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Abstract

Nearest neighbor searching is an important geometric subproblem in vector quanti-
zation. Existing studies have shown that the difficulty of solving this problem efficiently
grows rapidly with dimension. Indeed, existing approaches on unstructured codebooks
in dimension 16 are little better than brute-force search. We show that if one is willing
to relax the requirement of finding the true nearest neighbor then dramatic improve-
ments in running time are possible, with negligible degradation in the quality of the
result. We present an empirical study of three nearest neighbor algorithms on a number
of data distributions, and in dimensions varying from 8 to 16. The first algorithm is
the standard k-d tree algorithm which has been enhanced to use incremental distance
calculation, the second is a further improvement that orders search by the proximity of
the k-d cell to the query point, and the third is based on a simple greedy search in a
structure called a neighborhood graph.
Key words: Nearest neighbor searching, closest-point queries, data compression, vec-
tor quantization, k-d trees.

1 Introduction

The nearest neighbor problem is to find the point closest to a query point among a set
of n points in d-dimensional space. We assume that the distances are measured in the
Euclidean metric. Finding the nearest neighbor is a problem of significant importance in
many applications. One important application is vector quantization, a technique used
in the compression of speech and images [15]. Samples taken from a signal are blocked
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into vectors of length d. Based on a training set of vectors, a set of codevectors is first
precomputed. The technique then encodes each new vector by the index of its nearest
neighbor among the codevectors.

The rate r of a vector quantizer is the number of bits used to encode a sample and it is
related to n, the number of codevectors, by n = 2rd. For fixed rate, the performance of vector
quantization improves as dimension increases but, unfortunately, the number of codevectors
grows exponentially with dimension. There have been two major approaches to deal with
this increase in complexity. The first approach is to impose structure on the codebook, so
that the nearest neighbor or an approximation to it can be found rapidly [6, 11, 17, 20, 22].
Some deterioration in performance occurs because the imposition of structure results in a
non-optimal codebook. The second approach is to preprocess the unstructured codebook
so that the complexity of nearest neighbor searching is reduced [8, 9, 14, 21, 28]. Although
methods based on preprocessing an unstructured codebook appear to work well in low
dimensions, their complexity increases so rapidly with dimension that their running time is
little better than brute-force linear search in moderately large dimensions [23].

In this paper we show that if one is willing to relax the requirement of finding the true
nearest neighbor, it is possible to achieve significant improvements in running time and at
only a very small loss in the performance of the vector quantizer. Recently this approach
has been studied by us and some others from a theoretical perspective [1, 2, 10, 7]. In this
work, however, we are more concerned with practical aspects of the search algorithms.

We present three algorithms for nearest neighbor searching:

(1) the standard k-d tree search algorithm [14, 23], which has been enhanced to use
incremental distance calculation,

(2) a further improvement, which we call priority k-d tree search, which visits the cells of
the search tree in increasing order of distance from the query point, and

(3) a neighborhood graph search algorithm [1] in which a directed graph is constructed
for the point set and edges join neighboring points.

The following elements characterize our k-d tree implementation in comparison with
Sproull [23] and Friedman, et al. [14]:

(1) As in Sproull but unlike Friedman, et al., we do not store the bounds array at each
node of the tree.

(2) As in Friedman, et al. but unlike Sproull, we compute exact distances to the cells of
the k-d tree.

(3) We introduce an incremental distance calculation technique. This allows us to main-
tain exact distances to cells as we search the k-d tree in constant time independent of
dimension.

We performed numerous experiments on these algorithms on point sets from various
distributions, and in dimensions ranging from 8 to 16. We studied the running times of
these algorithms measured in various ways (number of points visited, number of floating
point operations). We also measured the performance of these algorithms in various ways
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(average and maximum relative error, signal to noise ratio, and probability of failing to
find the true nearest neighbor). Our studies show that, for many distributions in high
dimensions, the latter two algorithms provide a dramatic reduction in running time over
standard approaches with very little loss in performance.

2 Standard k-d Tree Search with Incremental Distance Cal-

culation

Bentley introduced the k-d tree as a generalization of the binary search tree in higher
dimensions [4]. For our purposes, a rectangle in real d dimensional space, Rd, is the product
of d closed intervals on the coordinate axes. Each internal node of the k-d tree is associated
with a rectangle and a hyperplane orthogonal to one of the coordinate axis, which splits the
rectangle into two parts. These two parts are then associated with the two child nodes in
the tree. The process of partitioning space continues until the number of data points in the
rectangle falls below some given threshold. The rectangles associated with the leaf nodes
of the tree are called buckets, and they define a subdivision of space into rectangles. Data
points are only stored in the leaf nodes of the tree, not in the internal nodes.

Friedman, Bentley and Finkel [14] gave an algorithm to find the nearest neighbor using
optimized k-d trees that takes O(log n) time in the expected case, under certain assumptions
on the distribution of data and query points. The internal nodes of the optimized k-d tree
split the set of data points lying in the corresponding rectangle into two subsets of equal
size, along the dimension in which the data points have maximum spread. Intuitively, the
query algorithm works by first descending the tree to find the data points lying in the bucket
that contains the query point. Then it recursively examines surrounding buckets if they
intersect the ball B centered at the query point and having radius equal to the distance
between the query point and the closest data point visited so far.

To determine whether a given subtree contains a bucket that should be visited, each
internal node can store a bounds array, which contains the lower and upper limits of the
corresponding rectangle. Sproull [23] showed that there was no need to store the bounds
array explicitly, and gave an alternative version to save space and speed up the search.
Sproull’s version examines buckets if they intersect the smallest hypercube enclosing ball
B. Although this simplifies comparisons, this results in a significantly higher number of
nodes being visited in higher dimensions. This is a consequence of the large difference in
the volume of a ball and the volume of its minimum enclosing hypercube in these dimensions.

We refine Sproull’s implementation by examining buckets only if they actually intersect
ball B. We call this the distance refinement. This provides a very significant savings in
higher dimensions. For example, given 65,536 points in 16 dimensional space from an un-
correlated Gaussian source, the numbers of points visited with and without this refinement
are 14,500 and 50,000, respectively. These averages were computed over 25,000 query points
also from the same source.

The distance refinement is easy to carry out when the partitioning hyperplanes are
orthogonal, by exploiting the very simple relation that exists between the distance of the
query point from the rectangle corresponding to a node, and the distance of the query
point from the rectangles corresponding to the two children of the node. However, we do

3



not know how to apply this refinement in the case of partitioning hyperplanes with general
orientations. The case of partitioning hyperplanes with general orientation has been studied
by Sproull [23] who found that in high dimensions (e.g. 16) the added generality led to
speed-ups of over two-fold for correlated data sets, compared to the case of orthogonal
partitioning hyperplanes. It would be interesting to develop a scheme that allows flexibility
in the choice of the orientation of the partioning hyperplane while still retaining the ease of
carrying out the distance refinement.

For our experiments we used optimized k-d trees with one data point per bucket and we
measured distances in the Euclidean norm. We shall assume this to be the case in the rest
of the paper. The code we present, however, can be easily modified to work with more than
one point per bucket and with other Minkowski metrics. We borrow Bentley’s terminology
on k-d trees and modify his code for nearest neighbor searching (that includes Sproull’s
suggestions) [5].

Using the C++ programming language [24], a node in a k-d tree is represented by the
following structure.

struct kd_node {
int leaf_node; // 1 if leaf, 0 if internal node
int cut_dim; // cutting dimension
float cut_val; // cutting value
kd_node *lo_child, *hi_child; // low and high children
int pt; // data point index

}

The Boolean variable leaf node is 1 for leaf nodes and 0 for internal nodes. For internal
nodes, cut dim gives the dimension, 0 through d − 1, being partitioned, and cut val gives
the location of the partitioning hyperplane along this dimension. Also, for internal nodes,
lo child and hi child are pointers to the children of this node. A data point is placed in
lo child if its coordinate along the cutting dimension is lower than the cutting value, and
in hi child if it is greater. Points lying exactly on the cutting hyperplane can be placed in
either child. For leaf nodes, pt indicates the point associated with this bucket, and is given
by an index into a global array of data points points[n].

The algorithm works as follows. At each leaf node visited we compute the squared
distance between the query point and the data point in the bucket and update the nearest
neighbor if this is the closest point seen so far. At each internal node visited we first
recursively search the subtree whose corresponding rectangle is closer to the query point.
Later, we search the farther subtree if the distance between the query point and the closest
point visited so far exceeds the distance between the query point and the corresponding
rectangle. See [14] for more details.

We can avoid computing square roots by working with squared distances instead. We
facilitate the computation of the squared distance between the query point and the rectangle
through a method called incremental distance calculation. Given a query point q and the
rectangle Ru associated with a node u, for 0 ≤ i ≤ d − 1, define the ith offset, denoted
offu[i], to be the distance from q to Ru along this axis. More precisely, letting I denote
the orthogonal projection of Ru onto the ith coordinate axis and letting q[i] denote the ith
coordinate of q, offu[i] is defined to be the difference between q[i] and its nearest point on
I. The difference is negative if the ith coordinate of q is less than the lowest point of I,
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zero if it overlaps I, and positive if it is greater than the highest point in I. Clearly, the
squared distance, denoted rdu, between q and the rectangle is just the sums of the squares
of these offsets.
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Figure 1: Incremental Distance Calculation Technique

When the algorithm descends the k-d tree from a node u to its children lo and hi, it
is possible to compute the distance from q to the two children rectangles Rlo and Rhi in
constant time (independent of dimension). Let cd denote the cutting dimension and let cv
denote the cutting value. For concreteness, assume that Rlo is closer to q than Rhi is. The
other case is handled symmetrically. (See Figure 1.) Because Rlo is the closer rectangle
to q, its distance and offsets from q are the same as the enclosing rectangle Ru. For Rhi,
observe that for each dimension i 6= cd, offhi[i] = offu[i], since these coordinates are not
affected by the current cut. Since this is the further of the two children, it follows that along
the cutting dimension, the offset between q and Rhi is the distance from q to the cutting
value, that is, offhi[cd] = q[cd] − cv. To compute rdhi, we simply subtract the square of the
existing offset offu[cd] and add the square of the new offset, yielding

rdhi = rdu − offu[cd]2 + (q[cd] − cv)2.

We can now present the entire function kd standard. It is given a query point and
the root of a k-d tree, and returns the squared distance to the nearest neighbor of a given
query point. (It is a trivial matter to modify the code to return the actual nearest neighbor
point.) After some initialization it invokes the recursive procedure rkd which performs the
search. For each node u visited, the parameter rd contains rdu. Note that this parameter is
passed by value, so changes made to rd do not alter the value of the variable in the calling
procedure. The global array off[d] contains the contents of offu. The elements of this
array are modified individually as we traverse the tree.

The constant d is the dimension of the space, n is the number of data points, and
HUGE is a number larger than any squared distance, which is used to initialize the nearest
neighbor distance before beginning the search. (In many applications, nearest neighbor
queries demonstrate a large amount of coherence, and so a more practical choice is the
distance between the query point and the previous point returned from the nearest neighbor
algorithm.) The function dist2 returns the squared distance between two points.

typedef float Point[d]; // point data type
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Point points[n]; // data point storage
Point q; // query point
float off[d]; // array of offsets
float nn_dist; // best squared distance so far

float kd_standard(
Point qq, // query point
kd_node* root) // root of kd tree

{
q = qq; // save query point
nn_dist = HUGE; // initial distance
for (int i = 0; i < d; i++) // initialize offsets

off[i] = 0.0;
rkd(root, 0.0); // search the tree
return nn_dist;

}

void rkd( // recursive search procedure
kd_node* u, // current node
float rd) // squared dist to this rect

{
if (u->leaf_node) { // at a leaf bucket

nn_dist = min(nn_dist, // use this point if closer
dist2(q, points[u->pt]));

}
else { // internal node

int cd = u->cut_dim; // cutting dimension
float old_off = off[cd]; // save old offset
float new_off = q[cd] - u->cut_val; // offset to further child
if (new_off < 0) { // left of cutting plane

rkd(u->lo_child, rd); // search closer subtree first
rd += - old_off*old_off // distance to further child

+ new_off*new_off;
if (rd < nn_dist) { // close enough to consider?

off[cd] = new_off; // update offset
rkd(u->hi_child, rd); // search further subtree
off[cd] = old_off; // restore offset

}
}
else { // q is above cutting plane

...analogous with lo_child and hi_child interchanged...
}

}
}

3 Priority k-d Tree Search

Our experience suggests that the standard k-d tree algorithm usually comes across the
nearest neighbor well before the search terminates. One may view the extra search as the
price to pay to guarantee that the nearest neighbor has been found. If we are willing to
sacrifice this guarantee, then the complexity can be reduced by interrupting the search
before it terminates (say, after a fixed number of points have been visited). In this case, it
is desirable to order the search so that buckets more likely to contain the nearest neighbor
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are visited early on. This suggests a variant of the standard k-d tree algorithm that visits
the buckets of the k-d tree in increasing order of distance from the query point.
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Figure 2: Priority k-d tree algorithm

The algorithm maintains a priority queue of subtrees, where the priority of a subtree is
inversely related to the distance between the query point and the rectangle corresponding
to the subtree. Initially, we insert the root of the k-d tree into the priority queue. Then
we repeatedly carry out the following procedure. First, we extract the node v from the
queue with the highest priority, that is, closest to the query point. (See Figure 2.) Then we
descend the subtree rooted at this node in search of the leaf bucket that is closest to the query
point. As we descend the subtree, for each node u that we visit we insert u’s sibling into the
priority queue. These nodes will be considered at a later time in the search. (For example,
in Figure 2, nodes u1, u2, and u3 are inserted into the queue). The algorithm terminates
when the priority queue is empty (meaning that the entire tree has been searched), or
sooner, if the distance from the query point to the rectangle corresponding to the highest
priority subtree is greater than the distance to the closest data point.

To compute the time required to visit each new bucket, note first that for the binomial
heap implementation of the priority queue, it takes amortized O(1) time to insert a subtree
and O(log n) time to extract the subtree with highest priority [18, 26]. The depth of the
balanced k-d tree is O(log n); this bounds the time taken to descend the subtree as also the
number of subtrees inserted into the queue at each iteration. Thus the time needed to visit
each new bucket is O(log n).

For our experiments, we implemented the priority queue as a binary heap [12, 27].
Theoretically, insertions may take O(log n) time with binary heaps, but we observed that
they took only O(1) time on average. This suggests that the greater complexity of binomial
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heaps is not warranted for our application.
The following lemma establishes the correctness of the algorithm.

Lemma 3.1 Priority search visits the buckets in the order of increasing distance from the

query point.

Proof:

For the sake of simplicity, we assume that no two buckets are equidistant from the query
point. Let v1, v2, . . . , vk be the subtrees in the priority queue, just before we extract the
subtree with highest priority from the queue. We claim that the following invariant holds
(here L(t) denotes the set of leaves in subtree t):

L(vi) ∩ L(vj) = ∅ for 1 ≤ i < j ≤ k and

⋃
1≤i≤k L(vi) = Set of leaves not yet visited

Clearly, the invariant holds at the beginning of the first iteration, when the root is the
only subtree in the queue and no leaf has yet been visited. To establish the induction step
assume that the invariant holds before some iteration. Among leaves not yet visited, let b
be the one that is closest to q. It follows from the invariant that there must be exactly one
subtree vj in the priority queue such that b ∈ L(vj). It is easy to see that vj has the highest
priority and is removed from the queue. As we descend the subtree vj to visit b, we insert
m subtrees (m ≥ 0), u1, u2, . . . , um, which satisfy

L(ui) ∩ L(uj) = ∅ for 1 ≤ i < j ≤ m and

⋃
1≤i≤m L(ui) = L(vj) − {b}

From this it is a straightforward exercise to show that the invariant continues to hold after
this iteration. ⊓⊔

The search algorithm is outlined below. Here too we employ the incremental distance
calculation technique which we discussed for the standard k-d tree algorithm. In order
to make this technique work, we stored two additional pieces of information in each node
of the tree, the lower and upper limits of the node’s rectangle along the node’s cutting
dimension (denoted low val and high val respectively). We let Q denote the priority
queue. The procedure Q.Insert inserts a node into the queue at the specified distance, and
Q.Extr Min extracts the node with the minimum distance from the queue, and returns the
node and its distance from the query point through its arguments.

float kd_priority(
Point q, // query point
kd_node* root) // root of kd tree

{
Priority_Queue Q;
float nn_dist = HUGE; // initial distance
kd_node* u;
float rd; // distance to rectangle
Q.Insert(root, 0.0); // start with root of tree
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while (Q.NotEmpty()) { // repeat until queue is empty
Q.Extr_Min(u, rd); // closest node to query point
if (rd >= nn_dist) // further from nearest so far

break;
while (!u->leaf_node) { // descend until leaf found

int cd = u->cut_dim; // cutting dimension
float old_off, new_rd;
float new_off = q[cd] - u->cut_val; // offset to further child
if (new_off < 0) { // q is below cutting plane

old_off = q[cd] - u->low_val; // compute offset
if (old_off > 0) // overlaps interval

old_off = 0;
new_rd = rd - old_off*old_off // distance to further child

+ new_off*new_off;
Q.Insert(u->hi_child, new_rd); // enqueue hi_child for later
u = u->lo_child; // visit lo_child next

}
else { // q is above cutting plane

...analogous with lo_child and hi_child interchanged...
}

}
nn_dist = min(nn_dist, // leaf - use point if closer

dist2(points[u->pt], q));
}
return nn_dist;

}

4 Neighborhood Graphs

We give here a brief overview of an approach to nearest neighbor searching based on the
notion of neighborhood graphs, which was introduced in [1]. A neighborhood graph is a
connected graph (directed or undirected) whose vertices are the set of data points, such that
two points are adjacent to one another if they satisfy some local criterion. For example,
the Delaunay triangulation is an undirected neighborhood graph in which two points are
adjacent if there is a sphere passing through the two points that contains no other point in
its interior.

Given a neighborhood graph we can search for the nearest neighbor of a query point
using a greedy strategy. We start the search with the data point p from the bucket of
the k-d tree containing the query point. We repeatedly carry out the following steps. We
expand the point p, by which we mean that we compute the distance to the query point for
all those neighbors of point p that have not yet been expanded. Among such neighbors, we
expand the point that is closest to the query point. We continue to expand points in this
manner until we arrive at a point all of whose neighbors have already been expanded (the
search is said to have reached an impasse), or the number of points visited by the algorithm
exceeds some prespecified cut-off value. Then we end the search and output the closest data
point visited.

The neighborhood graph we use for nearest neighbor searching is quite similar to the
relative neighborhood graph (RNG) [19, 25]. In the RNG, two points p and r are adjacent if
there is no point that is simultaneously closer to both points than they are to one another.
The modified graph we build is equivalent to a graph presented by Jaromczyk and Kowaluk
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[16] which was used as an intermediate result in their construction of the RNG. It is based
on the following pruning rule. For each point p in the data set, we consider the remaining
points in increasing order of distance from p. We remove the closest point x from this
sequence, create a directed edge from p to x, and remove from further consideration all
points s such that dist(p, s) > dist(x, s). This process is repeated until all points are
pruned. Figure 3 shows an example of this process applied to a point p in three stages; at
each stage, a new edge is directed from p to one of its neighbors. The three neighbors of
point p in the neighborhood graph are x, y and z. This variant, called the RNG∗, can be
computed in O(n2) time, where n is the number of points. Details on the degree of the
RNG∗ and intuitive reasons for its appeal in nearest neighbor searching can be found in [1].

x

y

x

y

pp
z

p x p

Figure 3: Construction of the RNG∗ neighborhood graph.

Although the worse case behavior of the greedy algorithm can be quite bad, our exper-
imental studies indicate that in high dimensions the search quickly zeroes in to find the
nearest neighbor and only rarely reaches an impasse before finding the nearest neighbor.

5 Empirical Analysis

We ran a series of experiments to compare the performance of these three algorithms: k-d
standard, k-d priority, and RNG∗-search. Both the k-d tree algorithms were enhanced to
use incremental distance calculation. Before running the experiments, we optimized many
aspects of the code. We mention two of these optimizations. First, the well-known partial

distance optimization was implemented for all three algorithms: as we compute the squared
distance between the query point and the data point by summing the contribution from
each dimension, we exit the loop when the accumulated sum of the squares becomes too
large [3, 23]. This optimization diminished the total number of floating point operations
at only a small increase in the number of comparisons. Second, for the RNG∗-search, we
saved the results of the partial distance computations so that they could be used again if
the same point was encountered on expanding several different points.

We studied how the performance of the vector quantizer changes as a function of the
complexity of the algorithms. We focused on a rate of one bit per sample in dimensions
ranging from 8 to 16. For each of the three algorithms the search is interrupted if the
number of points visited by the algorithm reaches a certain threshold (cut-off value), and
the closest point visited until then is taken as the output of the algorithm. By varying this
cut-off value the complexity of each algorithm can be changed. We used 25,000 query points
for each experiment and recorded the following for each query point at each cut-off (here
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de is the distance between the query point and the data point output by the algorithm and
dn is the distance between the query point and its nearest neighbor):

• The number of data points visited by the algorithm. A data point is said to be visited

if the algorithm accesses its coordinates. Each data point is counted at most once in
this total. If the algorithm terminates before the cut-off is reached, then this quantity
is the same as the number of points visited until termination, otherwise it is the cut-off
value.

• The number of floating point operations per sample. In this we included all floating
point additions, subtractions, multiplications and comparisons (except comparisons
with zero) performed by the algorithm, not just those involved in computing distances
between points. The total number of floating point operations is divided by the
dimension to get the per sample average.

• Whether the true nearest neighbor has already been found.

• The error-factor which is defined as (de − dn)/dn.

• The distortion per sample which is defined as (de)
2/d, where d is the dimension.

Three measures of performance were computed at each cut-off: (1) the signal-to-noise
ratio (SNR), (2) the average error-factor, and (3) the miss probability (probability of failing
to find the nearest neighbor). The SNR is defined as 10 log10(V/D), where V is the variance
of the samples and D is the average distortion per sample. All these averages are taken
over the entire set of query points. Of these measures of performance, SNR is the most
significant one for vector quantization. The other two measures are here principally to aid
in a better empirical understanding of the algorithms.

Two measures of complexity were computed at each cut-off: (1) the average number
of points visited and (2) the average number of floating point operations per sample. The
number of points visited is a useful quantity to study, but since the algorithms have different
overheads, the number of floating point operations is more directly related to the complexity
of the algorithms. Our studies indicate that the number of floating point operations is a
reasonable measure of the search time, and can be used to compare the algorithms.

We conducted experiments using the Gaussian and the Laplacian sources. Both uncor-
related and correlated sources were used. For the correlated sources, we used 0.9 as the
correlation coefficient. All the sources had zero mean and unit variance.

In dimension 16 we used codebooks consisting of 65,536 codevectors generated by the
k-d tree based Equitz algorithm [13]. We sped up Equitz algorithm in several ways and, for
uncorrelated sources, instead of building balanced k-d trees as is customary, we partitioned
the rectangles corresponding to the internal nodes such that a random number of points
were contained in each part. This led to codebooks of better quality. The size of the training
set used was 32 times the size of the codebook. For our experiments the training set and
test set were different.

Figure 4 (a)–(d) show the variation of the SNR with the average number of floating point
operations per sample, for the uncorrelated Gaussian, uncorrelated Laplacian, correlated
Gaussian, and correlated Laplacian sources, respectively. For a more careful study of the
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Figure 4: SNR vs. Average floating point operations per sample: (a) Uncorrelated Gaussian
Source (b) Uncorrelated Laplacian Source (c) Correlated Gaussian Source (d) Correlated
Laplacian Source.
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DISTRIBUTION SNR-MAX KD-STANDARD KD-PRIORITY RNG∗

Uncorrelated Gaussian 5.11 12000 1100 850
Uncorrelated Laplacian 5.36 18500 4500 850

Correlated Gaussian 11.94 2500 550 300
Correlated Laplacian 15.51 650 400 200

Table 1: Floating point operations per sample to achieve SNR within 0.1 dB of SNR-MAX.

