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LOTS of IoT and Mobile Devices in Dally Life
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On-Device Al for Smart Health
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Smart Health

On-device Al for In-home and Community-based Health: transfer reactive healthcare

practice to proactive, personalized, and seamless healthcare and well-being.



Outline

» Embedded Al Systems

» Smart Health



Understanding Real-World Challenges

» Data Challenges

* Limited labeled data « Fusing heterogeneous modalities
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» System Challenges

 Sensor dynamics  Limited resources
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 How to harness distributed and imperfect loT data?

 How to make the system more scalable, resource-efficient

and robust to real-world dynamics?



Embedded Al Systems

» Tackling real-world data and system challenges

» Multimodal Learning
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Harness distributed and imperfect data Address data and resource heterogeneity

*  MMBInd (SenSys’25): foundational dataset .

Harmony (MobiSys’'23): modality heterogeneity
*  Cosmo (MobiCom’22): small labeled data .

ClusterFL (MobiSys’21): scalability

» Distributed (Federated) Learning > Physics-Strengthened Al
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Enhance sensing quality

* Mozart (MobiSys'23 Best Paper)
« UltraDepth (SenSys’21)



Multimodal Learning with Distributed and Incomplete Data

Nod
Setting Dataset Modality ( Sul())jeists) Class Sample
Cross UTD Acc, Gyro, Skeleton 4/2/2 27 864
Node ) Depth, Radar,
(Intra MMFi Skeleton, WiFi 20/10/20 27 1,080
: Dataset) PAMAP2 Acc, Gyro, Mag 4/2/2 30 9,611
Y Luminous 0 SUN-RGBD  Image, Depth, SemSeg N/A 5 4,620
%8 Cross MotionSense Acc, Gyro 24 6 12,636
Dataset | Shoaib-right Acc, Mag 10 7 4,500
OP;;;SB (Activity) | Shoaib-left Acc, Mag 10 7 4,500
Pa':l:‘-::r::er 758 Shoaib-wrist Acc, Mag 10 7 4,500
e RealWorld Acc, Gyro, Mag 15 8 21,663
Cross GR4DHCI Skeleton, IR 16 7 7.339
| Dataset DHG Skeleton, Depth 20 14 2,800
Chinchilla |
78 Fiamingo - (Gesture) Briareo Skeleton, Depth, IR 40 12 1,440

)

Big Data in CV and NLP Small and Distributed Data in 0T



Multimodal Learning with Distributed and Incomplete Data

> Key Question:

« Can we learn joint multimodal embeddings with distributed and incomplete data in 10T?
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» Key ldea:

* Bind data from disparate sources and incomplete modalities with the shared modality

« Shared modality: sensor data or labels
B ——————




MMBInd: System Overview

» Construct Pseudo-Paired Data  » Learning with Heterogeneous Paired Data

Stage 1: Pg;‘rlng ‘;rl'\:or?_lﬁte Data with Stage 2: Weighted Contrastive Learning
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« Data of different modalities observing similar events can be effectively used for multimodal training.

« Generate a foundational multimodal dataset for 0T applications

X. Ouyang, et al. MMBInd: Unleashing the Potential of Distributed and Heterogeneous Data for Multimodal Learning in loT. (SenSys '25)



Distributed Model Training after Deployment

» Challenges of Multi-Modal Federated Learning
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A Two-Stage Framework for Multi-Modal FL

» Modality-Wise Federated Learning » Federated Fusion Learning
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X. Ouyang, et al. Harmony: Heterogeneous Multi-Modal Federated Learning through Disentangled Model Training. (MobiSys '23)



Reducing Training Latency

» Imbalanced Training Delays
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Physics-Strengthened Al for Robust Sensing

* Enhancing ToF Depth Sensing with Lambertian Reflection Model
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Z. Xiex, X. Ouyang* (co-primary), et al. Mozart: A Mobile ToF System for Sensing in the Dark through Phase Manipulation (MobiSys '23 Best Paper).
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Physics-Strengthened Al for Robust Sensing

 Integrate First-principle Model with ML
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End-to-end enhancement

« Enhancing Mobile Sensing

Real-time
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mave Radar IMU PPG
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14

Z. Xiex, X. Ouyang* (co-primary), et al. Mozart: A Mobile ToF System for Sensing in the Dark through Phase Manipulation (MobiSys '23 Best Paper).



