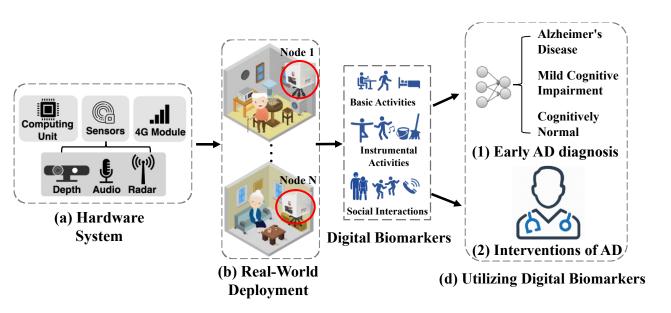
Efficient on-device inference

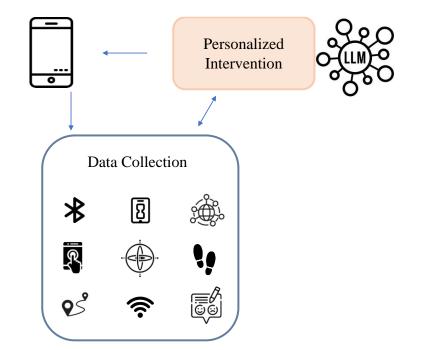
Outline

Embedded AI Systems

Smart Health

Smart Devices for In-home and Community-based Healthcare



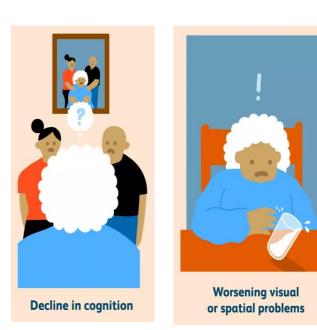


- Multimodal Sensor Systems for Alzheimer's Monitoring
- LLM-Powered Mobile Intervention Systems

Alzheimer's Disease (AD)

A Global Health Challenge

Progressive Degenerative Irreversible



In 2024, over 55 million people worldwide had Alzheimer's disease, which costs over \$13,00 billion for the managed healthcare system.

About 1/9 people aged 65 and older have Alzheimer's.

