
Accounting for Boundary Effects in Nearest Neighbor

Searching∗

Sunil Arya† David M. Mount‡ Onuttom Narayan §

Abstract

Given n data points in d-dimensional space, nearest neighbor searching involves

determining the nearest of these data points to a given query point. Most average-

case analyses of nearest neighbor searching algorithms are made under the simplifying

assumption that d is fixed and that n is so large relative to d that boundary effects can

be ignored. This means that for any query point the statistical distribution of the data

points surrounding it is independent of the location of the query point. However, in

many applications of nearest neighbor searching (such as data compression by vector

quantization) this assumption is not met, since the number of data points n grows

roughly as 2d. Largely for this reason, the actual performances of many nearest neighbor

algorithms tend to be much better than their theoretical analyses would suggest. We

present evidence of why this is the case. We provide an accurate analysis of the number

of cells visited in nearest neighbor searching by the bucketing and k-d tree algorithms.

We assume md points uniformly distributed in dimension d, where m is a fixed integer

≥ 2. Further, we assume that distances are measured in the L∞ metric. Our analysis

is tight in the limit as d approaches infinity. Empirical evidence is presented showing

that the analysis applies even in low dimensions.

∗A preliminary version of this paper appeared in the Proc. of the 11th Annual ACM Symp. on Compu-

tational Geometry, 1995, pp. 336–344.
†Department of Computer Science, The Hong Kong University of Science and Technology, Clear Water

Bay, Kowloon, Hong Kong. Part of this research was conducted while the author was visiting the Max-

Planck-Institut für Informatik, Saarbrücken, Germany. The author was supported by the ESPRIT Basic

Research Actions Program, under contract No. 7141 (project ALCOM II).
‡Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland,

College Park, Maryland. The support of the National Science Foundation under grant CCR–9310705 is

gratefully acknowledged.
§Physics Department, Harvard University, Cambridge, MA 02138 and AT&T Bell Laboratories, 600

Mountain Avenue, Murray Hill, NJ 07974. Supported in part by the Society of Fellows at Harvard University.

1

1 Introduction

Finding nearest neighbors is a fundamental problem in computational geometry with ap-

plications to many areas such as pattern recognition, data compression, and statistics. The

nearest neighbor problem is: given a set of n points P in d-dimensional space, and given a

query point q ∈ Rd, find the point of P that minimizes the distance to q.

The problem of preprocessing a set of n points P so that nearest neighbor queries

can be answered efficiently has been extensively studied. Nearest neighbor searching can

be performed quite efficiently in relatively low dimensions. However, as the dimension d

increases, in the worst case, either the space or time complexities increase dramatically.

There are many important applications of this problem in moderate dimensions (e.g. in

the range from 10 to 20), where best worst-case algorithms are of little practical value.

For dimensions in this range, the most practical approaches for nearest neighbor searching

are based on simple spatial subdivisions, having poor worst-case performance, but relatively

good average-case performance. (Recently it has been suggested that another way to achieve

good performance in practice is to compute approximate rather than exact nearest neighbors

[2, 4, 7].)

A very simple algorithm that works well for uniformly distributed data is the bucketing

algorithm (sometimes called Elias’s algorithm [15]). Rivest [13] presented an analysis of

the performance of this algorithm for points uniformly distributed on the vertices of a d-

dimensional hypercube, and later Cleary analyzed the case of general uniformly distributed

point sets [8]. A practical and more flexible approach for nearest neighbor searching in high

dimensions is based on the k-d tree, as introduced by Bentley [5] and applied to the nearest

neighbor problem by Friedman, Bentley and Finkel [9].

The analyses of these algorithms presented in the literature [8, 9] show that their running

times contain a constant factor, which grows on the order of 2d, assuming the L∞ metric.

The analysis in [8] assumes that the points are uniformly distributed while the analysis in

[9] assumes that the points are randomly chosen from some smooth underlying distribution.

The dimension d is regarded as a fixed constant, and the analysis is asymptotic as n tends

to infinity. This greatly simplifies the analysis because for any query point (assuming it

is chosen from the same distribution as the data points), the statistical distribution of the

data points surrounding it can be assumed to be essentially independent of the location of

the query point.

However, there are many important applications where the number of data points n and

dimension d are related. One such application is vector quantization, a technique used in the

compression of speech and images [11]. Samples taken from a signal are blocked into vectors

of length d (typically after applying some smoothing transforms). Based on a training set

of vectors, a set of codevectors is first precomputed. The technique then encodes each new

2

vector by the index of its nearest neighbor among the codevectors. The rate r of a vector

quantizer is the number of bits used to encode a sample, and it is related to n, the number

of codevectors, by n = 2rd. For the common case of r = 1, it follows that n = 2d.

For applications in which d and n are related, the theoretical analyses may signifi-

cantly overestimate the running time of the algorithm. In fact, our interest in this problem

stemmed from our observations of the empirical running times for the k-d tree and re-

lated algorithms (even for more general point distributions). These algorithms regularly

run faster than their predicted performance in higher dimensions. Intuitively, the reason is

that when a query point lies close to the periphery of the point set, a significant amount

of the data structure that would otherwise need to be searched for the nearest neighbor

may be pruned away. Because exponential constant factors in dimension are one of the

main obstacles to extending nearest neighbor searching to much higher dimensions (where

many more important applications reside), it is of important practical interest to accurately

understand the nature of these factors.

In this paper we provide a theoretical explanation of the phenomenon of these boundary

effects in nearest neighbor searching. We analyze the bucketing algorithm for the uniform

distribution, taking into account the effects of the boundary. Our results also apply to

the k-d tree algorithm [8]. Because of the complexity of the analysis, we assume that

points are uniformly distributed in a d-dimensional unit hypercube, and that distances are

measured using the L∞ metric. Our main result is that given 2d points in d dimensions, as

d tends to infinity, the expected number of cells visited by the bucketing algorithm grows

as (0.90 . . .)(1.56594 . . .)d. Empirical evidence indicates that this is remarkably close, even

for small d. This is significantly smaller than the growth rate of 2d predicted by previous

analyses which ignore boundary effects. (For example, a difference of roughly a factor 7.8

for dimension 8, and a factor of 55 in dimension 16.) We also generalize these results to the

case of md points in d dimensions, where m is an integer ≥ 2.

The remainder of the paper is organized as follows. In the next section we present some

background on the k-d tree and bucketing algorithms. We present two different analyses on

the number of cells visited by the bucketing algorithm. The model is described in Section 3

and analyzed in Section 4 and 5. Both the analyses are done for the limiting case of large

dimensions. Section 4 provides a simple analysis which yields a fairly good upper bound.

This analysis, however, relies on a technical assumption which we call the monotonicity

conjecture. In Section 5 we present a sophisticated analysis which yields a tight bound.

This does not rely on the monotonicity conjecture. We also present a “numerical proof” of

the monotonicity conjecture in Section 5, supporting the validity of the simpler analysis of

Section 4. In Section 6 we discuss extensions and generalizations of this refined analysis.

Finally, in Section 7 we provide the results of our empirical analysis.

3

2 Preliminaries

One of the the most practical and simple approaches for nearest neighbor searching in high

dimensions is based on the k-d tree. Bentley [5] introduced the k-d tree as a generalization of

the binary search tree in high dimensions. Each internal node of the k-d tree is associated

with a hyperrectangle and a hyperplane orthogonal to one of the coordinate axis, which

splits the hyperrectangle into two parts. These two parts are then associated with the two

child nodes. The process of partitioning space continues until the number of data points

in the hyperrectangle falls below some given threshold. Given a suitable splitting rule, the

k-d tree induces a partitioning of space into cells whose sizes adapt to the local density of

the data points; the partitioning is finer where the density is higher.

Friedman, Bentley and Finkel [9] gave an algorithm to find the nearest neighbor using

optimized k-d trees. The internal nodes of the optimized k-d tree split the set of data points

lying in the corresponding hyperrectangle into two equal parts, along the dimension in which

the data points have maximum spread. The algorithm works by first descending the tree

to find the data points lying in the cell that contains the query point. Then it examines

surrounding cells if they overlap the ball B centered at the query point and having radius

equal to the distance between the query point and the closest data point visited so far.

Efficient implementations of the k-d tree algorithm have been given by Sproull [14] and

Arya and Mount [3].

Friedman et al. [9] showed that their algorithm takes O(log n) expected time, under

certain simplifying assumptions on the distribution of data and query points. They also

showed that the expected number of points examined attains its minimum value when each

cell contains one point, and is bounded by

E[N] ≤ {[G(d)]1/d + 1}d. (1)

Here d is the dimension and G(d) is the ratio of the volume of a d-dimensional hypercube

to the volume of the largest enclosed ball in the metric used for distance measurement. For

the L∞ metric, G(d) is 1, and the expected number of points examined is bounded by 2d.

A much simpler algorithm that works well for uniformly distributed data is the bucketing

algorithm, (sometimes called Elias’s algorithm [15]). Space is divided into identical cells

and for each cell, the data points inside it are stored in a list (see Fig. 1). The cells are

examined in order of increasing distance from the query point and for each cell the distance

is computed between the data points inside it and the query point. The search terminates

when the distance from the query point to the cell exceeds the distance to the closest point

visited. The algorithm was analyzed for data points uniformly distributed on the vertices

of the d-dimensional hypercube by Rivest [13], and later for general uniformly distributed

point sets by Bentley, Weide and Yao [6] and Cleary [8]. Cleary’s analysis showed that the

4

q

Figure 1: Bucketing Algorithm.

number of points examined was independent of n, and that the fewest number of points

were examined when there was one data point per cell. His analysis also applies to the k-d

tree algorithm and furnishes more accurate bounds than those obtained by Friedman et al

[9].

3 Model

Consider a set of md data points distributed uniformly in a d-dimensional hypercube H

with edge length m. We will assume that m is an integer greater than 1. The hypercube

H is split into md cells of equal size, which gives a density of one data point per cell. Each

cell stores a pointer to the data points inside it (if any). Fig. 1 shows the subdivision in

two dimensions for m = 4. Consider that the query point is also chosen from the uniform

distribution. The bucketing algorithm visits the cells in increasing order of distance from

the query point, examines the point(s) associated with each cell, and updates the closest

point seen so far. The algorithm terminates when the next cell to be visited is farther than

the closest point visited until then. The complexity of the algorithm is measured by the

number of cells visited averaged over all possible locations of the query point.

4 Crude Analysis

In this section, we compute an upper bound on the expected number of cells visited by the

algorithm. Our analysis is done for the large d limit, treating m as fixed. We will assume

that all distances are measured in the L∞ metric. Given a query point x = (x1, . . . , xd),

define the nearest neighbor ball to be the L∞ ball centered at x and having radius equal to

the distance between x and the data point closest to it. It is clear from the description of

the bucketing algorithm that a cell is visited if and only if it overlaps the nearest neighbor

ball. The quantity of interest therefore is the expected number of cells that overlap the

nearest neighbor ball, where the expectation is computed over all possible locations of the

5

query point.

Denote an L∞-ball of radius r centered at the query point x by B(x, r). This is a

hypercube of side length 2r centered at the query point. It is easy to show that the expected

volume of intersection of the nearest neighbor ball with hypercube H approaches unity in

the large d limit. This is true no matter where the query point is located. This suggests the

following model for the nearest neighbor ball, which we employ to simplify the analysis. For

any query point x, we call a ball centered at x and having unit volume of intersection with

hypercube H, a unit intersection ball. We will compute an upper bound on the expected

number of cells overlapped by the unit intersection ball, and regard this as an approximation

to the true upper bound. (Rigorous justification for this assumption is provided in Section 6,

where we will see that the expected number of cells overlapped by the unit intersection ball

differs from the expected number of cells overlapped by the nearest neighbor ball by at most

a constant multiplicative factor, which does not depend on the dimension.)

We define several random variables which we need for our analysis. These random

variables are all functions of the location x of the query point. Let the random variable

u denote the radius of the unit intersection ball, and let N denote the number of cells

overlapped by the unit intersection ball. More precisely, u(x) is the value of r such that

Vol(B(x, r) ∩ H) = 1, and N(x) is the number of cells overlapped by the unit intersection

ball, B(x, u(x)).

For any given r, we define the random variable Vr(x) to be volume of intersection of the

ball of radius r centered at x with hypercube H. Thus, Vr(x) = Vol(B(x, r)∩ H). For any

given r, we have d associated random variables, Ii,r, 1 ≤ i ≤ d, which we call the intercepts.

The i-th intercept, Ii,r(x) is the length of the side of B(x, r) ∩H along the i-th dimension.

It is easy to see that the volume of intersection, Vr(x), is the product of d intercepts,

Vr(x) =
d
∏

i=1

Ii,r(x). (2)

Further, for any given r, the d intercepts, Ii(r), 1 ≤ i ≤ d, are independent, identically

distributed random variables.

Finally, for given r, we define the random variable Zr(x) to be the number of cells

overlapped by the ball of radius r centered at x. For fixed r, we have d associated random

variables, Zi,r, 1 ≤ i ≤ d, where Zi,r(x) is the number of unit intervals overlapped along the

i-th dimension. Thus,

Zr(x) =
d
∏

i=1

Zi,r(x). (3)

Note that for given r, the d random variables, Zi,r, 1 ≤ i ≤ d are independent, identically

distributed random variables.

6

Let log denote the natural logarithm function. We define the critical radius c to be the

value of r such that E[log(Ii,r)] = 0. In taking the expectation, i and r are regarded as

fixed, and the expectation is taken over all possible locations x of the query point. Such a

value of r must exist in the range 0.5 ≤ r ≤ 1, since for any x, Ii,r(x) ≥ 1 for r ≥ 1 and

Ii,r(x) ≤ 1 for r ≤ 0.5. It is important to note that the critical radius c depends only on

the edge length m defined earlier (see Section 3). In particular, it is independent of the

dimension. This is because for fixed r, Ii,r for all 1 ≤ i ≤ d are independent and identically

distributed, so that E[log(Ii,r)] = 0 implies E[log(Ij,r)] = 0 for any pair i, j.

The following lemma establishes that the radius of the unit intersection ball, u, almost

always lies close to c, for high dimension.

Lemma 1 For any constant ǫ > 0,

lim
d→∞

P [c − ǫ < u < c + ǫ] = 1. (4)

Proof : We only establish that limd→∞ P [u < c + ǫ] = 1. The proof of the other part is

similar and is omitted.

Consider the d independent and identically distributed random variables, Ii,c+ǫ, 1 ≤ i ≤
d. From the definition of the critical radius c and the fact that E[log(Ii,r)] is clearly a

monotonically increasing function of r, it follows that E[log(Ii,c+ǫ)] > 0.

We will apply the Weak Law of Large Numbers to the variables, Ii,c+ǫ, 1 ≤ i ≤ d. The

Weak Law of Large Numbers states that given a sequence of independent, identically dis-

tributed variables Xi with finite expectation, the probability that the average
∑

1≤i≤d Xi/d

differs from the expectation E[Xi] by less than an arbitrarily small positive δ approaches

1, as d approaches infinity [10, page 243]. Applying this to the variables Ii,c+ǫ, 1 ≤ i ≤ d,

using sufficiently small δ, and noting that E[log(Ii,c+ǫ)] > 0, we have

lim
d→∞

P

[

1

d

d
∑

i=1

log(Ii,c+ǫ) > 0

]

= 1. (5)

Rewriting this expression and taking antilogs, we get

lim
d→∞

P

[

d
∏

i=1

Ii,c+ǫ > 1

]

= 1. (6)

Since Vr =
∏d

i=1 Ii,r, we can write this as

lim
d→∞

P [Vc+ǫ > 1] = 1. (7)

Since u(x) < c + ǫ if and only if Vc+ǫ(x) > 1, we obtain the desired result. ⊓⊔
The following lemma gives the expected value of Zr, the number of cells overlapped by

the L∞-ball B(x, r).

7

Lemma 2 For 0.5 ≤ r ≤ 1,

E[Zr] =

[

1 + 2r

(

1 − 1

m

)]d

. (8)

Proof : Recall that the random variable Zi,r, for 1 ≤ i ≤ d, denotes the number of unit

intervals overlapped along the i-th dimension, by the corresponding side of B(x, r). Then

Zr is given by
∏d

i=1 Zi,r. For any given r, the d random variables Zi,r, 1 ≤ i ≤ d are

independent variables. Therefore,

E[Zr] =
d
∏

i=1

E[Zi,r]. (9)

Fox fixed r, the variables Zi,r, 1 ≤ i ≤ d have a common distibution. It is easy to see

that for 0.5 ≤ r ≤ 1, Zi,r takes on the values 1, 2, and 3 with the following probabilities.

Zi,r Probability

1 2−2r
m

2 (m−2)(2−2r)+2r
m

3 (m−2)(2r−1)
m

(10)

From this, we get the following expression for the expected value of Zi,r,

E[Zi,r] =

[

1 + 2r

(

1 − 1

m

)]

. (11)

Substituting into Eq. (9), we get the desired result. ⊓⊔
We now come to the main theorem of this section, which establishes an upper bound on

the expected number of cells overlapped by the unit intersection ball. (Since Lemma 1 says

that in high dimensions the radius of the unit intersection ball, u, is almost always close

to c, one may be tempted to conclude that the expected number of cells overlapped by the

unit intersection ball, E[N], approaches the expected number of cells overlapped by a ball

of radius c, E[Zc]. However, we will see in Section 5 that this is in fact not true.) Our proof

of the theorem relies on the following conjecture.

Conjecture 1 (Monotonicity conjecture) For all d, the expected number of cells overlapped

by the unit intersection ball subject to the constraint that the radius of the unit intersection

ball is r, E[N | u = r], is a monotonically decreasing function of r.

The intuition is that the radius of the unit intersection ball is usually smaller when the

query point is away from the boundaries of hypercube H; this case leads to a large number

of cells being overlapped by the unit intersection ball. While we we have confirmed this

observation in our experiments, we do not have a rigorous proof for it.

8

We present some evidence in favor of the conjecture in Fig. 2 and 3, which show the plots

obtained experimentally of [E[N | u = r]]1/d versus r for d = 8 and d = 16, respectively

(here m = 2). To compute this plot, we partitioned the radii in the range 0.5 to 0.75 into

a set of intervals. We generated 107 points from the uniform distribution, and for each

point, grew a ball having unit volume of intersection with hypercube H. We determined

the interval in which the radius of the ball lies and the number of cells overlapped by

it. For each interval, we computed the average number of cells overlapped over all balls

whose radius lies in that interval, and plotted these against the interval midpoint. (The

plots terminate at r = 0.75 since the probability of finding points where the radius of the

nearest neighbor ball is higher than this is very low and our sampling technique does not

find enough of them.) We will see further justification for the monotonicity conjecture in

the next section, where we give a numerical proof for it in the large d limit, which does not

rely on simulation.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.5 0.55 0.6 0.65 0.7 0.75
r

Figure 2: Monotonicity conjecture (for d = 8): [E[N | u = r]]1/d vs. r.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.5 0.55 0.6 0.65 0.7 0.75
r

Figure 3: Monotonicity conjecture (for d = 16): [E[N | u = r]]1/d vs. r.

Theorem 1 Assuming Conjecture 1, for any constant ǫ > 0, there exists d0 such that for

9

all d > d0,

E[N] ≤
[

1 + 2(c + ǫ)

(

1 − 1

m

)]d

. (12)

Proof :

Let ǫ′ be any positive constant less than ǫ. We compute E[N] over two possible cases,

u < c + ǫ′ and u ≥ c + ǫ′.

E[N] =

P [u < c + ǫ′] · E[N | u < c + ǫ′] +

P [u ≥ c + ǫ′] · E[N | u ≥ c + ǫ′]. (13)

Conjecture 1 implies that

E[N | u ≥ c + ǫ′] ≤ E[N | u < c + ǫ′]. (14)

Substituting into Eq. (13) we get an upper bound for E[N],

E[N] ≤ E[N | u < c + ǫ′]. (15)

Further,

E[N | u < c + ǫ′] ≤ E[Zc+ǫ′ | u < c + ǫ′]. (16)

This follows from the fact that for any x, the number of cells overlapped by a ball of radius

r is a non-decreasing function of the radius. Combining this with Eq. (15), we have

E[N] ≤ E[Zc+ǫ′ | u < c + ǫ′]

≤ E[Zc+ǫ′]

P [u < c + ǫ′]
. (17)

Substituting for E[Zc+ǫ′] from Lemma 2, we get

E[N] ≤

[

1 + 2(c + ǫ′)
(

1 − 1
m

)]d

P [u < c + ǫ′]
. (18)

From Lemma 1, it follows that for sufficiently large d, P [u < c + ǫ′] is arbitrarily close to 1.

Since ǫ′ < ǫ, so that [1+2(c+ ǫ)(1− 1/m)]d/[1+2(c+ ǫ′)(1− 1/m)]d diverges exponentially

with d, this implies that for sufficiently large d,

E[N] ≤
[

1 + 2(c + ǫ)

(

1 − 1

m

)]d

, (19)

which is the desired result.

⊓⊔

10

m E[N] ≤
2 (1.601 + ǫ)d

3 (1.748 + ǫ)d

4 (1.815 + ǫ)d

5 (1.854 + ǫ)d

10 (1.929 + ǫ)d

100 (1.993 + ǫ)d

Table 1: Upper bound on expected number of cells overlapped by the unit intersection ball.

To compute the critical radius c, we first write the cumulative density for Ii,r. It is easy

to see that this is given by

P [Ii,r ≤ t] =

0 if t < r
2(t−r)

m if r ≤ t < 2r

1 if t = 2r.

(20)

From this, after some calculation, we get the following expression for E[log(Ii,r)],

E[log(Ii,r)] =
2r

m
(log(2) − 1) + log(2r). (21)

For any m, we can equate this expression to 0, and solve it numerically to obtain the critical

radius c. We can then use Theorem 1 to compute an upper bound on E[N], the expected

number of cells visited. The results are shown in Table 1 for several different values of m.

For m = 2, the table shows an upper bound of (1.601 . . . + ǫ)d, for any small ǫ > 0. Since

the average density is one point per cell, this bound also applies to the number of points

visited by the algorithm. The fact that the number of points visited is much fewer than the

asymptotic bound of 2d confirms the importance of boundary effects when the number of

points is on the order of 2d.

5 Refined Analysis

In this section and the next, we achieve a tight bound for the expected number of cells visited

by the bucketing algorithm. Our analysis does not rely on the monotonicity conjecture. For

simplicity we do the analysis for the case of m = 2. Further, as in the previous section,

we will assume that the ball of interest centered at the query point has unit intersection

volume with hypercube H. In the next section we generalize the result to arbitrary m, and

consider the modifications necessitated by the fact that the nearest neighbor ball is not

quite the unit intersection ball.

11

Let x = (x1, . . . , xd) denote a point in the hypercube H. Consider an L∞ ball centered

at x. Let V̂ denote the logarithm of its volume of intersection with hypercube H, and let

Z(x; V̂) be the number of cells that this ball overlaps. The quantity of interest N is then

Z(x; 0), averaged over x lying anywhere inside hypercube H (note that this is the same as

the unconstrained expectation value E[N] defined in the last section). Thus

N =

∫

dV̂ δ(V̂)

∫ 1

0
dx1 . . .

∫ 1

0
dxdZ(x; V̂) (22)

where the δ-function enforces the condition that we are only interested in balls which have

unit intersection volume with hypercube H. (Recall that the Dirac δ-function has the

properties (a) δ(x) = 0 if x 6= 0 and (b)
∫∞
−∞ g(x)δ(x)dx = g(0) for all integrable g : IR → IR

[1, pages 481–484].) Here the range of each xi integral is taken to be 0 to 1, since the 0 to

2 interval is symmetric around 1. Note that in this form we do not need any normalization

factors, because the volume of the region over which we are integrating is unity.

To solve the above integral, we need some elementary concepts from the theory of

complex functions [1, pages 352–434]. We will use the following notation. The real and

imaginary parts of a complex number z are denoted by Re(z) and Im(z), respectively. Let

z = r exp[iθ] be the polar form of a complex number z. In this representation, r is called

the modulus or magnitude of z, and is denoted |z| or Abs(z). The angle θ is labeled the

argument or phase of z, and is denoted Arg(z).

Eq. (22) can be expressed in terms of the radius r of the ball as

N =

∫ 1

1

2

dr

∫ 1

0
dx1 . . .

∫ 1

0
dxdZ(x; r)

∂V̂ (x; r)

∂r
δ(V̂ (x; r)). (23)

The integral over r ranges from 1
2 to 1, since these are the minimum and maximum values

of r needed for any x in order to achieve a ball with unit intersection volume.

The quantity V̂ , which is the logarithm of the volume of intersection, is the sum of the

logarithms of the intercepts on all the d sides, which are given by

Îi(xi; r) =

{

log(xi + r) for xi ≤ r

log(2r) for xi ≥ r.
(24)

Therefore the derivative, ∂V̂ /∂r is the sum of d terms, each of which lies between 1/r and

1/2r, i.e. between 1
2 and 2. Therefore, to within a constant factor,

N = Θ

d

∫ 1

1

2

dr

∫ 1

0
dx1 . . .

∫ 1

0
dxdZ(x; r)δ

∑

1≤i≤d

Îi(xi; r)

 . (25)

For any specific choice of r and x, the number Z of cells overlapped is the product of d

factors Zi(xi; r), which are given by

Zi(xi; r) =

{

1 for xi ≤ 1 − r

2 for xi > 1 − r.
(26)

12

Thus Eq. (25) can be written as

N = Θ

(

d

∫ 1

1

2

dr

∫ ∞

−∞

dω

2π

{∫ 1

0
dxiZi(xi; r) exp[−jωÎi(xi; r)]

}d
)

. (27)

Here we have used the representation of the δ-function, 2πδ(y) =
∫

dω exp[−jωy], where

j2 = −1 [1, pages 481–484]. For fixed ω and r, the integrals over all the xi’s then decouple

from each other.

The term in the {}-brackets is equal to

F (ω; r) =
∫ 1
xi=r dxi2 exp[−jω log(2r)] +

∫ xi=r
xi=1−r dxi2 exp[−jω log(xi + r)] +
∫ xi=1−r
xi=0 dxi exp[−jω log(xi + r)], (28)

which can be evaluated to be

F (ω; r) =
{

2(1 − r) + 4r
1−jω

}

exp[−jω log(2r)] −
1

1−jω − r
1−jω exp[−jω log(r)]. (29)

To solve for N from Eq. (27), we first evaluate the ω integral. Although ω is a real

variable in Eqs. (27) and (29), it is convenient to analytically continue the definition of

F (ω; r) to the complex plane for ω. We then deform the contour of integration for ω from

the real axis to some other contour. We shall first evaluate the integral over this deformed

contour, and then prove that it is equal to the integral over the original contour (the real

axis). In order to choose a convenient contour of integration, we use the following theorem,

called the method of steepest descent [1, pages 428–434],[12, pages 287–291]. Since we need

a slightly more general version of this method than is discussed in these references, we offer

a proof.

Theorem 2 If f(z) and g(z) are analytic functions of the complex variable z, and

(a) ∂zf(z) = 0 at z = z0,

(b) ∂2
zf(z) 6= 0 at z = z0,

(c) the contour C is finite, passes through z0 and satisfies the condition

limz→z0
(Arg[f(z)] − Arg[f(z0)])/|z − z0|3 exists, and

(d) along the contour C there is a global maximum in Abs[f(z)] at z = z0,

13

then in the asymptotic d → ∞ limit,

∫

C
dzg(z)[f(z)]d ∼ g(z0) exp[jα][f(z0)]

d

√

2π

d

∣

∣

∣

∣

∣

∂2f(z)

∂z2

∣

∣

∣

∣

z=z0

1

f(z0)

∣

∣

∣

∣

∣

−1/2

(30)

where α is Arg(z − z0) in the limit that z approaches z0 along the contour of integration.

We use the ∼ symbol to mean that the ratio of the two sides of the equation tends to 1 as

d → ∞. The basic idea behind this theorem is that if f(z) has a global maximum along

the contour C at z0, then [f(z)]d falls off extremely rapidly as z moves away from z0, so

that the integral is dominated by a small neighborhood of z0. If the phase of f(z) changes

slowly in the neighborhood of z0, then [f(z)]d has an approximately constant phase in the

small neighborhood of z0, and is governed by the Gaussian falloff close to the maximum.

Proof :

We prove this theorem for g(z) = 1; the proof can be easily generalized. Parametrize

the contour C by s(z), which is the distance of the point z from z0 measured along C. Let

s0 be the total length of the contour C. Divide the contour C into two parts: C1 consists

of the part of C satisfying the condition |s| < s1 = µ[(log d)/d]1/2, with µ some constant,

and C2 is the rest of C.

We first do the integral over the curve C1. For large d, C1 is very small, so that we can

Taylor expand f(z) around z0 and write

∫

C1

dz[f(z)]d = [f(z0)]
d
∫

C1

ds
dz

ds
exp

[

−d

(

1

2
Ks2 + O(s3)

)]

(31)

where by condition c), K is real, and is equal to |∂2
zf(z0)/f(z0)|. Since |s| < µ[(log d)/d]1/2,

the dO(s3) term in the exponent tends to zero over the whole range of integration as d → ∞,

and can be neglected. Similarly, dz/ds can be replaced by dz/ds|s=0 = exp[jα] as d → ∞.

The resulting Gaussian integral can be performed by changing variables to s = s
√

d, and

recognizing that
∫

ds exp[−Ks2/2] over |s| < µ[log d]1/2 tends to (2π/K)1/2 as d → ∞,

which yields the right hand side of Eq. (30).

Now since Abs[f(z)] has a smooth global maximum over C at z0, it follows that

for sufficiently small C1 (i.e. sufficiently large d), Abs[f(z)] at s = s1 is greater than

Abs[f(z)] anywhere in C2. Expanding f(z) as in Eq. (31), we see that
∫

C2
dz[f(z)]d <

s0 exp[−Kds2
1/2][f(z0)]

d. Substituting s1 = µ[(log d)/d]1/2, we see that the integral over C2

is negligible compared to that over C1 as d → ∞ if µ is chosen to be greater than 1/
√

K.

⊓⊔
In order to use this theorem, we need to find a contour C in the ω plane that satisfies

the conditions of the theorem. We first seek a point ω(r) that satisfies conditions (a) and

(b) required of the point z0 in Theorem 2:

14

Lemma 3 For any 1
2 < r < 1, there exists a saddle point ω(r) on the imaginary axis,

where ∂ωF (ω; r) = 0. At this point ∂2
ωF (ω; r) 6= 0. In the neighborhood of this point, with

ω = ω(r) + u (with real u), the real and imaginary parts of F (ω; r) can be expanded as

Re[F (ω; r)] = Re[F (ω(r); r)] − Au2 plus higher order terms in u (with A positive), and

Im[F (ω; r)] = O(u3).

Proof : By inspection of Eq. (29), we see that Re[F (ω; r)] is an even function of Re(ω),

and Im[F (ω; r)] is an odd function of Re(ω). Therefore the derivative of the real part of

F (ω; r) with respect to Re(ω) vanishes everywhere on the imaginary ω axis. By numerical

construction, we have verified that, for ω on the imaginary axis, Re[F (ω; r)] has a minimum

at some ω(r) for all 1
2 < r < 1, so that ∂ωRe[F (ω; r)] is zero at ω(r). We have also verified

numerically that the second derivative of Re[F (ω; r)] along the imaginary ω axis is non-zero

at ω(r).

By the properties of analytic functions, if ω = ω(r) + u + jv (with real u and v),

then ∂uRe[F (ω; r)] = ∂vIm[F (ω; r)] and ∂vRe[F (ω; r)] = −∂uIm[F (ω; r)]. These imply that

∂ωRe[F (ω; r)] = 0 is equivalent to ∂ωF (ω; r) = 0. At the saddle point ω(r), expanding

in a Taylor series around ω(r) up to third order in u and v, and using the fact that the

real and imaginary parts of F (ω; r) are even and odd functions of u respectively, we have

Re[F (ω; r)] = Re[F (ω(r); r)] + A(v2 − u2) + B(3u2v − v3), and Im[F (ω; r)] = −2Auv +

B(3uv2 − u3) plus higher order terms in u and v. Since Re[F (ω; r)] has a minimum on the

imaginary axis at ω(r), with a non-zero second derivative, it follows that A > 0. Restricting

ourselves to the case v = 0, we see that Re[F (ω; r)] = Re[F (ω(r); r)]−Au2 and Im[F (ω; r)] =

−Bu3 up to cubic order in u. ⊓⊔
Let L1 be the straight line in the ω plane parallel to the real axis and running through

ω(r), and let L1(u0) be the part of L1 for which |Re(ω)| < u0. Then, we have seen that

L1(u0) satisfies conditions (a), (b) and (c) required of the contour C in Theorem 2. We

now verify condition (d):

Lemma 4

Abs[F (ω; r)] < Abs[F (jIm(ω); r)] for Re(ω) 6= 0. (32)

Proof : This result is obvious from the definition F (ω; r) =
∫

dxZ(x; r) exp[−jωI(x; r)].

Since I(x; r) is real, and Z(x; r) is real and positive, F (ω; r) ≤
∫

dxZ(x; r)Abs(exp[−jωI(x; r)]),

which is equal to
∫

dxZ(x; r) exp[Im(ω)I(x; r)] = F (jIm(ω); r) = Abs[F (jIm(ω); r)]. By

considering the integral as a summation over x of real positive terms Z(x; r) exp[Im(ω)I(x; r)],

each weighted by a complex weight exp[−jRe(ω)I(x; r)], we see that the magnitude of

F (ω; r) is maximum when all the terms add up in phase, which occurs only when Re(ω) = 0.

Thus the inequality is an equality only if Re(ω) = 0. ⊓⊔

15

Thus the contour L1(u0) satisfies all the conditions of Theorem 2. Applying this theorem

yields

∫

L1(u0)
dω[F (ω; r)]d ∼

√

2π

d
[F (ω(r); r)]d

{

− ∂2Re[F (ω; r)]

∂Re(ω)2

∣

∣

∣

∣

ω=ω(r)

1

F (ω(r); r)

}−1/2

(33)

for any u0.

ω(r)
L1(u0

)

L (u0
)

4

u0 u0u0

Complex- ω plane

ω

ω
L ()

3

L (u0
)

2

Re()

Im()

Figure 4: Contours used in the evaluation of the ω integral.

In order to complete the evaluation of the ω integral, we show that the integral over

the real axis is also equal to the right hand side of Eq. (33) in the large d limit. Let L3

denote the real axis for ω, and L3(u0) be the part of the real axis for which |ω| < u0.

Also, let L2(u0) and L4(u0) be the vertical straight line segments at Re(ω) = u0 and −u0

respectively that connect L1(u0) and L3(u0), so that L1(u0) − L2(u0) − L3(u0) + L4(u0) is

a closed contour. (See Fig. 4. The negative signs arise from the fact that, in the closed

contour, L2 and L3 are oriented backwards.) By inspection of Eq. (29), we see that the

function F (ω; r) has no singularities in the complex ω-plane. The only potential singularity

is a pole at 1 − jω = 0, but this is cancelled by a factor of 1 − jω in the numerator, as can

be seen by substituting ω = −j + δ in Eq. (29). Since by Cauchy’s theorem the integral

of an analytic function on a closed contour in the complex plane that does not enclose any

singularities is zero, it follows that the integral of [F (ω; r)]d over L3(u0) is equal to the

integral over L1(u0)+ L4(u0)−L2(u0). By inspection of Eq. (29), we see that if u0 is large,

then (provided that Abs[ω(r)] is finite) the integral over L2(u0) and L4(u0) are dominated

by the term 2(1− r) exp[−jω log(2r)] in F (ω; r). This is in the sense that the integrals over

L2(u0) and L4(u0) are bounded by [a(u0)]
d times the integral of {2(1−r) exp[−jω log(2r)]}d,

16

where a(u0) tends to unity as u0 → ∞. The maximum modulus of 2(1−r) exp[−jω log(2r)]

over L2(u0) and L4(u0) is 2(1−r) if jω(r) > 0 and 2(1−r) exp[−jω(r) log(2r)] if jω(r) < 0.

In the second case, from Eq. (28) we see that 2(1 − r) exp[−jω(r) log(2r)] is just the first

term in F (ω(r); r). As can be seen by inspection (and as discussed in the proof of Lemma 4),

all the terms in the right hand side of Eq. (28) are real and positive for ω = ω(r), so that

F (ω(r); r) > 2a(u0)(1 − r) exp[−jω(r) log(2r)] for sufficiently large u0. (Here the criterion

for u0 to be considered large is independent of d.) For sufficiently large u0, the right hand

side of Eq. (33) thus dominates the integral of [F (ω; r)]d over L3(u0) and L4(u0) in the limit

of large d (neither the 1/
√

d factor in Eq. (33) nor the factor of |ω(r)| from the length of

L3(u0) and L4(u0) being large enough to compete with the exponential growth). If on the

other hand jω(r) > 0, the integrand is bounded over L2(u0) and L4(u0) by [2(1− r)a(u0)]
d.

Again, if F (ω(r); r) > 2(1 − r) (as is shown to be the case in Fig. 5), for sufficiently large

u0 this is negligible compared to Eq. (33) as d → ∞.

Thus for large (but d-independent) u0, the large d limit of the integral of [F (ω; r)]d over

L3(u0) is given by Eq. (33). What remains is to evaluate the integral over L3 − L3(u0),

and show that this is negligible for large u0 in the d → ∞ limit. Expanding [F (ω; r)]d in a

binomial series using Eq. (29) and arranging terms in increasing powers of 1/(1 − jω) we

have

[F (ω; r)]d =
d
∑

p=0

(

d

p

)

· {2(1 − r) exp[−jω log(2r)]}(d−p) ·

{4r exp[−jω log(2r)] − 1 − r exp[−jω log(r)]}p ·
(

1

1 − jω

)p

. (34)

For all terms except the first two, we can bound the integrand by its modulus. Recognizing

that the integral of 1/(1 + ω2)n/2 from u0 to infinity is less than u
(1−n)
0 for n > 1, we can

bound the sum of all these terms by (5r + 1)[2(1 − r)](d−1){exp[td] − 1 − td}/t, where t =

(5r + 1)/[2(1− r)u0]. This is a monotonically decreasing function of u0. Since F (ω(r); r) >

2(1 − r)et for sufficiently large u0, it follows that we can neglect the sum of all the terms

except the first two as d → ∞.

The integral of the first two terms has to be dealt with separately: the integral of

[2(1 − r)]d exp[−jdω log(2r)] over |ω| > u0 is bounded by 2π[2(1 − r)]d/{d log(2r)} (unless

r = 1/2, which is discussed separately later), which can be neglected. The second term is

[2(1 − r)](d−1) multiplied by

d

1 − jω

{

4r exp[−jωd log(2r)]−exp[−jω(d−1) log(2r)]−r exp[−jω log(r)−jω(d−1) log(2r)]

}

.

(35)

By adding a similar contribution from [F (−ω; r)]d, we get expressions of the form

Θ([2(1 − r)](d−1) sin[A(r)ω]ω/(1 + ω2)), which can be dealt with like the first term, and

17

Θ([2(1− r)](d−1) cos[A(r)ω]/(1+ ω2)), which can be dealt with like all the other terms, and

both are negligible as d → ∞.

Thus, to within numerical factors, Eq. (25) can be expressed as

N = Θ

(√
d

∫ 1

1

2

dr[F (ω(r); r)]d
)

(36)

where F (ω(r); r) can be evaluated numerically for any r by searching for ω(r) along the

imaginary axis, and finding the value of F there.1 Fig. 5 shows a plot of this quantity made

using Mathematica.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
r

Figure 5: F (ω(r); r) vs. r. The straight line corresponding to 2(1 − r) is everywhere below

it.

The integral in Eq. (36), having a d in the exponent, can again be done by the method

of steepest descent. This time the procedure is easier, since F (ω(r); r) is real, so that the

analytic continuation to the complex plane carried out for the ω integral is not necessary:

Im(r) = 0 is manifestly a ‘contour’ along which Arg[F] is constant, and, as can be seen

from Fig. 5, F has a global maximum with non-zero second derivative within the domain

of r between 1
2 and 1 so that the conditions of Theorem 2 are satisfied. For large d, the

integral is again dominated by the point where F (ω(r); r) attains a maximum as a function

of r over the domain 1
2 to 1. This can be evaluated numerically. We thus obtain, to within

1Note that our evaluation of the integral over ω by the method of steepest descent is only valid for
1

2
< r < 1. For r = 1

2
, the integral is not well defined . This is because for all points x satisfying

0.5 ≤ xi ≤ 1.5, which is a finite fraction of the volume of the hypercube H , the radius of the nearest

neighbor ball that is centered around the point is 1

2
. Thus the probability density that the radius of the

nearest neighbor ball is r has a δ-function at r = 1

2
. However, since the weight of this δ-function is 1

2

d
, and

the number of cells intersected for any point in this central region is 2d, the contribution this singularity

makes to N is (1

2
)d

· 2d = 1, which can be neglected compared to the eventual answer, obtained in Eq. (37).

Although the method of steepest descent does not work for r = 1 too, we know that there is no δ-function

in the probability density that the radius of the nearest neighbor ball is r at r = 1, so that the contribution

to N from r exactly equal to 1 is zero.

18

a constant factor,

N = Θ
(

[F (ω(rM); rM)]d
)

= Θ
(

(1.56594 . . .)d
)

(37)

where rM is the point where F (ω(r); r) has a maximum, and is found numerically to be

rM = 0.5715 ± 0.0005.

In order to find the multiplicative prefactor in Eq. (37), we have to include

(a) the factor of
√

2π|f ′′(z0)/f(z0)|−1/2 in Eq. (30) that each of our two applications of

the steepest descent method induces, and

(b) the derivative ∂rV̂ that was dropped in passing from Eq. (23) to Eq. (25).

The first of these simply leads to a nontrivial function g(z) in the second application of

Theorem 2. The second factor is a little more involved. However, the derivative ∂rV̂ is the

sum of d terms ∂r Îl, where l ranges from 1 to d. By carrying out the xl integral separately

from all the xi6=l integrals in each term, we obtain a modified version of Eq. (27):

N ∼ d

∫ 1

1

2

dr

∫ ∞

−∞

dω

2π
[F (ω; r)]d−1F̃ (ω; r) (38)

where F̃ comes from the xl integration. This expression satisfies the conditions of Theorem 2

(with a nontrivial g(z)), and can be evaluated as above. By this method, we have calculated

the multiplicative prefactor of Eq. (37) to be approximately 1.02.

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
r

Figure 6: Evidence for the Monotonicity conjecture: limd→∞[E[N | u = r]]1/d vs. r.

Remark: The procedure that we have carried out above can be carried out (more easily)

to evaluate the probability density ρ(r) that the radius of the unit intersection ball is r; the

only differences are those resulting from the fact that the factor of Zi in Eq. (27) is missing.

Since the expression in Eq. (36) can be written as N =
∫

drρ(r)N(r), and the corresponding

expression one would get in evaluating the probability density is 1 =
∫

drρ(r), one can obtain

the N(r), which is the expected number of cells overlapped by the unit intersection ball for

19

points where the unit intersection ball has radius r. Using Mathematica as in Fig. 5, the

d-th root of this quantity was computed for various values of r and is plotted in Fig. 6 (here

m = 2). If one believes that the plot in Fig. 6 is a faithful representation of the function,

then one may regard this as a sort of “numerical proof” of the monotonicity conjecture in

the large d limit for m = 2.

6 Extensions and Generalizations

In this section, we first outline how the results of the previous section would be generalized

to m > 2, and present results from a numerical evaluation similar to that carried out in

the previous section. We then consider the effect of the fact that the nearest neighbor ball

around a query point will only have unit intersection volume on the average, and show

that fluctuations around this average can only change the constant prefactor of our earlier

expression for N .

For general m, the x-integrals in Eq. (22) and thereafter are over the interval 0 to

m, with a prefactor of 1/m for each x-integral. (Note that we used the symmetry under

xi → 2 − xi for the case of m = 2 to reduce the range of the x-integrals to [0, 1].) Eq. (24)

is modified, to

Îi(xi; r) =

log(xi + r) for xi ≤ r

log(2r) for m − r ≥ xi ≥ r

log(m + r − xi) for xi > m − r.

(39)

This, however, does not affect the transition to Eq. (25). Eq. (26) is also changed, since

Zi(xi; r) = 3 for k + r > xi > k + 1 − r for k an integer, 1 ≤ k ≤ m − 2. Similarly one can

determine when Zi(xi; r) takes the values 1 and 2. (Recall that r lies between 1/2 and 1,

so that it is never possible for Zi to be greater than 3.) After some calculation, we obtain

the following general form for Eq. (29),

F (ω; r) =

(2r + 1) exp[−jω log(2r)] +

2
m

({

(1 − 4r) + 4r
1−jω

}

exp[−jω log(2r)]−
1

1−jω − r
1−jω exp[−jω log(r)]

)

. (40)

The numerical analysis after Eq. (29) can be carried out from here for any value of m.

The results are given in Table 2, which shows the expected number of cells overlapped by

the unit intersection ball, for different values of m.

We now consider possible modifications to our result, Eq. (37), due to the fact that

the nearest neighbor ball around any query point has unit intersection volume with the

20

m E[N]

2 Θ(1.566d)

3 Θ(1.715d)

4 Θ(1.788d)

5 Θ(1.831d)

10 Θ(1.916d)

100 Θ(1.992d)

Table 2: Expected number of cells overlapped by the unit intersection ball.

hypercube H only on average. For simplicity, we return to the case of m = 2, although

the results can be extended to any m. We show that Eq. (37) is valid, to within constant

factors, even without this assumption. We only require that the probability density that

the nearest neighbor ball has intersection volume λ be independent of the location of x.

This weaker assumption is satisfied in the limit for large dimension, for points uniformly

distributed in the unit hypercube. In this case, it is easily verified that the probability that

the nearest neighbor ball has intersection volume λ, has the Poisson density, exp[−λ].

Consider an ensemble of hypercubes with points distributed randomly and uniformly in

their interior, with unit mean density. We assume that, by averaging over query points, N

is the same for every member of the ensemble, even though for a particular query point x

it is possible for N(x) to have significant fluctuations from one member to another in the

ensemble. For the ensemble average of N , the expression in Eq. (37) for N can be replaced

by

N ∼
∫

dλ exp[−λ]N(λ) (41)

where N(λ) is the expected number of cells when the intersection volume is λ (the quantity

evaluated in Eq. (37) is N(λ = 1)).

We now use the fact that N(λ) increases monotonically with λ, so that N(λ < 1) < N(1),

and N(λ) is equal to 2d as λ → ∞. This implies that
∫∞
d log 2 dλ exp[−λ]N(λ) < 1 and

∫ 1/d
0 dλ exp[−λ]N(λ) < N(1)/d, and we thus obtain

∫ d log 2

1/d
dλ exp[−λ]N(λ) < N <

∫ d log 2

1/d
dλ exp[−λ]N(λ) + 1 + N(1)/d. (42)

Both the extra terms in the upper bound for N are negligible compared to the lower bound

for large d, so that N is asymptotically equal to the lower bound obtained for it in Eq. (42).

We now evaluate this lower bound.

In evaluating N(λ), we have the following changes compared to N(1):

21

(a) there is an extra factor of exp[jω(log λ)] in [F (ω; r)]d, arising from the shift in the

δ-function,

(b) the integral over r now ranges from λ1/d/2 to λ1/d, and

(c) in going from Eq. (23) to (25), the derivative ∂rV̂ lies between 1
2λ−1/d and 2λ−1/d.

Since at both the upper and the lower limit of the λ-integral in Eq. (42), limd→∞ log(λ)/d =

0, rM lies within the range of integration of r for all λ. Also, by expanding
∫

dω[F (ω; r)]d

around ω(r), it is easy to see that the change in ω(r) caused by the extra factor in (a) is

O((log λ)/d). The result of this shift in ω(r) is a factor of exp[O((log λ)2/d)] in [F (ω(r); r)]d,

which tends to unity for all λ in the range of integration as d → ∞. Thus N(λ), which

is dominated by the region around rM , is given by N(1) · λc, where c = −Im[ω(rM)].

Integrating over λ with an exp[−λ] weight factor, this gives the same result as in Eq. (37),

but with a different multiplicative factor. The multiplicative factor can be obtained as in

Section 5, and is approximately equal to 0.90. We summarize our main result:

Theorem 3 Given a set of 2d points uniformly distributed in a d-dimensional hypercube,

and a query point also from the uniform distribution, the expected number of cells visited by

the bucketing algorithm, Nd, satisfies

lim
d→∞

Nd

(0.90 . . .) · (1.56594 . . .)d
= 1.

7 Experimental Results

In this section, we present experimental results which show that even for low dimensions

(≤ 16), our analysis yields good bounds. Fig. 7 shows the average number of cells examined

by the bucketing algorithm and the optimized k-d tree algorithm, when the dimension d

ranges from 1 to 16, and the number of data points is 2d. In each case the number of cells

examined is averaged over 10 different experiments, where each experiment is performed

with a different set of data points and averaged over 2,500 query points. Both data and

query points are chosen from the uniform distribution. The figure shows that Theorem 3

provides an excellent fit to the number of points visited by the two algorithms. The fit is

slightly worse for the k-d tree algorithm than for the bucketing algorithm. This could be

because the k-d tree partition is not perfectly regular. It could also be because the k-d tree

algorithm does not necessarily visit the cells in increasing order of distance, rather in an

order determined by the structure of the tree. These factors could lead to a small overhead.

It is also clear from Fig. 7 that the cell based algorithms examine significantly fewer

data points than exhaustive search, when the number of data points is on the order of 2d. In

view of the greater overhead of the cell algorithms, we were interested in determining how

22

much of this advantage translates into an actual gain in the running time. We conducted

these experiments in dimension 16, for the same data and query sets as used to plot Fig. 7.

For this study we used the efficient implementation of k-d trees as described by Arya and

Mount[3], and stored 4 data points in each leaf cell which helped to reduce the overhead.

We found that the k-d tree algorithm ran over 37 times faster than brute force search on a

Sun SPARC 10 system. We also conducted similar experiments for the Euclidean distance

metric. Although we do not have theoretical results for this metric, our experiments indicate

that boundary effects are important and lead to some speedup but not as much as for the

L∞ metric. In dimension 16, we observed that the k-d tree algorithm ran about 4 times

faster than exhaustive search.

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16

P
oi

nt
s

E
xa

m
in

ed

Dimension

0.9 * 1.566^d
k-d tree

bucketing

Figure 7: Average number of points examined by the bucketing and k-d tree algorithms;

the total number of data points in dimension d is 2d.

8 Conclusions

Previous analysis have neglected the effects of the boundary in order to simplify the analysis.

However, there is plenty of evidence of the importance of boundary effects in realistic

instances in high dimensions. We have presented analysis that takes these effects into

account, thus providing a significantly more accurate analysis.

The main limitation of our analysis is that it applies only to the L∞ metric and the

uniform distribution. It would be nice to extend these results to other distance norms

and other distributions. Another interesting open problem is to prove the monotonicity

conjecture.

References

[1] G. B. Arfken. Mathematical methods for physicists. Academic Press, 3rd edition, 1985.

23

[2] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensions.

In Proceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, pages 271–

280, 1993.

[3] S. Arya and D. M. Mount. Algorithms for fast vector quantization. In J. A. Storer and

M. Cohn, editors, Proc. of DCC ’93: Data Compression Conference, pages 381–390.

IEEE Press, 1993.

[4] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman and A. Wu. An optimal al-

gorithm for approximate nearest neighbor searching. In Proceedings of the 5th ACM-

SIAM Symposium on Discrete Algorithms, pages 573–582, 1994.

[5] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 18(9):509–517, September 1975.

[6] J. L. Bentley, B. W. Weide, and A. C. Yao. Optimal expected-time algorithms for

closest point problems. ACM Transactions on Mathematical Software, 6(4):563–580,

1980.

[7] K. L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings of

the 10th Annual ACM Symposium on Computational Geometry, pages 160–164, 1994.

[8] J. G. Cleary. Analysis of an algorithm for finding nearest neighbors in Euclidean space.

ACM Transactions on Mathematical Software, 5(2):183–192, June 1979.

[9] J. H. Friedman, J. L. Bentley, and R.A. Finkel. An algorithm for finding best matches

in logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–

226, September 1977.

[10] W. Feller. An introduction to probability theory and its applications, volume 1. Wiley

Eastern, 3rd edition, 1968.

[11] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer

Academic, 1991.

[12] G. Goertzel and N. Tralli. Some mathematical methods of physics. McGraw-Hill, 1960.

[13] R. L. Rivest. On the optimality of Elias’s algorithm for performing best-match searches.

In Information Processing, pages 678–681. North Holland Publishing Company, 1974.

[14] R. L. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees. Algo-

rithmica, 6, 1991.

24

[15] T. Welch. Bounds on the information retrieval efficiency of static file structures. Tech-

nical Report 88, MIT, June 1971.

25

