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Long Chain of Thought (CoT)

O1 Solution

Okay, let's see. So Aya goes for a 9-kilometer walk every morning and stops at a coffee shop. The
problem gives two scenarios with different speeds and total times, and we need to find the total time
when she walks at a different speed. Hmm.

First, | need to parse the information given. The key points are:

1. The distance is always 9 km.

2. The total time includes both walking time and t minutes at the coffee shop.

3. Two different speeds are given, each resulting in different total times, but the coffee shop time t is the
same in both cases.

Wait, let me make sure. The problem states when she walks at s km/h, the total time is 4 hours (which
includes t minutes). When she walks at s + 2 km/h, the total time is 2 hours and 24 minutes (which also
includes t minutes). So both cases have the same t, but different walking times leading to different total
times.

So, the total time is walking time plus t. Since t is in minutes, but the total time is given in hours and

minutes, | need to convert everything to the same units. Maybe convert all times to minutes to avoid
confusion.

Since speed can't be negative, s = (5)/2 = 2.5 km/h
Wait, sqrt(49)=7, so (-2 +7)/2=5/2=2.5, yes. So s=2.5 km/h.

Now check if that makes sense.

Third scenario: speed is s +0.5=3 km/h. Walking time=9/3=3 hours=180 minutes. Add t=24, total=204.

Yes, seems correct.
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Long Chain of Thought (CoT)

+ certain cognitive behaviors
(e.q., Self-Reflection)
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DeepSeek-R1 and Kimi-k1.5 choose the extremely simple recipe — Reinforcement Learning
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Long CoT Patterns Emerging in RL Training

DeepSeek-R1 and Kimi-k1.5 choose the extremely simple recipe — Reinforcement Learning

DeepSeek-R1-Zero average length per response during training
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Model naturally develops long CoT during RL
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RL Training is not a new thing

But the emergence of
Long CoT plus Self Reflection is new
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Deepseek-R1 conducts experiments on huge models in a large-scale RL setting.
What about small model and limited data?
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Deepseek-R1 conducts experiments on huge models in a large-scale RL setting.
What about small model and limited data?

Does RL works for small model and limited data?

Does long CoT and self-reflection emerge in this case?
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SimpleRL-Zero — RL from scratch
RL is applied directly to the base model using 8K MATH (query, answer) pairs without SFT.

[1] Zeng et al. 7b model and 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient. 2025
6
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Achieve gains of nearly 20 absolute points from base model.
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Achieve gains of nearly 20 absolute points from base model.

Outperform Instruct model and achieves comparable results to PRIME with 50x data efficiency.
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Experiment Setup
 Start from the Qwen2.5-Math-7B-Base model.

Qwen2.5-Math- rStar-Math-7B Eurus-2-7B-PRIME  Qwen2.5-7B-
7B-Instruct SimpleRL-Zero
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SFT Data 2.5M (open- ~7.3M (MATH, 230K 0)
source and in- NuminaMath, etc.)
house)
RM Data 618K (in-house) ~7k (in-house) 0 0]
RM Qwen2.5-Math- None Eurus-2-7B-SFT None
RM (72B)
RL Data 66K queries x 32 ~3.647 M x 16 150K queries x 4 8K queries x 8
samples samples samples
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Eurus-2-7B-PRIME

Qwen2.5-Math-7B

230K

0

Eurus-2-7B-SFT

150K queries x 4
samples

Qwen2.5-7B-
SimpleRL-Zero
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0

None

8K queries x 8
samples

Evaluate on challenging math benchmarks, AIME, AMC ...
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SimpleRL-Zero — RL from scratch
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Almost all open reproduction of DeepSeek-R1 is based Qwen models, but Qwen
models are kinda special.
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Almost all open reproduction of DeepSeek-R1 is based Qwen models, but Qwen
models are kinda special.

Are the conclusions from these works Qwen-specific?
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Consistent Results
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Main Results

MATH Minerva Olympiad AIME24 AIME24
Model GSMBK 59 Math ]g,enlc)h (Pass@1) (Avg@32) AMC23  Ave.
Llama, DeepSeek and Mistral Models
Mistral-v(0.1-7B 21.2 4.2 4.0 2.4 0.0 0.0 0.0 5.3
— + SimpleRL-Zoo 75.0 15.8 6.6 4.1 0.0 0.2 10.0 18.6
Llama-3.1-8B 39.7 13.6 4.8 3.1 0.0 0.2 2.5 10.6
— + SimpleRL-Zoo 79.2 23.0 9.6 5.3 0.0 0.2 15.0 22.0
DeepSeek-Math-7B 28.4 19.4 5.5 4.7 0.0 0.0 10.0 11.3
— + SimpleRL-Zoo 78.5 39.6 21.0 12.6 3.3 0.6 20.0 29.2
Mistral-Small-24B 78.6 43.6 10.7 11.6 3.3 0.5 17.5 27.6
— + SimpleRL-Zoo 92.0 70.6 36.8 36.6 16.7 13.1 45.0 49.6
Quwen Series Models