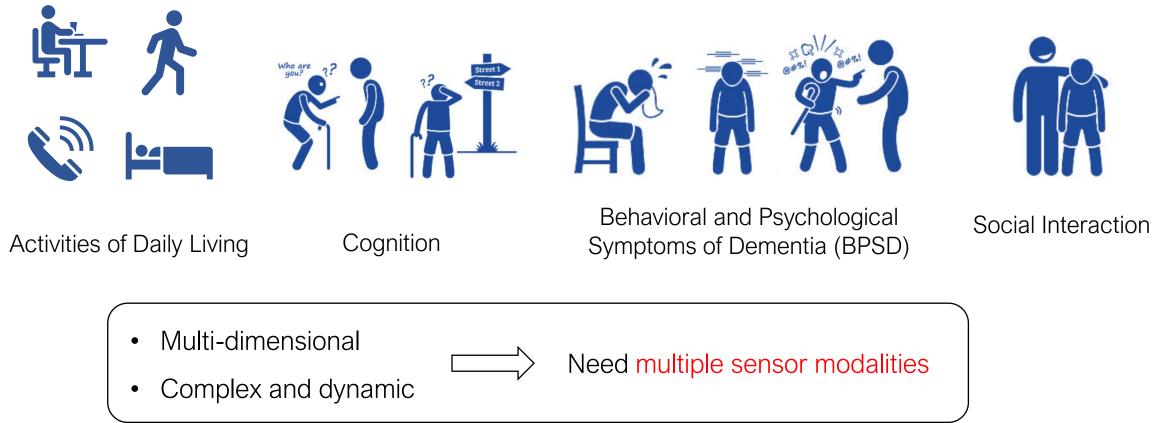
Current Diagnosis Approaches

MRI test

- Intrusive and labor-intensive
- About 75% undiagnosed worldwide

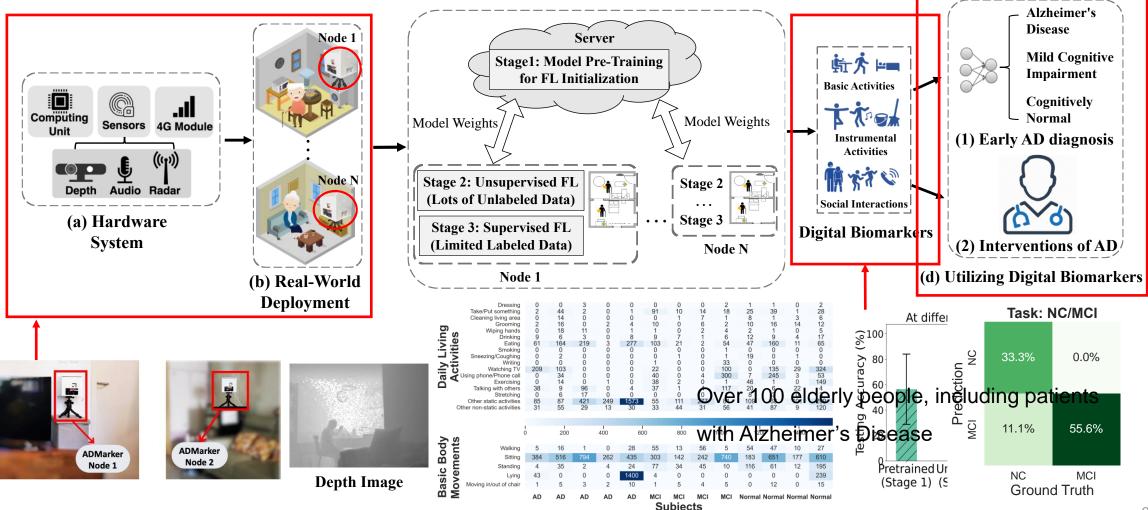
Digital Biomarkers for Early AD Diagnosis

Leverage AI and sensor devices to capture physiological, behavioral and lifestyle symptoms of AD in natural living environments.



ADMarker: System Oerview

> An end-to-end system for detecting multi-dimensional AD digital biomarkers in home environments.



X. Ouyang, et. al. ADMarker: A Multi-Modal FL System for Monitoring Digital Biomarkers of Alzheimer's Disease. (MobiCom '24)

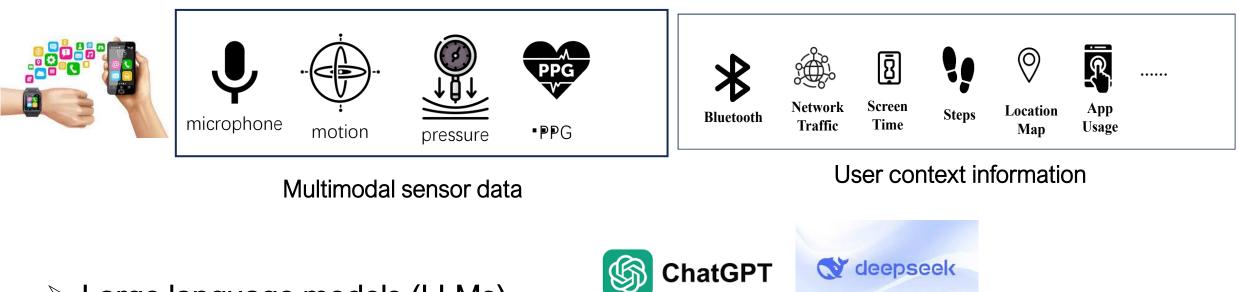
A Real-World Demo

USING PHONE 0 EATING 0 WATCHING 0 TV DRESSING 0 SLEEPING 0 GROOMING 0 DRINKING 0 SMOKING 0 WRITING 0 CLEANING Ū. TAKE/PUT 0 SOMTHING EXERCISING

In collaborations with CUHK Prince of Wales Hospital and HKU for AD behavior monitoring.

LLM-Powered Mobile Sensing for Personalized Intervention

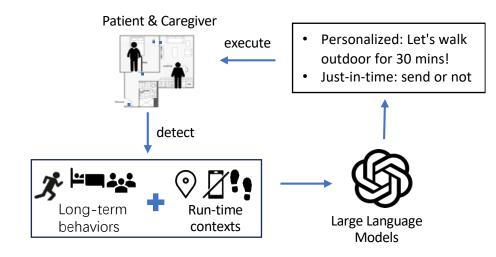
Mobile devices



- Large language models (LLMs)
 - MODEIS (LLIVIS)
 - Reasoning ability: interpret heterogeneous information to enable complex sensing tasks
 - Generative ability: personalized user suggestion/recommender

