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Weighted Local Variance-Based Edge Detection and
Its Application to Vascular Segmentation in

Magnetic Resonance Angiography
Max W. K. Law* and Albert C. S. Chung

Abstract—Accurate detection of vessel boundaries is particu-
larly important for a precise extraction of vasculatures in magnetic
resonance angiography (MRA). In this paper, we propose the use
of weighted local variance (WLV)-based edge detection scheme
for vessel boundary detection in MRA. The proposed method is
robust against changes of intensity contrast of edges and capable
of giving high detection responses on low contrast edges. These ro-
bustness and capabilities are essential for detecting the boundaries
of vessels in low contrast regions of images, which can contain
intensity inhomogeneity, such as bias field, interferences induced
from other tissues, or fluctuation of the speed related vessel inten-
sity. The performance of the WLV-based edge detection scheme
is studied and shown to be able to return strong and consistent
detection responses on low contrast edges in the experiments.
The proposed edge detection scheme can be embedded naturally
in the active contour models for vascular segmentation. The
WLV-based vascular segmentation method is tested using MRA
image volumes. It is experimentally shown that the WLV-based
edge detection approach can achieve high-quality segmentation of
vasculatures in MRA images.

Index Terms—Edge detection, magnetic resonance angiography
(MRA), segmentation, vessels, weighted local variance.

I. INTRODUCTION

DETECTING and extracting blood vessels in magnetic res-
onance angiography (MRA) are critical in reconstructing

3-D vascular models and, thus, essential for clinical assessment
of vasculatures. Precise extraction of vessels requires accurate
edge detection techniques. To extract blood vessels in the
magnetic resonance angiograms, image gradient magnitude is
widely used for observing the intensity differences between
vessels and background regions. For instance, Malladi et al.
[17] proposed to extract vessels by halting contours at posi-
tions where the values of are large. Caselles et al.
[6] proposed and employed the geodesic active contour to
extract blood vessels using a minimal distance curve based
on the image gradient magnitude . McInerney and
Terzopoulos introduced T-Snake [19], which was based on
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image gradient magnitude, and used the Laplacian operation to
discover boundaries for tissue extraction in medical images.

Along the same research line, not only gradient magnitude,
but also gradient direction has been used as feature for the ex-
traction of vessels. Xiang et al. proposed an elastic interaction
model [29], [30]. The main concept is to locate vessel bound-
aries by minimizing an energy term associated with a magnetic
field calculated from image gradient. Vasilevskiy and Siddiqi in-
troduced [25] the flux maximizing geometric flows. The vessel
boundaries were selected according to the zero-crossing bound-
aries of the magnetic flux, which was computed from image
gradient.

Vessel boundaries can also be detected with the help of
structural information in addition to the image gradient.
Lorigo et al. presented the CURVES algorithm [14], [15],
which extended the gradient magnitude-based geodesic active
contour method [6] using the arbitrary codimension framework
[1]. The CURVES algorithm contained a heuristic factor. By
adjusting this factor, the algorithm can enhance the detection
and segmentation of tubular structures. Yan and Kassim also
improved the geodesic active contour method [6] by employing
capillary effects for detection of thin vessel boundaries [31],
[32].

On the other hand, the Hessian matrix-based structural infor-
mation is also useful in the detection of vessel boundaries. As
mentioned in a review by Sato et al. [22], the eigenvalues of
the Hessian matrix can provide valuable information about the
shape and local structures of a boundary. Frangi et al. introduced
the term “vesselness” [9] as a measurement of tubular struc-
tures by observing the ratio of eigenvalues of the Hessian matrix.
Bullitt et al. [4] presented a work that found the vessel center-
lines first and then located the vessel boundaries according to
the eigenvalue ratio of the Hessian matrix. Descoteaux et al. [8]
employed the vesselness measure [9] to detect the boundaries
of tubular structures and incorporated it in [25] to perform seg-
mentation. Westin et al. [27] utilized the Hessian matrix to de-
tect the boundaries of plane or tubular structures and the Hessian
matrix-based boundary information was complemented with the
codimension two segmentation method [15].

In the aforementioned approaches [4], [8], [9], [22], [27],
the structural information of the Hessian matrix is quantified
by the relation of eigenvalues along different principle direc-
tions of the Hessian matrix. Different from the gradient, which
utilizes the first derivatives of an image, the Hessian matrix is
based on the second derivatives of images to compute the cur-
vatures of boundaries. The curvature in the normal direction of
the boundaries of vessels, which are mainly in tubular shape,
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should be much larger than the curvatures in other principle di-
rections. Compared with the image gradient, which is general
and has responses independent of the shape and local structures
of boundaries, the Hessian matrix can distinguish between types
of boundaries (e.g., tubes, planes, blob surfaces, or noise) so that
the Hessian matrix-based techniques can be tailored to the target
tubular structures.

For some nontubular vasculatures such as junctions or ending
points, they can induce high curvature values along more than
one principle directions. This can possibly lead to inaccurate
detection of vessel boundaries using the Hessian matrix-based
methods. On the other hand, although the image gradient is
more general in handling structures with different shapes, due
to the presence of intensity inhomogeneity such as bias field,
overlapping between vessels and other tissues or the speed
related vessel intensity, the intensity difference between vessels
and background regions are not consistent but are varying. The
boundaries of the low contrast vessels cannot provide large
values of the gradient term for the methods based on
image gradient to detect those vessel boundaries.

In this paper, we propose a general edge detection approach
based on weighted local variances (WLVs), which quantify
intensity similarity on both sides of an edge for edge detection.
The WLV-based method is robust against changes of intensity
contrast between vessels and image background regions, and
is able to return strong and consistent edge responses on the
boundaries of low contrast vessels. Different from the Hessian
matrix-based techniques, which analyze the shape and local
structures of boundaries for detection of tubular vascular struc-
tures, the proposed WLV-based scheme is a general technique
that returns high detection responses on low contrast edges
disregarding the shape and local structures of boundaries.

Using the edge detection results of WLV-based method,
which include the edge strength and the edge normal direction,
blood vessels are extracted by the flux maximizing geometric
flows [25]. In the experiments, the edge strength and the edge
normal direction computed by the proposed method are studied
using two synthetic volumes. The WLV-based vascular segmen-
tation method is validated and compared using a time-of-flight
(TOF) MRA and three phase contrast (PC) MRA image vol-
umes. It is experimentally shown that the WLV-based method
is capable of giving high and consistent edge strength in low
contrast boundaries and the active contour-based segmentation
using WLV is able to handle low contrast vessels.

The rest of this paper is organized as follows. The rela-
tionship between edge detection and WLV is presented in
Section II-A. The analysis of the properties of the WLV is given
in Section II-B. In Sections II-C and II-D, the implementation
details of the WLV-based edge detection scheme are shown.
Section II-E elaborates the procedures for the extraction of ves-
sels based on edge detection results of the WLV-based method.
We study the performance of the WLV-based edge detection
scheme using two synthetic image volumes in Section III-A.
The segmentation results of the proposed method obtained from
four clinical cases are presented and compared in Section III-B.
In Section IV, the discussion of the proposed method and
the future direction of this research are provided. Finally, we
conclude this paper in Section V.

II. METHODOLOGY

A. Edge Detection and Weighted Local Variance (WLV)

In this section, we introduce the use of WLV for extracting
edge information, including edge normal orientation and edge
strength. The WLV is a general edge detection technique, which
considers the voxel intensity homogeneity within local regions.
To extract edge information based on the WLV, we first consider
the directional derivative of a Gaussian function. The directional
derivative of a Gaussian function along a direction at a
position in 2-D is given by

and in 3-D

(1)

where and are the unit vectors, which are perpendicular to
each other and orthogonal to , mathematically, .
These filters are sensitive to an edge having normal direction
aligned with . The value of determines the scale of an edge
detectable by the filter, while the value of specifies the size
of the filters in directions orthogonal to the derivative direction.
In the case that is an anisotropic Gaussian func-
tion, which is dependent on the orientation ; when ,
the above equations represent the directional derivatives of an
isotropic Gaussian function, which is similar to the filter pro-
posed in [5].

The goal of the WLV is to quantify voxel intensity homo-
geneity locally based on the directional derivatives of a Gaussian
function. To achieve this, we first split into two halves

(2)

These two filters are then normalized to be sum-to-one, for

(3)

Using these normalized filters, the value of WLV is calculated.
Broadly speaking, variance is a measure to estimate the sparse-
ness of a set of variables. Similarly, based on the normalized fil-
ters, around the position , the WLV evaluates the intensity ho-
mogeneity within two local regions separated by an edge having
normal direction aligned with . These two local regions are as-
sociated with the nonzero entries of and . Hence,



1226 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 9, SEPTEMBER 2007

Fig. 1. The plots of the values of WLV (second column), WLV (third column), andmin( WLV ; WLV ) (forth column) against
different values of � obtained from horizontal edges having different levels of intensity contrast, a corner, and two edges with different values of curvature.

the WLVs for both split filters are defined as

(4)

where represents the intensity at , and and are
the weighted intensity averages of their corresponding filters,
i.e., .

The WLVs, , and , are weighted sums
of squared intensity differences between the intensities of
the neighboring voxels and their corresponding
weighted intensity averages, and , respec-
tively. As such, the variances aim to evaluate the intensity
homogeneity in two local regions separated by an edge. To
illustrate the idea, we use five examples consisting of hor-
izontal edges having different levels of intensity contrast,
a corner and two edges with different values of curvature.
This is shown in Fig. 1. The figure shows the values of

and with various orientations,
. It demonstrates

how WLV varies with the orientation of detection . As
shown in Fig. 1, for all the five examples, the variances vary
as changes and attain small values when the corresponding
filters, or along , do not cross the edges. It is
observed that the value of
is small when is approaching the edge normal orientation. A
small WLV value implies that the voxel intensities are similar
in the two local regions on two different sides of an edge.

Therefore, we define a confidence value for finding an edge
having normal orientation , as

(5)

where the epsilon avoids singularity when either or both
and are zero. The value of this

constant is in our implementation. On one hand, the
denominator of (5), based on the WLVs for evaluating intensity
similarity between both sides of an edge, should be small when
an edge is likely to be found. On the other hand, the numerator
measuring the intensity change across an edge should be large if
an edge is detected. Therefore, a high confidence value implies
the presence of an edge having normal orientation .

B. Properties

In the first and second rows of Fig. 1, we show two horizontal
edges. The former has intensity values 1 and 0 and the latter
with lower contrast has intensity values 0.9 and 0.6, which give
smaller intensity difference across the edge. Comparing the
variances obtained from the high contrast edge (the top row of
Fig. 1) and the low contrast edge (the second row of Fig. 1), the
variances are generally smaller in the case of the lower contrast
edge. Since the values of both terms,
and , are reduced for low
contrast edges, the return value of (5) is not affected signifi-
cantly by the change of intensity contrast. This concept can be
mathematically illustrated by considering two arbitrary image
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patches, and , which have different levels of intensity con-
trast and brightness but are related by .
The terms and are constants representing the differences in
intensity contrast and brightness, respectively. The numerator
of the confidence value in (5) for the image patch, and , are
related as

(6)

Moreover, for the denominator of the confidence value in (5),
we evaluate the WLVs (4) for the image patches, and , for

(7)

Therefore, according to (5), the confidence value of the image
patch is given as

(8)

The brightness term is eliminated and the contrast term is
approximately canceled for the calculation of confidence value
defined in (5), except that there is a small constant .

With regard to the confidence value defined in (5), the nu-
merator (i.e., the intensity difference term) and the denominator
(i.e., the WLV terms) measure, respectively, the intensity differ-
ence across an edge and intensity similarity between two local
regions separated by the edge. Both the intensity difference and
the value of WLV are altered according to the contrast term
and this leads to the cancellation of the contrast term in (8). In
practice, in the presence of a low contrast edge [i.e., is small in
(6)–(8)], the intensity similarity is high (i.e., the values of WLVs
are small), which can compensate the reduced intensity change
across low contrast edge. It enables the confidence value in (5)
to retain in high level for low contrast edges.

C. Computing Edge Normal Orientation and Edge Strength

In the previous section, we introduce a confidence value in
(5) based on the WLV for edge detection. In this section, we
further elaborate the procedures to obtain edge strength and
edge normal orientation using WLV-based confidence values.
The WLV-based edge detection method is named WLV-EDGE
hereafter to distinguish it from the calculation of WLVs in (4).

Both the edge strength and the edge normal orientation
of WLV-EDGE are quantified by calculating the confi-
dence values in a set of discretized orientations. The set
of discrete orientations is denoted as a set of unit vectors

Fig. 2. (a) An example of 24 discrete 2-D orientation samples for calculation
of confidence values. (b) An example of 281 discrete 3-D orientation samples
for calculation of confidence values.

. is the th discrete orientation
sample (see Fig. 2 for the typical sets of 2-D and 3-D orien-
tations). Based on (5), the confidence value obtained along
the orientation is denoted as . It is noticed that the
orientation samples sweep across a semicircle in 2-D or the
surface of a hemisphere in 3-D instead of a complete circle or
sphere due to the fact that the confidence value is conjugate,
i.e., .

Although it is straightforward to estimate the edge normal ori-
entation using the orientation associated with the largest confi-
dence value, it is possible that multiple orientation samples give
the maximum confidence value, which can be problematic in de-
termining the edge normal orientation in this situation. There-
fore, the edge normal orientation is obtained according to the
confidence values computed in different discrete orientations.
It is achieved by considering the confidence values as a set of
points

(9)

Each voxel has its own point set to represent confidence
values. The point set for each voxel is considered independently.
The idea is that an orientation having a large output of
is likely to be the edge normal orientation. Thus, the orienta-
tion having a large value of is represented as a point

located away from the origin in the Euclidean space.
Using this representation, the edge normal direction is estimated
by finding an orientation such that the points are mostly span-
ning away. Such edge normal orientation is found using the first
principle direction of the point set. This is accomplished by per-
forming eigendecomposition on a matrix associated with the
points

(10)

where is the expected value.
Three eigenvectors , and corresponding to

three eigenvalues , and are obtained, respec-
tively, where . Using the first prin-
ciple direction, either one of the directions or rep-
resents the edge normal orientation of the voxel . The final de-
cision is based on the sign of the sum of confidence value sam-
ples projected along , which is formulated as

(11)
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Meanwhile, the edge strength is computed as

(12)

The calculation of the edge strength in the above equation is the
norm of the matrix in (10). Since the entries of this ma-

trix are based on the confidence values, the edge strength
calculated from the above equation inherits the robustness of the
confidence values against different edge contrasts [see (8) and
the discussion in Section II-B]. Therefore, the estimated edge
strength can retain a high value despite low contrast edges.

It should be pointed out that the computations of and
are based on the values of WLV, which depend on the

shape of the filters and , as described in (4). The shape
of the filters and are controlled by two parameters
and [see (1)–(3)]. Here, we here briefly describe the influ-
ences of these two parameters and the criteria for setting their
values.

For the parameter , it specifies the WLV detection range in
a direction perpendicular to an edge that has to be detected. It
designates the minimum width of the vessels, which boundaries
can be detected by WLV-EDGE. It is because, for those vessels
with diameter smaller than or close to , the effective range
of the filters and used by WLV in all orientations is
longer than the vessel width. Then, the detection range of either
one of the filters encloses the entire width of the target vessel
and, consequently, both the voxels of the background region and
the target vessel are included inside the detection range. The
values of WLV are then boosted significantly even though the
filters are properly aligned with the edge orientation. As such,
for detecting boundary of vessels with diameter smaller than or
close to , WLV cannot provide reliable edge information and,
thus, WLV-EDGE is adversely affected. It is recommended that
the value of is set with the consideration of the width of the
narrowest vessels. For example, the value of can be set slightly
smaller than 1-voxel-length in order to help detect the 1-voxel-
width vessels.

For the parameter , it determines the WLV detection range
along the orientation parallel to the target edge. The value of

is suggested to be similar to the value of , given that the
value of is properly assigned. Otherwise, if the value of is
too large, even though and are aligned with the vessel
edge orientation, they can inevitably include background voxels
outside the target vessel located in the tangential directions of
the edge. Furthermore, it is recommended that should be
at least equal to the longest length of a voxel even if has a
value smaller than the longest length of the voxel, so that the
detection range of WLV can include enough voxel samples to
provide a reliable measurement for estimating WLV-EDGE. In
our experiments presented in Section III, the parameters and

for the clinical cases were selected according to the criteria
described above.

D. Implementation

The estimations of edge strength and edge normal direction
require probing the confidence value in a set of discrete orien-
tations. It is a computation demanding process as it repeatedly

calculates the confidence value for each voxel in different orien-
tations. To speed up the proposed method, in our implementa-
tion, the calculation of the confidence value (5) is performed in
the frequency domain. First, for the denominator of the (5), the
WLVs as stated in (4) are rewritten in the form of convolution,
for

(13)

similarly, for the terms appeared in the above equation and
in the numerator of (5)

(14)

Then, the convolution is computed as the multiplication in the
frequency domain using the fast Fourier transform algorithm.
The running time of calculation of WLVs in a single orienta-
tion is reduced significantly from to for an
image with voxels.

On the other hand, it is always beneficial to have a larger
number of orientation samples for WLV-EDGE. However, an
excessive use of orientation samples can increase the running
time of WLV-EDGE without remarkable enhancement of
accuracy. We suggest that the number of orientation samples
should be associated with the size of filtering window since
a large filtering window extends the effective range of the
filtering process, which requires a finer angular resolution.

In 2-D cases, for a semicircle having diameter equal to the di-
mension of the filtering window, we can have at least one equally
spaced orientation sample per unit length for this semicircle. In
our implementation, there are 15 voxels in each dimension for
the filtering window. The circumference of the corresponding
semicircle having diameter 15 is . In order to have at
least one equally spaced orientation sample per unit length, we
should have samples, i.e., 24 samples. An example of
the 24 orientation samples in 2-D is shown in Fig. 2(a).

For 3-D cases, the orientation samples are organized in a
grid fashion along the longitudinal and the latitudinal direc-
tions. There are 24 angularly equally spaced latitudinal levels
for the same reason as in 2-D cases. At the latitudinal level of

, there are 24 orientation samples along the longitudinal
direction with the aforementioned reason. In each of other lati-
tudinal levels, the number of samples is reduced according to the
circumference of semicircles in the corresponding latitudinal
levels along the longitudinal direction. As such, there are totally
281 orientation samples, which are roughly equally spaced, as
shown in Fig. 2(b).

E. Segmentation Using Active Contour Model

The edge normal direction and the edge strength computed
in (11) and (12) are the edge information of WLV-EDGE. The
robustness of WLV-EDGE against changes of intensity contrast
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of edges makes it suitable to detect blood vessel boundaries for
active contour-based vascular segmentation.

Due to the nature of vascular images such as the presence
of intensity inhomogeneity like bias field, the presence of other
tissues or fluctuation of the speed related intensity, it is possible
that some vessels have lower intensity contrast than other struc-
tures. These low contrast vessels are difficult to detect in active
contour models. The difficulty of detection is due to the fact
that the boundaries of the low contrast vessels could not exert
enough “forces” to compete with other boundaries. It results in
contour leakages if the contour is attracted by the edges of other
unrelated tissues but not the weak edges of low contrast ves-
sels. On the other hand, it can possibly lead to contours being
halted before reaching the vessel boundaries as those boundaries
cannot attract the contours to the desired position.

Although the formulation of WLV-EDGE is general and not
limited to the detection of vessel boundaries, the edge strength
computed from WLV-EDGE is robust to the changes of in-
tensity contrast of edges. The computed edge strength also re-
tains high edge strength even when the edge contrast is low.
Therefore, the edge information computed from WLV-EDGE
is useful for active contour models to prevent missing of weak
edges.

Using the edge information extracted by WLV-EDGE, we
apply flux maximizing geometric flows FLUX [25] to incor-
porate WLV-EDGE for the extraction of blood vessels. There
are two reasons that we choose FLUX to complement with
WLV-EDGE (it is mentioned as WLV-FLUX hereafter). First,
some approaches such as geodesic active contour [6], [12] or
geometric snake model [33] do not utilize edge directional infor-
mation for segmentation. Thus, they are not suitable for the eval-
uation of the proposed method, which returns both edge strength
and edge normal direction. In addition, the proposed technique
is independent of tubular structures and does not make use of
shape and local structural information. Although there are other
methods that employ both edge strength and edge normal direc-
tion such as CURVES [14], [15] or capillary active contour [31],
[32], these methods aim at detecting tubular structures, which
is not the focus of the proposed method. On the other hand,
FLUX utilizes both edge strength and edge normal orientation
and is not limited to tubular structure. Furthermore, FLUX is
the state-of-the-art, which has been used to generate reference
segmented vessels for BrainWeb [2]. Therefore, FLUX is em-
ployed and incorporated with WLV-EDGE to perform segmen-
tation of blood vessels.

In FLUX, the motion of a closed active contour parameter-
ized by is given by

(15)

where is the normal direction of the contour and
is a vector field associated with the gradient. In prac-

tice, as described in [25], the divergence of is calculated using
a multiscale method and discretized as

(16)

where is the outward normal of the th sample point on the
bounding sphere having radius and centered at is the total
number of samples taken and is a set of discrete radii, which
specifies the radii of targeted vessels. In our implementation,

was set to 562 (in a sphere fashion), which is the double
of (in a hemisphere fashion) for WLV-EDGE in
(10) and (11). In [25], Vasilevskiy and Siddiqi have proposed to
obtain the vector field as the gradient vector field of an image

smoothed by an isotropic Gaussian filter , i.e.,

(17)

To formulate WLV-FLUX, the edge strength (12) and the
edge normal orientation (11) extracted by WLV-EDGE are in-
corperated in FLUX. As such, the vector field in (17) is sub-
stituted using a vector field based on the edge detection
results obtained from WLV-EDGE. The vector field is given
by

(18)

where and are the edge strength and the edge normal ori-
entation, respectively, computed from WLV-EDGE in (12) and
(11). As such, (16) becomes

(19)

The zero level of a level set function [21] is utilized to repre-
sent the moving contour . To perform segmentation, the motion
of the level set function is governed by

(20)

where is a function that determines the speed of the
contour evolving in the normal direction, the second term

is the mean curvature of the level set func-
tion, and is a regularization term to specify resultant contour
smoothness. The values of are (16) for FLUX and

(19) for WLV-FLUX.
The discretization scheme and related parameters of (20)

follow the sparse field level set method presented in [28].
The implementation is based on the Insight Segmentation and
Registration ToolKit (ITK) [11]. For those entries of and
in (16) and (19) having noninteger coordinates, the values are
linearly interpolated.

III. EXPERIMENTS

To validate the performance of WLV-EDGE, we have car-
ried out two sets of experiments on both synthetic and clinical
image volumes. The first set of experiments employs three syn-
thetic image volumes with synthetic tubes and tori of various
sizes to analyze the estimation accuracy of the edge strength and
the edge normal direction under the effect of intensity variation
(see Section III-A). The estimation accuracy of WLV-EDGE
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Fig. 3. Single synthetic tube. (a) The 50th slice of the image volume, z = 50. (b) The 12th slice of the image volume, x = 12. (c) From top to bottom: The
intensity profile of the tube along the z-direction with x = 12 and y = 10; The square root of the trace of the structure tensor computed by ST; The GRADIENT
magnitude; The edge strength computed by WLV. (d) Along the z-direction with x = 12, it shows the slices of edge strengths detected by (from top to bottom)
ST; GRADIENT; WLV.

is compared with two edge detection approaches. In the second
set of experiments, using four magnetic resonance angiographic
image volumes, the performance of WLV-FLUX is compared
with FLUX (see Section III-B).

A. Synthetic Image Volumes

In this section, we present the results obtained from the first
experiment, in which a synthetic and numerical image volume
of size 24 24 100 voxels was created. The image volume
contains a synthetic and 3-D tube with the diameter of 7 voxels.
Fig. 3(a) shows one of the image slices ( and axes are also
shown). In the image volume, the intensity values inside the tube
are consistent in the - plane. Although there is no intensity
variation in the - and - directions, the and dimensions
are necessary for creating the surface curvature of a 3-D tube.
Along the -direction with , Fig. 3(b) shows the cross
section of the image volume and that the synthetic tube runs
from the first slice (left) to the last slice (right). The intensity
value is 0 in the background regions and varies along the tube
(i.e., along the axis). The intensity profile along the tube sur-
face ( and ) is plotted in the top row of Fig. 3(c).
This experiment aims to demonstrate the relationship between
the estimated edge strength and the intensity contrast on the tube
surface, and the robustness of the proposed method against in-
tensity change along a tube.

For our approach, the edge strength of WLV-EDGE is
estimated using (12). The estimated edge strength is then
compared with the estimated edge strengths computed from
two other edge detection approaches, structure tensor (ST)
[3] and smoothed image gradient (GRADIENT). For ST,

Fig. 4. Multiple synthetic tubes. (a) The 50th slice of the image volume
(181� 217� 181 voxels) consists of 25 synthetic tubes with radii equal to 2,
3, 4, 5, and 6. (b) An example of the ground truth normal orientations on the
tube surfaces.

the edge strength is defined as the square root of the trace of
the structure tensor. The edge strength of GRADIENT is the
magnitude of the filtering responses of applying the directional
derivatives of a Gaussian function on an image volume, i.e.,

. In the experiments,
for ST, a numerical scheme of central finite difference was
utilized to compute the image derivatives for the entries of the
structure tensor. The image volume was preprocessed with a
Gaussian smoothing filter prior to the calculation of the image
derivatives. The value of used in WLV-EDGE and the scale
parameter of the Gaussian filter used in ST and GRADIENT
were fixed to 2. The window size for the filtering processes of
ST, GRADIENT and WLV-EDGE was 15 15 15 voxels.
Along the -direction with and , the estimated
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Fig. 5. (a) The 50th slice of the bias field A obtained from the Brainweb [7]. (b) The 50th slice of the image volume after applying the bias field model A without
noise. (c) The 50th slice of the image volume after applying the bias field model A and the additive Gaussian noise with the scale parameter equal to 0.05.

Fig. 6. (a) The 50th slice of the bias field B obtained from the Brainweb [7]. (b) The 50th slice of the image volume after applying the bias field model B without
noise. (c) The 50th slice of the image volume after applying the bias field model B and the additive Gaussian noise with the scale parameter equal to 0.05.

Fig. 7. (a) The 50th slice of the bias field C obtained from the Brainweb [7]. (b) The 50th slice of the image volume after applying the bias field model C without
noise. (c) The 50th slice of the image volume after applying the bias field model C and the additive Gaussian noise with the scale parameter equal to 0.05.

edge strengths for all the approaches are plotted along with
the intensity profile, as shown in Fig. 3(c). The corresponding
slices of the edge strengths estimated by the three methods
along the -direction with are shown in Fig. 3(d). For
comparison, the values of the plots and the slices of the edge
strengths were normalized to have maximum value equal to 1.
In the second and third rows in Fig. 3(c), it is observed that
the edge strength profiles of ST and GRADIENT fluctuate
according to the intensity change along the tube. Conversely, as
plotted in the last row of Fig. 3(c), although there are two slight
drops of edge strength computed from WLV-EDGE at the
positions of 40 and 70, WLV-EDGE’s edge strength profile is
relatively flat and consistent along the tube, as compared with
other two methods. These two slight drops of edge strength
were caused by the fact that the estimated confidence values at
these two positions were reduced slightly. It is because, in the
denominator of (5), the values of WLVs are increased at the
positions where the intensity values are varying significantly.

The experimental results show that, as compared with the
edge strength computed from ST and GRADIENT, the esti-

mated edge strength of WLV-EDGE is relatively consistent
given the intensity inhomogeneity along the tube. It is also ob-
served that the edge strengths computed from ST and GRA-
DIENT follow the trend of the intensity profile along the tube.
On the contrary, WLV-EDGE obtains a fairly flat edge strength
profile. It is because the intensity differences between the tube
and background are normalized by WLV in the calculation of
confidence value using (5), as illustrated in (8) and discussed in
Section II-B.

In the second experiment, two synthetic and numerical image
volumes were created and utilized. Both volumes have the size
of 181 217 181 voxels and are shown in Fig. 4(a) and Fig. 8.
This experiment aims to further study the variation of estimated
edge strength and the discrepancy of edge normal orientation
estimated by ST, GRADIENT and WLV-EDGE under the ef-
fect of intensity inhomogeneity. Different from the first experi-
ment, the intensity inhomogeneity of this experiment was spec-
ified according to different bias field models appeared in MR
images [23]. Bias fields are inherent to MR imaging and they
can cause smooth and slow intensity changes within different
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Fig. 8. The third synthetic and numerical volume consists of 18 nonoverlapping tori. The size of each torus is defined by two parameters r and R, as shown in
(d). (a) A top-view of the torus iso-surfaces. (b) An elevation-view of the torus iso-surfaces. (c) A side-view of the torus iso-surfaces. In this subfigure, there are
five layers. The top layer has two tori of r = 6, the next layer has two tori of r = 5; . . ., and the bottom layer has six tori of r = 2. (d) The description of the
setting of a torus. r specifies the shortest distance between the centerline of the torus (denoted as the dashed line inside the torus) and the surface of the torus. R
determines the radius of the torus centerline. n̂ and n̂ are two examples of the ground truth normal orientations of the torus surface. They are pointing outward
from the torus centerline to the surface. Using the convention fr;Rg, the sizes of all tori (in voxel) are f2;12g;f2;24g;f2;36g; f2;48g;f2;60g;f2;72g;
f3;18g;f3;32g;f3;46g; f3;60g;f3;76g;f4;24g; f4;48g;f4;64g;f5;48g; f5;66g;f6;54g, and f6;72g.

regions of an image. This intensity change induced by the bias
field is multiplicative and causes variation of intensity contrast
between vessels and background.

One of these two synthetic and numerical volumes consists of
straight tubes with different radii and the other volume contains
tori with various sizes. In the volume of straight tubes, as shown
in Fig. 4(a), there are a total of 25 circular tubes having radii
equal to 2, 3, 4, 5, and 6 voxels. This image was formed by
first assigning intensity value 1 for the voxels inside the tubes
and 0 for the background regions, and then smoothing using a
Gaussian filter with a scale parameter equal to 1. The smoothing
aims at creating smooth intensity transitions from the interior of
the tubes to the image background. For the volume of tori, as
shown in Fig. 8, there are totally 18 nonoverlapping tori. The
radius [ in Fig. 8(d)] of the torus centerline ranges from 12 to
72 voxels, and the shortest distance [ in Fig. 8(d)] between the
torus surface and the torus centerline ranges from 2 to 6 voxels.
Similar to the straight tube volume, this image was formed by
first assigning intensity value 1 for the voxels inside the tori
and 0 for the background regions, and then smoothing using a

Gaussian filter with a scale parameter equal to 1. These tubes
and tori, with different sizes, are located in different positions
of the images in order to examine how the bias fields affect the
performance of different methods.

In this experiment, the bias fields were applied according to
the bias field model for MR imaging described in the work [23].
In this model, the resultant signal , the original signal ,
the noise induced by the imaging device , and the bias field

at position are related as

(21)

The noise generated by the imaging devices, , was sim-
ulated by an additive Gaussian noise with in order
to mimic the noise level observed in the clinical images.
The standard deviation of the observed background region
intensity in the clinical images was approximately 5% of the
voxel intensity of the brightest vessel. The bias field term
was obtained from the BrainWeb [7], and had three different
models, namely, FIELDA, FIELDB, and FIELDC. All of the
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bias fields had 20% INU. Slices of these bias fields are shown
in the Fig. 5(a), Fig. 6(a), and Fig. 7(a), respectively. The slices
of the synthetic volume after applying the bias fields are shown
in Fig. 5(b) and (c), Fig. 6 (b) and (c), and Fig. 7(b) and (c).

In this experiment, WLV-EDGE is compared with ST and
GRADIENT using the same set of parameters as in the pre-
vious experiment. The comparison of performance is based on
two criteria: (a) the edge strength variation and (b) the edge
normal orientation estimation accuracy. For the first criterion,
the edge strength variation is quantified by evaluating the stan-
dard deviation of edge strengths estimated by different methods
on the tube surfaces. A large value of standard deviation of a
method implies that the method performance can be easily af-
fected by the bias fields. In contrast, a method is robust to the
change of intensity contrast if a small value of standard devi-
ation is observed. Considering different approaches returning
edge strengths in different magnitude scales, for a fair compar-
ison, the edge strengths computed from each method were nor-
malized to have unit mean values. Similar to the previous ex-
periment, the edge strengths of ST, GRADIENT and WLV-
EDGE were calculated using the square root of the trace of
the structure tensor, and
(12), respectively.

For the second criterion, the measurement of estimation ac-
curacy is based on angular discrepancy between the estimated
edge normal orientation and the ground truth normal orientation
of the tube or torus surfaces. The ground truth orientation of the
tube surfaces is defined as the direction pointing outward from
the tube centerline to the tube surface or the torus centerline to
the torus surface. Fig. 4(b) and Fig. 8(d) show the ground truth
normal orientations of the tubes and tori, respectively. The an-
gular discrepancy is measured in radian as

(22)

where and are the unit vectors of the estimated edge normal
direction and the ground truth normal orientation, respectively.
In ST, the surface normal direction is obtained based on the first
principle direction of the structure tensor. The surface normal
direction of GRADIENT is computed using

(23)

For WLV-EDGE, the edge normal direction is computed ac-
cording to (11).

In Tables I and II, we list the standard deviations of the esti-
mated edge strength computed by ST, GRADIENT, and WLV-
EDGE after the bias fields, FIELDA, FIELDB, and FIELDC,
have been applied. Each subcolumn in Table I represents the
results of ST, GRADIENT, and WLV-EDGE with the tubes
having the same radius but at different positions. Also, each sub-
column in Table II represents the results of ST, GRADIENT,
and WLV-EDGE with the tori having the same but with dif-
ferent and at different positions. From the tables, it is observed
that WLV-EDGE consistently gives the smallest standard devi-
ation. This shows that, as compared with ST and GRADIENT,

TABLE I
STANDARD DEVIATIONS OF EDGE STRENGTHS COMPUTED BY DIFFERENT

METHODS AFTER APPLYING DIFFERENT BIAS FIELD MODELS FIELDA,
FIELDB, AND FIELDC ON THE VOLUME SHOWN IN FIG. 4. THE EDGE

STRENGTHS COMPUTED FROM EACH METHOD, ST, GRADIENT, AND

WLV-EDGE, ARE NORMALIZED TO HAVE UNIT MEAN VALUES

TABLE II
STANDARD DEVIATIONS OF EDGE STRENGTHS COMPUTED BY DIFFERENT

METHODS AFTER APPLYING DIFFERENT BIAS FIELD MODELS FIELDA,
FIELDB, AND FIELDC ON THE VOLUME SHOWN IN FIG. 8. THE EDGE

STRENGTHS COMPUTED FROM EACH METHOD, ST, GRADIENT, AND

WLV-EDGE, ARE NORMALIZED TO HAVE UNIT MEAN VALUES

WLV-EDGE is more robust for estimating edge strength in the
presence of intensity variation.

For the edge strength analysis, it is noticed that there is a
relationship between GRADIENT and WLV-EDGE when

(see Appendix A). This relationship also exists in the
above synthetic experiments, in which . As shown
in Appendix A, except the multiplicative constant in (26),
the main difference between WLV-EDGE and GRADIENT
is the denominator of (26), .
Therefore, for the edge strength computed by WLV-EDGE, the
difference of intensity contrast between tubes and background
regions is normalized by this denominator. Thus, different from
GRADIENT, the edge strength computed by WLV-EDGE is
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TABLE III
ANGULAR DISCREPANCIES (IN RADIAN) BETWEEN GROUND TRUTH NORMAL ORIENTATION AND THE EDGE NORMAL ORIENTATION

ESTIMATED BY ST, GRADIENT AND WLV-EDGE ON THE SURFACES OF THE SYNTHETIC TUBES, AS SHOWN IN FIG. 4

TABLE IV
ANGULAR DISCREPANCIES (IN RADIAN) BETWEEN GROUND TRUTH NORMAL ORIENTATION AND THE EDGE NORMAL ORIENTATION

ESTIMATED BY ST, GRADIENT, AND WLV-EDGE ON THE SURFACES OF THE SYNTHETIC TUBES, AS SHOWN IN FIG. 8

robust to intensity inhomogeneity induced by the multiplicative
effect of bias fields. In contrast, ST and GRADIENT are
based on differential operators and can give relatively large
variation of edge strength under the effect of bias fields. For
the analysis of edge normal orientation estimation, as listed in
the WLV-EDGE rows of Tables III and IV for tubes having
different radii, tori having different values of and , and
under the effects of different bias fields, WLV-EDGE produces
slightly smaller discrepancies than ST and GRADIENT.
As a conclusion, WLV-EDGE offers superior robustness
of edge strength estimation against intensity inhomogeneity
without sacrificing the accuracy of edge normal orientation
estimation.

B. Clinical Image Volumes for Segmentation Experiments

We present and compare the segmentation results obtained
from WLV-FLUX and FLUX using four clinical image

volumes, a TOF-MRA image volume (Fig. 9) having the
size of 188 168 39 voxels; and three PC-MRA speed
image volumes (Fig. 12, Fig. 15, and Fig. 18) having the
sizes of 130 286 52 voxels, 67 257 35 voxels, and
104 252 64 voxels, respectively. The third image volume
has voxel size 0.4 mm 0.4 mm 0.8 mm, and for the rest of
image volumes, they have voxel size 0.4 mm 0.4 mm 1.0
mm. All the data sets were acquired using a Philips 3T ACS
Gyroscan MR scanner at the University Hospital of Zurich,
Switzerland. All image volumes are axial brain scans. The
standard TOF-MRA and PC-MRA imaging protocols were
used without contrast agents. Details are as follows. For the
first volume, ms and flip .
For the second volume, ms and flip

. For the third volume, ms and
flip . For the fourth volume, ms
and flip .
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Fig. 9. The MIP images of a TOF-MRA image volume (First row: axial
projection; second row: coronal projection and saggital projection). This
TOF-MRA image volume has dimension 188� 168� 39 voxels and voxel
size 0.4 mm� 0.4 mm� 1.0 mm.

Fig. 10. Segmentation results of WLV-FLUX.

In these four experiments, the set of detection radii for both
FLUX and WLV-FLUX [(16) and (19)] was set to 0.4, 0.8, 1.2,
1.6, 2, and 2.4 mm. Due to the presence of narrow vessels, which
involved a few voxels across the boundaries, the parameters of
FLUX and WLV-FLUX were chosen for the detection of ves-
sels having the width of one voxel. Such parameters included the
scale of the Gaussian smoothing operation for FLUX in (17),
and for WLV-FLUX used in (1). These two parameters were
set to 0.3 mm (slightly smaller than the - plane voxel spacing).
For of WLV-FLUX, the value of 1.0 mm (the slice spacing)
was chosen. It aims to guarantee that the filters used in (2) have
an effective range to cover adequate number of voxels in all di-
rections for (4) and (5).

The smoothness regularization term in (20) was set to 0.05
for WLV-FLUX in order to maintain the contour smoothness.
In FLUX, we observe that this regularization term can neu-
tralize the effect of the evolution speed term in (20) and, hence,
can halt contours at the undesired positions. Since this term is
not necessary to be beneficial for the segmentation results of

FLUX, we present the best results obtained from FLUX using
and .

For these clinical cases, the same set of initial seed points for
WLV-FLUX and FLUX was produced by global thresholding
of each image volume. The thresholds were selected carefully to
ensure that the seed points were located inside the major vessels
to provide proper initial conditions to start the both algorithms,
WLV-FLUX and FLUX. The algorithms were then stopped
when the accumulated per-voxel update of the level set func-
tion was less than after ten iterations.

In the first experiment on TOF-MRA image volume, as shown
in Figs. 9 and 10, based on visual assessment between MIP im-
ages and segmented images, WLV-FLUX selects most of the
vessels from the image volume and its results have no leakage.
Conversely, the segmentation results of FLUX have leakages at
several positions, as shown in Fig. 11(a). The results of FLUX
with regularization parameter are presented because,
when , it encourages a smooth resultant contour and
showed less leakages compared with the results using

for this image volume. However, leakages still occurred at
three positions in a low contrast branch. The leakage positions
of FLUX are pointed at by three arrows in the axial view of
Fig. 11(a) (top-left). In Fig. 11(b) and (c), four slices of these
leakage regions are shown and the positions of leakages are
indicated by arrows. At these positions, contours propagated
through the weak vessel boundaries and this resulted in leak-
ages. The leakages continued to expand and contaminated the
results in other regions. This leads to difficulty in visualizing the
results. Therefore, instead of presenting the final segmentation
results of FLUX, the results shown in Fig. 11 are an intermediate
step that leakages just began. In the axial projection of Fig. 9
(top-left), there is a vessel segment at the bottom-right position
missed by FLUX, as shown in Fig. 11(a). It should be pointed
out that FLUX can discover this segment after a number of itera-
tions of contour evolution. However, such results including this
segment was contaminated by the leaked contours and cannot
be shown here.

The cause of the leakages is that the weak vessel bound-
aries cannot halt the FLUX contour, which can be attracted
by the boundaries of other tissues attached on the vessels. In
WLV-FLUX, the edge strength estimated from WLV-EDGE
retains large values in weak boundaries so that the contour is
able to stop on these weak boundaries and the vasculature is
successfully captured without leakage.

In the second experiment, as shown in Fig. 12, a PC-MRA
image volume was used. The results of FLUX using for
(20) are presented. The use of disables the smoothness
regularization term and encourages contour to evolve into
branches. Even though this regularization term was disabled,
FLUX missed some branches, as shown in Fig. 14(a). The
missing branches are pointed at by arrows in Fig. 14(b) and (c).
Fig. 13 shows that the segmentation results of WLV-FLUX are
satisfactory, and the low intensity branches are included in the
segmentation results.

For the third experiment, another PC-MRA image volume
was used, as shown in Fig. 15. Similar to the previous exper-
iment, the results of FLUX using for (20) are presented.
It is observed that FLUX can only locate the major vessels,
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Fig. 11. (a) Segmentation results of FLUX. (b) The 14th and 15th axial slices. (c) The 11th and 12th axial slices of the TOF-MRA image volume and the contours
are corresponding to the segmentation results, as shown in (a). The white arrows in (a) are corresponding to the positions pointed at by the white arrows in (b) and
(c) where leakages occur.

Fig. 12. The MIP images of a PC-MRA speed image volume (First row: axial
projection; second row: coronal projection and saggital projection). This image
volume has dimension 130� 286� 52 voxels and voxel size 0.4 mm� 0.4
mm� 1.0 mm.

as shown in Fig. 17(a). The missing branches are pointed at
by arrows in Fig. 17(b) and (c). In contrast, better segmenta-
tion results are obtained using WLV-FLUX where low contrast
branches are captured, as shown in Fig. 16.

In Fig. 14(b) and (c) and Fig. 17(b) and (c), the image slices
show the white arrows pointing at the low contrast vessels
missed by FLUX in the second and third experiments. As
shown in these figures, the contours are halted inside the
branches rather than the boundaries of the branches. The main
reason is that the boundaries of the low contrast branches do not
provide gradient magnitude strong enough to attract contours
for propagation. For WLV-FLUX, the contours can evolve
into the low contrast vessels because WLV-EDGE is capable
of returning large and consistent edge strength on those low
contrast boundaries.

Finally, a PC-MRA image volume, as shown in Fig. 18, was
utilized in the forth segmentation experiment. The results of

Fig. 13. Segmentation results of WLV-FLUX.

FLUX using for (20) are presented. When , it
reduces the chance of leakages by encouraging smooth resultant
contours. In this case, both FLUX and WLV-FLUX are able
to capture the vessels, as shown in Figs. 19 and 20. Nonethe-
less, WLV-FLUX gives better segmentation results in the low
contrast branches compared with FLUX because, for FLUX,
leakages occurred in the low contrast branches indicated by the
arrows in Figs. 20 and 21. The low contrast vessel boundaries
could not halt the contours accurately, which were attracted by
the noise near the vessel boundaries. Unlike the first experi-
ment, which shows an intermediate evolution step for FLUX
(see Fig. 11), the results shown in Fig. 20 are the final segmen-
tation results obtained using FLUX as the leakages in this ex-
periment were stopped before they contaminated the results in
other regions. Compared with FLUX, WLV-FLUX is able to
halt the contours at the low contrast vessel boundaries.

We have measured the computation times required for seg-
menting blood vessels using WLV-FLUX and FLUX in the
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Fig. 14. Segmentation results of FLUX. (b) The 26th and 27th axial slices. (c) The 40th and 41st axial slices of the PC-MRA image volume and the contours are
corresponding to the segmentation results, as shown in (a). The white arrows in (b) and (c) indicate the low contrast vessels, which are missed by FLUX.

Fig. 15. The MIP images of a PC-MRA speed image volume (First row: axial
projection; second row: coronal projection and saggital projection). This image
volume has dimension 67� 257� 35 voxels and voxel size 0.4 mm� 0.4
mm� 0.8 mm.

above four clinical image volumes. For WLV-FLUX, the mea-
sured time includes the computation of WLV-EDGE and esti-
mation of in (20). For FLUX, the measured time includes the
computation of GRADIENT and estimation of in (20). The
implementations of both WLV-FLUX and FLUX were based
on programs written using Microsoft Visual C++ in Windows
XP 32-bit environment and run on a Pentium IV 3.2 GHz PC
with 1 GB RAM. As the image volumes have different sizes,
rather than the average running time, the individual running
times are reported in this paper. For WLV-FLUX, the running
times for the first, second, third, and forth experiments were
3711, 6449, 1924, and 5634 s, respectively. For FLUX, the run-
ning times were 3500, 5737, 1725, and 5441 s, respectively. It is
observed that the running time for WLV-FLUX is only slightly
longer (around 9%) than FLUX.

Fig. 16. Segmentation results of WLV-FLUX.

IV. DISCUSSION

A. Edge Detectors

The main contribution of this paper is proposing the use of
WLV to quantify the intensity similarity between two sides
of an edge. For boundary detection, this intensity similarity
measure is complemented with the intensity difference across
an edge to formulate a new WLV-based edge detection method,
namely, WLV-EDGE. It is shown to be robust to the change
of intensity contrast of edges and that it can give high and
consistent edge strength for low contrast boundaries. As such,
this method is ideal for handling low contrast vessel boundaries.
Since the proposed method considers intensity similarity of
local regions between both sides of an edge, it is different
from other differential operators for edge detection, such as
Sobel filters, Roberts filters, Prewitt filters, filters used by
Canny edge detection scheme [5], -Space Representation
[10], quadrature filters [13], difference of a Gaussian [16],
Laplacian of Gaussian [18], as well as the Hessian matrix.
Their detection principles rely entirely on the intensity change
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Fig. 17. Segmentation results of FLUX. (b) The 25th and 26th axial slices. (c) The 29th and 30th axial slices of the PC-MRA image volume and
the contours are corresponding to the segmentation results, as shown in (a). The white arrows in (b) and (c) indicate the low contrast vessels,
which are missed by FLUX.

Fig. 18. The MIP images of a PC-MRA speed image volume (First row:
axial projection; second row: coronal projection and saggital projection).
This image volume has dimension 104� 252� 64 voxels and voxel size
0.4 mm� 0.4 mm� 1.0 mm.

across boundary, and therefore, they can only return small
edge strength responses at low contrast edges. Our method, on
the other hand, not only relies on the intensity change across
boundary but also takes into account the intensity homogeneity
in two local regions separated by an edge.

B. Edge Detection and Segmentation

In our experiments, the segmentation results of WLV-FLUX
are compared against FLUX. The major distinction between
FLUX and WLV-FLUX is that they use different edge infor-
mation. FLUX utilizes the smoothed image gradient (17) and
WLV-FLUX employs WLV-EDGE (18). The mathematical
comparison between the smoothed image gradient and the con-
fidence value [as defined in (5)] of WLV-EDGE is provided in

Fig. 19. Segmentation results of WLV-FLUX

.

Fig. 20. Segmentation results of FLUX.
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Fig. 21. Segmentation results of FLUX. (a) The 17th and 18th coronal slices. (b) The 25th and 26th coronal slices of the PC-MRA image volume and the contours
are corresponding to the segmentation results, as shown in Fig. 20. The white arrows in (a) and (b) indicate the low contrast vessels, which are missed by FLUX.

Appendix–A, where the confidence value is written as

(24)

where is a constant. In the
above equation, the confidence value of WLV-EDGE is
composed of three parts: a constant ; the numerator, which
is based on the anisotropically or isotropically

smoothed image gradient along direction ; and the denom-
inator, which involves WLVs. Analogous to the discussion in
Section II-B, the denominator, which is governed by the values
of WLV, enables the confidence value of WLV-EDGE to: (a)
be more robust against the change of intensity contrast and (b)
have strong and consistent edge strength responses on low con-
trast edges. Therefore, WLV-EDGE enables WLV-FLUX to
capture the low contrast branches in the experiments but such
branches are not discovered by FLUX.

It is worth mentioning that smoothing image prior to the cal-
culation of image gradient as suggested in the gradient-based
approaches [6], [12], [14], [15], [17], [19], [20], [24], [25], [26],
[27], [29], [30], [31], [32], [33] i.e., ,
yields a connection to the filters used in Canny edge detector
[5]. This is because they are grounded on applying directional
derivatives of a Gaussian function along the , , and direc-
tions in an image. As such, the calculation of image gradient
can be viewed as a procedure of edge detection prior to per-
forming segmentation. To segment vessels in low contrast re-
gions with the presence of intensity inhomogeneity, these seg-
mentation methods need an edge detector, which is able to de-
tect low contrast edges. Therefore, WLV-EDGE, which returns
high and consistent edge strength for low contrast edges, is suit-
able for segmentation of vessels in low contrast regions.

C. Future Extension—Shape and Structural Information

In the current stage, the proposed method does not analyze
the shape and local structures of boundaries. Currently, the
focus of this paper is to propose and validate a framework for
boundary detection based on: (a) intensity similarity among
regions on both sides of an edge and (b) intensity difference
across the edge, without considering the shape and local struc-
tures of boundaries. Utilizing shape information or structural
information along with WLV-EDGE to provide more advanced
features for vessel boundary detection is the future direction

of this research. For instance, the eigenvalues along different
principle directions of the matrix stated in (10) can provide
structural information of boundaries; the proposed method can
be combined with the Hessian matrix (details are provided in
Appendix B) for the analysis of the shape and local structures
of boundaries; using the minimum curvature instead of the
mean curvature in (20), i.e., using the codimension two level
set approach [1], can enhance the accuracy of WLV-FLUX in
the extraction of vessels in tubular shape.

V. CONCLUSION

In summary, the robustness of WLV-EDGE against the
change of intensity contrast of edges, and the capability of re-
turning high and consistent edge strength on low contrast edges
are shown to be beneficial for the segmentation of vasculatures
in low contrast regions. Such robustness of WLV-EDGE is
validated in experiments using three synthetic volumes. More-
over, in the presence of intensity inhomogeneity, such as bias
field, the presence of other tissues or reduced speed related
vessel intensity for narrow vessels in PC-MRA, WLV-FLUX
makes use of the edge information of WLV-EDGE and is less
likely than FLUX to have leakages or discontinuities in the four
clinical segmentation experiments. It is experimentally shown
that the WLV-based edge detection approach can achieve high
quality segmentation of vasculatures in MRA.

APPENDIX

A. Relationship Between Confidence Value and the Smoothed
Image Gradient

The term of intensity average difference in (5) can be written
as

since the directional derivative of a Gaussian function is
antisymmetric, we define , i.e.,

[see (1)–(3)]

(25)
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(28)

where represents the convolution operator. Therefore, the in-
tensity average difference of the numerator in (5) is equal to the
results of convolving the directional derivative of a Gaussian
function with a multiplicative constant

thus, the confidence value, as defined in (5), can be written in
terms of the smoothed image gradient if

(26)

B. Incorporating WLV-EDGE in the Hessian Matrix

It is straightforward to utilize the Hessian matrix to comple-
ment with WLV-EDGE. It can be achieved by rewriting the
Hessian matrix as follows:

(27)

and then replacing the first derivative operation of the Hessian
matrix with the edge detection results of WLV-EDGE in (18),
i.e., see (28) shown at top of the page. As such, the robustness
of WLV-EDGE against changes of intensity contrast can be
inherited in the Hessian matrix.
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