Embedded Al Systems
» Tackling real-world data and system challenges

» Ongoing Works
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LLMs for sensing Weak labels

Efficient on-device inference
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Outline

» Embedded Al Systems

» Smart Health



Smart Devices for In-home and Community-based Healthcare
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(b) Real-World
Deployment

» Multimodal Sensor Systems for Alzheimer’s Monitoring
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» LLM-Powered Mobile Intervention Systems
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Alzheimer’s Disease (AD)

» A Global Health Challenge

Progressive
Degenerative

Irreversible

» Current Diagnosis Approaches
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Screening test

Interview

Worsening visual
Decline in cognition

Beginning of or } ’— , w
; worsening of mental and
or spatial problems behavioral problems

MRI test
In 2024, over 55 million people worldwide had Alzheimer's disease,
which costs over $13,00 billion for the managed healthcare system.  Intrusive and labor-intensive
About 1/9 people aged 65 and older have Alzheimer’s

About 75% undiagnosed worldwide
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Digital Biomarkers for Early AD Diagnosis

» Leverage Al and sensor devices to capture physiological, behavioral and lifestyle symptoms of AD in

natural living environments.
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* Multi-dimensional | N
Need multiple sensor modalities

« Complex and dynamic
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ADMarker: System Oerview

» An end-to-end system for detecting multi-dimensional AD digital biomarkers in home environments.
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X. Ouyang, et. al. ADMarker: A Multi-Modal FL System for Monitoring Digital Biomarkers of Alzheimer’s Disease. (MobiCom '24)
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A Real-World Demo
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In collaborations with
CUHK Prince of Wales
Hospital and HKU for

AD behavior monitoring.
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LLM-Powered Mobile Sensing for Personalized Intervention

» Mobile devices
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~— Network  Screen Location App

Steps

Bluetooth Traffic Time Map Usage

microphone motion pressure "PPG

Multimodal sensor data User context information

ChatGPT (W deepseel

« Reasoning ability: interpret heterogeneous information to enable complex sensing tasks

> Large language models (LLMs)

« (Generative ability: personalized user suggestion/recommender
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LLM-Assisted Mobile Sensing for Personalized Intervention

» Deliver Personalized and Just-in-Time Intervention

Patient & Caregiver ‘ L2
j T execute * Personalized: Let's walk
‘h — outdoor for 30 mins!

T~ J i * Just-in-time: send or not

| e T
X hmis QR — G

REMINDERS

Long-term Run-time
behaviors contexts Large Language
Models
* Personalized: -
« E.g., frequent reminder for physically inactive users i

pppppppp

e Just-in-time:

* no reminders when “working” or “sleeping”
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System Overview
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Demo

> MObiBOX APP 16:34 & & 1 ON LR =M

» Data Collection

IMU (Accelerometer / Gyroscope / Magnetic),
GPS, Screen & App Usage, Battery Status,
Bluetooth connection, Network Traffic, Step

Count, Wi-Fi Connections.

» Daily & Weekly Activity Summary

» Bump-up Intervention Suggestion

In collaborations with CUHK and HKU for
Al-powered dementia intervention.

A IMU Data :

Accelerometer:

[-0.20400001, 7.728, 5.9869504]
Gyroscope:

[-0.0048125, -0.0020625, 0.0050875]
Magnetometer:

[-15.69375, -28.29375, -2.90625]

& Volume Percentage: 0.00%

@ Screen Status: ON
= WIFi Status: Connected
= WIFi SSID: ZJUWLAN
) Network Traffic in MB: 0.0 MB
& Rx Traffic in KB: 0 KB
4 Tx Traffic in KB: 0 KB
¥§ Step Count in 10s: 0

® GPS Latitude: 30.270501

? GPS Longitude: 120.118026

Battery Level: 100%

@ Current App Name: MobiBox
B Paired Bluetooth Device:
WF-1000XM5;0nePlus Buds 3;z & 'k
MEO01-235f;HUAWEI Band 8-96C

Weekly Survey ./

Stop Data
Collection

JIMU Data :

Accelerometer:

[-6.9270005, 1.1220001, -6.9310503]
Gyroscope:

[0.2531375, 0.1343375, -0.0246125]
Magnetometer:

[10.44375, -18.768751, 25.218752]

&' Volume Percentage: 0.00%

§ Screen Status: ON

= WiFi Status: Connected

= WiFi SSID: ZJUWLAN

€ Network Traffic in MB: 0.01 MB
} Rx Traffic in KB: 4 KB

t Tx Traffic in KB: 3 KB

L
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Summary

» Embedded Al systems

 Tackling real-world data and system challenges

» Building and deploying end-to-end AloT systems for smart health

» Working with interdisciplinary teams and medical researchers



Xiaomin Ouyang
Assistant Professor @ HKUST CSE

xmouyang@cse.ust.hk

https://xmouyang.github.io/

Visit My Page My WeChat Account
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