DISTRIBUTION SNR-MAX KD-STANDARD KD-PRIORITY RNG∗

Uncorrelated Gaussian 5.11 19000 5000 2000
Uncorrelated Laplacian 5.36 24000 15000 2000

Correlated Gaussian 11.94 3700 1700 600
Correlated Laplacian 15.51 800 950 450

Table 2: Floating point operations per sample to achieve SNR within 0.01 dB of SNR-MAX.

high performance region (say, less than 0.1 dB deterioration from the performance obtained
by full exhaustive search, SNR-MAX), we make two tables. Table 1 compares the three
algorithms in terms of the average number of floating point operations per sample needed
to achieve SNR within 0.1 dB of SNR-MAX. Table 2 shows the same needed to achieve
SNR within 0.01 dB of SNR-MAX.

We summarize the key observations for dimension 16 in the high performance region:

• RNG∗-search is the fastest of the three algorithms followed by the priority k-d tree
algorithm. Both these algorithms often achieve very significant speed-ups, sometimes
by a factor of over 10, compared to the standard k-d tree algorithm.

• The complexity of RNG∗-search ranges from being just a little better than the priority
k-d tree algorithm to being much better, sometimes achieving speed-ups by a factor
of over 5.

• All three algorithms achieve significant speed-ups over full exhaustive search, with
negligible loss in performance (less than 0.01 dB). RNG∗-search achieves massive
speed-ups by a factor of over 100 compared to full exhaustive search. Even the stan-
dard k-d tree algorithm achieves speed-ups by a factor of over 8 compared to full
exhaustive search.

• The two k-d tree algorithms require similar storage, while the RNG∗-search may
require about twice as much (depending on the source and the implementation). Re-
garding dimension as fixed and ignoring the space needed for the data points, the
storage requirements of all three algorithms is O(n). The constant of proportion-
ality for the k-d tree algorithm is largely independent of dimension, while for the
RNG∗-search it shows a moderately exponential growth. For the uniform distribu-
tion, empirical studies show that the degree of RNG∗ grows roughly as 2.90(1.24k) in
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the asymptotic case, and as 1.46(1.20k) when the number of points grow as 2k [1]. The
cost of building the RNG∗ is O(n2) while that of building the k-d tree is O(n log n).
This is an enormous difference because the number of points is so large.
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Figure 5: Uncorrelated Gaussian Source: (a) Average error-factor vs. Average points vis-
ited: (b) Probability of missing the nearest neighbor vs. Average points visited.

For the uncorrelated Gaussian source, Figure 5 (a) and (b) show how the average error-
factor and the probability of failing to find the nearest neighbor vary with the average
number of points visited. These graphs show that both these quantities fall much more
rapidly for the RNG∗-search than for the priority k-d tree algorithm. This suggests that
the RNG∗-search would enjoy very significant advantage over the priority k-d tree algorithm
in any application where these quantities are critical.
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Figure 6: Average number of points visited to achieve average error-factor 0.001: Uncorre-
lated Gaussian Source

We also conducted experiments for the uncorrelated Gaussian source in several other
dimensions ranging from 8 to 16, using random codebooks. In each case we used a rate
of 1 bit per sample. In all these dimensions we found that the priority k-d tree algorithm
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and the RNG∗-search are much faster than the standard k-d tree algorithm. In dimensions
below 11 we found the priority k-d tree algorithm to be faster than the RNG∗-search, while
in dimensions above 11 the RNG∗-search is faster in the high performance region. This
can be seen in Figure 6 which shows, in various dimensions, the average number of points
visited by the three algorithms to achieve an average error-factor of 0.001.

6 Conclusions

We have shown how to improve the k-d tree implementation using incremental distance
calculation. This technique employed in conjunction with both standard and priority search
greatly reduces their query time and storage requirements.

We have presented and compared three algorithms for nearest neighbor searching in
high dimensions, within the framework of vector quantization. Two of the algorithms give
drastic reductions in complexity with negligible deterioration in performance. There are
several interesting open questions. One is to develop a theoretical understanding of the
relationship between the performance and the complexity of the algorithms and establish
their efficiency. Another question is whether the cost of building the RNG∗ can be reduced,
or whether we can devise some other neighborhood graph that can be built more quickly,
while still giving the same reduction in search complexity.
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