Qwen-2.5-0.5B 36.7 15.8 4.8 2.8 0.0 0.3 12.5 12.1
— + SimpleRL-Zoo 49.5 34.4 10.3 8.9 0.0 0.7 22.5 20.9
Qwen-2.5-1.5B 55.7 29.6 6.6 6.5 0.0 0.1 12.5 18.5
— + SimpleRL-Zoo 74 .4 59.0 20.2 21.0 6.7 4.2 35.0 36.1
Qwen-2.5-7B 88.2 64.6 25.7 30.1 3.3 0.3 30.0 40.3
— + SimpleRL-Zoo 91.7 78.2 38.6 40.4 20.0 15.6 62.5 55.2
Qwen-2.5-Math-7B 65.5 63.6 12.5 25.8 13.3 8.6 42.5 37.2
— + SimpleRL-Zoo 90.2 80.2 37.5 39.0 40.0 24.0 70.0 59.5
Qwen-2.5-14B 91.6 65.4 24.3 33.5 6.7 3.4 37.5 43.2
— + SimpleRL-Zoo 94 .4 80.2 40.4 449 23.3 14.2 57.6 56.8
Qwen-2.5-32B 92.9 68.6 27.9 31.1 10.0 4.5 45.0 45.9
— + SimpleRL-Zoo 95.9 82.4 42.6 46.4 36.7 27.2 67.5 61.9

11
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RL Generalizes

Model

IFEVAL
strict-prompt

MMLU
Stem

MMLU GPQA Avg.

Llama, DeepSeek and Mistral Models

Mistral-v0.1-7B 13.5 26.1 28.0 23.2 22.7
— + SimpleRL-Zoo 21.8 28.1 34.6 30.3 28.7
Llama-3.1-8B 16.1 27.1 28.7 22.7 23.6
— + SimpleRL-Zoo 25.1 40.7 445 20.2 32.6
DeepSeek-Math-7B 11.5 21.6 22.7 19.2 18.7
— + SimpleRL-Zoo 16.3 47 4 45.5 27.3 34.1
Mistral-Small-24B 17 .4 30.9 31.7 20.2 25.0
— + SimpleRL-Zoo 23.5 73.9 78.8 45.0 55.3
Quwen Series Models
Qwen-2.5-0.5B 9.6 23.2 249 24.8 20.6
— + SimpleRL-Zoo 14.4 32.1 34.6 26.3 26.8
Qwen-2.5-1.5B 15.2 33.1 35.4 24.8 27.1
— + SimpleRL-Zoo 20.3 42.1 45.2 28.8 34.1
Qwen-2.5-7B 21.3 39.8 38.6 23.7 30.8
— + SimpleRL-Zoo 25.9 49.6 47.0 29.8 38.1
Qwen-2.5-Math-7B 14.1 40.6 38.0 27.8 30.1
— + SimpleRL-Zoo 17.0 55.6 56.6 354 41.1
Qwen-2.5-14B 22.9 59.8 63.5 24.8 42.7
— + SimpleRL-Zoo 294 76.3 79.1 50.0 58.7
Qwen-2.5-32B 24.6 60.7 62.7 38.9 46.7
— + SimpleRL-Zoo 31.2 79.0 82.5 49.5 60.6
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Cognitive Behavior
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Response length is just a superficial metric, it does not directly reflect “aha moment”. We
should focus more on the true metric — We use GPT-40 to judge the cognitive behaviors [1]
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Format Reward is Not Always a Good Thing
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Applying format reward limits exploration in the initial stage and hurts
particularly for weaker base models
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Data Difficulty, not too hard, not too easy
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|s Cold-Start Always a Good Thing for RL?

Revisit the pretraining -> short CoT SFT -> RL recipe
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|s Cold-Start Always a Good Thing for RL?

Revisit the pretraining -> short CoT SFT -> RL recipe Why RLfails in the past?
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The worse it gets when we perform more SFT before RL
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MATH Minerva

Olympiad AIME24
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|s Cold-Start Always a Good Thing for RL?

Revisit the pretraining -> short CoT SFT -> RL recipe Why RLfails in the past?

Init Model GSMSK 500 Math Bench (pass@1) AMC23 Avg.
0 Step 92.0 70.6 36.8 36.6 16.7 45.0 49.6
10 Step 93.0 69.4 39.7 32.3 10.4 441 48.2
20 Step 92.6 65.2 34.2 30.7 6.7 38.4 44.6

200 Step 90.3 59.0 31.6 23.3 2.1 26.9 38.9
1000 Step 88.9 48.8 27.6 20.7 2.5 18.1 34.4
2000 Step 89.8 49.0 23.2 18.1 0.8 20.3 33.5
4000 Step 87.7 52.0 23.5 17.2 2.1 21.6 34.0

Mistral-Small-24B, OpenHermes-2.5 SFT -> RL

The worse it gets when we perform more SFT before RL
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Thank You!
Q&A
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