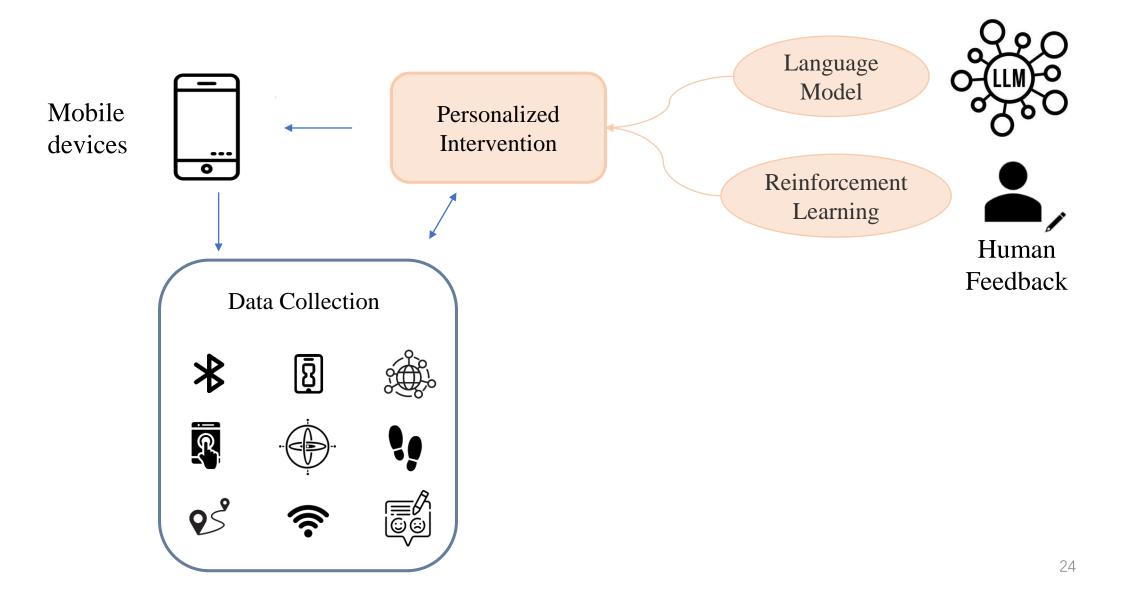
LLM-Assisted Mobile Sensing for Personalized Intervention

Deliver Personalized and Just-in-Time Intervention



- Personalized:
 - E.g., frequent reminder for physically inactive users
- Just-in-time:
 - no reminders when "working" or "sleeping"

System Overview



Demo

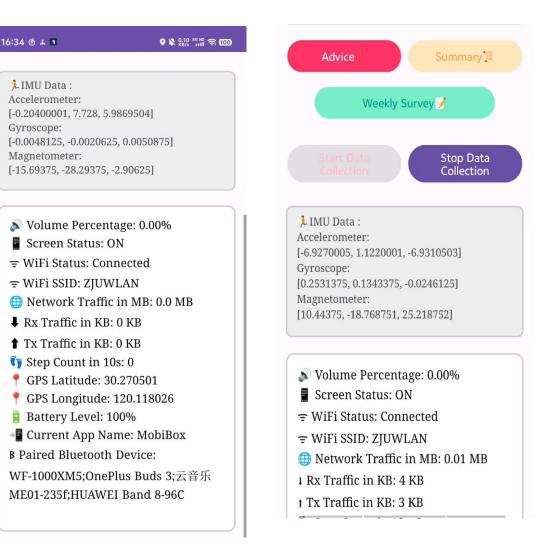
MobiBox APP

Data Collection

IMU (Accelerometer / Gyroscope / Magnetic),GPS, Screen & App Usage, Battery Status,Bluetooth connection, Network Traffic, StepCount, Wi-Fi Connections.

- Daily & Weekly Activity Summary
- Bump-up Intervention Suggestion

In collaborations with CUHK and HKU for Al-powered dementia intervention.



- Embedded AI systems
 - Tackling real-world data and system challenges

Building and deploying end-to-end AIoT systems for smart health

• Working with interdisciplinary teams and medical researchers

Thanks!

- Xiaomin Ouyang
- Assistant Professor @ HKUST CSE
- <u>xmouyang@cse.ust.hk</u>
- https://xmouyang.github.io/

Visit My Page

My WeChat Account

香港科技大學 THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY