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OPTIMAL EXPECTED-CASE PLANAR POINT LOCATION*
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Abstract. Point location is the problem of preprocessing a planar polygonal subdivision S of
size n into a data structure in order to determine efficiently the cell of the subdivision that contains
a given query point. We consider this problem from the perspective of expected query time. We are
given the probabilities p, that the query point lies within each cell z € S. The entropy H of the
resulting discrete probability distribution is the dominant term in the lower bound on the expected-
case query time. We show that it is possible to achieve query time H 4+ O(v/H + 1) with space O(n),
which is optimal up to lower order terms in the query time. We extend this result to subdivisions
with convex cells, assuming a uniform query distribution within each cell. In order to achieve space
efficiency, we introduce the concept of entropy-preserving cuttings.
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1. Introduction. A planar straight-line graph defines a subdivision of the plane
into (possibly unbounded) polygonal regions called cells. Planar point location is the
problem of preprocessing such a polygonal subdivision S so that, given any query
point ¢, the cell containing ¢ can be computed efficiently. Throughout, we let n
denote the total size of S, defined to be the total number of vertices, edges, and faces
of S.

The point-location problem has a considerable history. The first asymptotically
worst-case optimal result in the area was Kirkpatrick’s elegant method based on hier-
archical triangulations [19], which supported query processing in O(logn) time using
O(n) space. This was followed by a number of other optimal methods with better
practical performance including the layered directed acyclic graph of Edelsbrunner,
Guibas, and Stolfi [13], searching in similar lists by Cole [8], the method based on
persistent search trees by Sarnak and Tarjan [25], and the randomized incremental
algorithms of Mulmuley [23] and Seidel [26]. The important question of determining
the exact constant factor in query time was raised in work by Goodrich, Orletsky, and
Ramaiyer [16] and was solved subsequently by Seidel and Adamy [27], who showed
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that point-location queries can be answered in log, n+24/log, n+o(y/log n) time and
O(n) space. They also provided a nearly matching lower bound.

Adamy and Seidel’s results were based on a model of computation, called the
trapezoidal search graph model, in which the result of the query is based entirely on
binary tests called primitive comparisons. There are two types of primitive compar-
isons. The first determines whether the query point ¢ lies to the left or right of a
vertical line passing through a vertex of the subdivision. (See Figure 1(a).) The other
determines whether the query point lies above or below an edge of the subdivision.
This latter comparison is performed only after we have already determined that the
z-coordinates of the point lie between the z-coordinates of the endpoints of the edge.
(See Figure 1(b).) Note that both comparisons can be expressed as standard ori-
entation tests [11] (in 1 or 2 dimensions). Orientation tests form the basis of many
algorithms in discrete computational geometry [14]. In particular, all of the point-
location algorithms mentioned above are easily formulated in this model. Our main
result (Theorem 1 below) assumes this same model of computation.

(@ o)

Fic. 1. Primitive comparisons.

All the previous results on point location were considered in the context of worst-
case query times. In many applications, point-location queries tend to be clustered
in regions of greater interest. This raises the question of whether it is possible to use
knowledge of the query distribution to achieve better query times in the expected case.
We model this by assuming that, for each cell z € S, we are given the probability p,
that a query point lies in z. We call the result a weighted subdivision. Unless otherwise
stated we make no assumptions about the probability distribution within each cell.
To avoid dealing with many special cases, we assume that the probability that the
query point lies on an edge or vertex of the subdivision is zero, but this restriction
can be overcome, for example, by treating edges and vertices of nonzero probability
as cells that have infinitesimal width or extent.

An important concept in characterizing the complexity of the search is the entropy
of S, denoted throughout as H:

entropy(S) = H = 3 p. log(1/p.).
z€S

(Unless otherwise stated all logarithms are taken in base 2.) It is well known that
entropy is maximized when all of the cells have equal probability [10], in which case
H = logng, where ny denotes the number of cells (faces of dimension 2) of S. Con-
versely, entropy decreases as the disparity among the probabilities increases. Note that
entropy may be arbitrarily close to 0. Unlike n, when stating asymptotic bounds, we
cannot assume that H is larger than a fixed constant. For this reason, throughout
the paper we will follow the convention that the expression “f is O(g)” means that
there exists a constant ¢ (independent of n and H) such that f < c¢-g. Furthermore,
we assume throughout that n > ng for some constant ng.
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For the 1-dimensional restriction of this problem, a classical result due to Shannon
implies that the expected number of binary comparisons needed to answer such queries
is at least as large as the entropy of the probability distribution [20,28], and clearly
this lower bound applies to the 2-dimensional case as well. Mehlhorn [22] showed
that it is possible to build a binary search tree whose expected search time is at most
H + 2. The related problem of computing the binary search tree that minimizes the
expected search time is considered in [17,20].

The idea of using the entropy of the query distribution as the basis for an analy-
sis for geometric data structures is a recent development in computational geometry.
Arya and Fu [2] first applied this approach to analyzing the complexity of approx-
imate nearest neighbor queries. Arya et al. [1] then applied this to point location
in subdivisions having convex cells. They assumed that the z- and y-coordinates of
the query point were chosen independently from some probability distribution. They
showed that O(H + 1) expected query time was achievable, where the multiplica-
tive constant factor was a function of the amount of space used. Arya, Malamatos,
and Mount [5] presented a simple and practical randomized algorithm that answers
queries in O(H + 1) expected time with O(n) space, and Iacono [18] presented a
similar deterministic method achieving the same bounds.

In the spirit of prior work on optimal search structures [16,22,27], a fundamental
question is whether it is possible to achieve the expected query time of H including
only additive lower order terms. In our earlier work on this problem [3,4] we presented
such data structures, but the space was linear only in special cases, for example, if the
cells are axis-parallel rectangles. Otherwise, the space requirements were superlinear,
ranging from O(nlog* n) up to O(n'T€) depending on the nature of the subdivision
and assumptions about the probability distribution.

All of the existing solutions fall short of the goal of producing a point-location
structure of linear space whose expected query time matches the information-theoretic
lower bound of H (up to lower order terms) and which makes no restrictions on the
probability distribution within each cell. In this paper we present such a solution.
Here is our main result.

THEOREM 1. Consider a polygonal subdivision S of size n consisting of cells
of constant combinatorial complexity and a query distribution presented as a weight
assignment to the cells of S. In time O(nlogn) it is possible to construct a search
structure of space O(n) that answers point-location queries (in the trapezoidal search
graph model) in expected time H + O(v/H + 1), where H = entropy(S).

Recall that H may generally be arbitrarily close to 0, which is why the extra “+41”
is added to the asymptotic term. Due to our reliance on geometric cuttings of line
segments in the plane [7,16], our construction is randomized, and so the O(nlogn)
construction time holds in expectation. Otherwise, our construction runs in O(nlogn)
time and is deterministic. Throughout, we make the usual general-position assump-
tion that no two vertices have the same z-coordinate, and thus no edge is vertical. This
assumption can be overcome, for example, by standard perturbation methods [14].

The requirement that cells have constant complexity applies only to cells of
nonzero probability, since cells of zero probability can be triangulated without af-
fecting the entropy of the subdivision. (This applies to the unbounded external cell
of the subdivision as well.) If no assumptions are made about the query distribution,
then the assumption that cells have constant cell complexity seems to be critical. In
the next section, for example, we show that if the query distribution is arbitrary, then
even determining whether a query point lies within a single n-sided convex polygon
requires expected time Q(logn), irrespective of entropy. Nonetheless, we show (in
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Theorem 2 below) that if we are given a convez subdivision (that is, one whose faces
are convex) and assume that the query distribution within each cell is uniform, then
it is possible to answer point-location queries just as efficiently even if the cells have
an arbitrary number of sides. In order to handle convex cells it will be necessary to
refine the subdivision through the insertion of new edges. For this reason we define
the extended trapezoidal search graph model to include primitive comparisons involv-
ing line segments that are not necessarily part of the original subdivision, but that
join two vertices of the original subdivision.

THEOREM 2. The complexity bounds of Theorem 1 apply as well (in the extended
trapezoidal search graph model) if S is a weighted convex planar polygonal subdivision
such that the query distribution within each cell is uniform.

In order to provide a formal definition of expected query time in the (standard or
extended) trapezoidal search graph model, we begin with a brief discussion of binary
space partition trees. Observe that any point-location algorithm that is based on
binary comparisons can be modeled abstractly as a decision-tree structure called a
binary space partition (BSP) [11]. (The search structure that we present is not a
proper binary tree, since it allows sharing of substructures, but this affects only the
space requirements and not the query time.) For our purposes, a BSP is a rooted
binary tree in which each internal node is associated with a line. This line subdivides
the plane into two half-planes, one open and one closed, which are then associated
with the node’s two children. (Since we assume that query points do not fall on edges,
the question of which is open and which is closed is not significant.) Each node of a
BSP is implicitly associated with a (possibly unbounded) convex polygon, called its
region, which is the intersection of the half-planes corresponding to the path from the
root to this node.

Given a BSP, point-location queries are answered by performing a simple descent
in the tree. At each internal node we visit the child corresponding to the half-plane
that contains the query point until arriving at a leaf. It is easy to see that the
query point lies within the regions associated with each of the nodes along the search
path. It follows that the BSP correctly solves the point-location problem if and only
if the region associated with every leaf of the tree lies entirely within a single cell
of the subdivision. (If the region were to overlap two or more cells, we could not
unambiguously determine which of these cells contains the query point.) When the
search arrives at a leaf, the associated cell is returned as the answer. Given a query
distribution, each leaf of the BSP is associated with the probability that the query
point lies within this leaf’s region. The weighted external path length of a BSP is the
weighted average of the depths of all its leaves, where the weight is this probability [20].
We define the expected query time of a BSP to be this weighted external path length.
An example is shown in Figure 2, where (a) shows the original subdivision, (b) shows
the binary space partition induced by three lines L1, Lo, and L3 and the associated
probabilities with each region, and (c) shows the associated tree. In this case the
weighted external path length is 1-p1 + 2 - pa + 3(ps + pa)-

The rest of the paper is organized as follows. The next section presents math-
ematical preliminaries and provides an overview of our approach. In section 3 we
present an algorithm for answering point-location queries that is optimal in expected
time (up to lower order terms) but suboptimal in space. It answers queries in ex-
pected time H + O(v'H + 1) and space O(n'*¢) for any € > 0. In section 4 we show
how to reduce this to O(n) space. We first introduce the notion of entropy-preserving
cuttings, and in section 4.1 and section 4.2 we show how to apply this concept to
complete the space bound of Theorem 1. Finally, in section 5, we show that these
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F1G. 2. BSP and the associated search tree.

methods can be generalized to convex subdivisions with uniform query distributions
within each cell in order to prove Theorem 2.

2. Preliminaries. Consider a weighted subdivision S. Viewing S as a planar
graph, let n denote the total numbers of its vertices, edges, and faces (cells), re-
spectively. The (unbounded) external face is also considered a cell. A well-known
consequence of Euler’s formula is that if this graph is connected, then n is asymptoti-
cally bounded by the number of edges of S (see, e.g., [11]). Since the number of edges
is clearly a lower bound on the space complexity of any point-location structure, any
O(n) space structure is asymptotically optimal with respect to space.

2.1. On subdivisions of unbounded cell complexity. Throughout much
of the paper we will concentrate on the case where the cells of S are bounded by
a constant number of sides. We will show here why this assumption seems to be
critical in the context of achieving query-time bounds based on entropy. Note that
this assumption is not required for worst-case optimal planar point location, since
it is possible to refine any planar polygonal subdivision into one whose cells have a
constant number of sides while increasing the size of the subdivision by just a constant
factor. However, we show that if cells have unbounded complexity, even if they are
convex, there exist query distributions such that any search structure based on point-
line comparisons performs arbitrarily worse than the entropy bound in the expected
case.

LEMMA 1. Given any convex polygon Z with n sides, there exists a discrete query
probability distribution such that the probability that a query point lies within Z is
1/2, and the expected number of point-line comparisons needed to determine whether
a point lies within Z is Q(logn).

Proof. The probability distribution is defined as follows. Let the vertices of Z be
{v1,...,v,}. For each vertex v; we consider two points a; and b; placed very close
to v;. The point a; lies just inside of Z, and b; lies just outside of Z. The points
a; and b; all carry a query probability of 1/(2n). (See Figure 3.) Observe that the
probabilities sum to 1.

Now let ¥ be any BSP that correctly determines membership in Z. Clearly for
¥ to be correct, for each vertex v; there must be some node of ¥ whose associated
line stabs the line segment a;b;, since otherwise both a; and b; would lie in the same
leaf region, implying that we cannot distinguish between inside and outside in this
case. Because Z is convex, we can place the points a; and b; sufficiently close to
each vertex so that any line can stab at most two such segments. Now consider any
node of ¥. In order to minimize the expected search time, the best that we can hope
to accomplish is that the remaining probability in the region is evenly split between
the left and right children, implying that, other than the at most two vertices whose
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Fic. 3. The proof of Lemma 1 and a stabbing line.

segments were stabbed, half of the remaining vertices lie on one side of the line and
half on the other. It follows easily that Q(logn) such comparisons are needed along
any search path of the optimum BSP. ]

A convex polygon defines a trivial subdivision consisting of two cells (inside and
outside). Irrespective of n, the entropy of the subdivision described in Lemma 1 is
easily seen to be 1. Since the query time grows as Q(logn), it is not possible to bound
the expected query time purely as a function of entropy. Thus we have the following
theorem.

THEOREM 3. If no restrictions are placed on cell complezity or query distribution,
then no search structure based on point-line comparisons can guarantee an expected-
case query time that is bounded purely by a function of entropy, even for convex
subdivisions.

2.2. Conditioning the subdivision. If the cells of the subdivision all have
constant combinatorial complexity, then we claim that it is possible to condition the
problem to bring it into a simpler form without adversely affecting the expected-
case query time. Many point-location data structures assume that the subdivision is
presented in some canonical subdivision, e.g., a triangulation [19], a monotone subdi-
vision [13], or a trapezoidal map [23,26]. If the cells of S have constant combinatorial
complexity, then any of these canonical subdivisions can be realized by refining each
cell into at most a constant number of subcells. The most convenient canonical struc-
ture for our purposes is a trapezoidal map. This is a planar subdivision in which
each cell is a trapezoid with vertical parallel sides. These are trapezoids in a general
sense and may be unbounded or degenerate to triangles. (To avoid the complexities
of unbounded cells, it is common to enclose the entire subdivision in a large bounding
rectangle, which contains all the query points.) Any polygonal subdivision can be
converted into a trapezoidal map by adding two vertical segments between each ver-
tex and the edges lying immediately above and below it. (See Figure 4.) This can be
done in O(nlogn) time either by a straightforward modification of plane sweep [6,11]
or through a simple randomized incremental construction [23,26]. (Recall that by our
general-position assumption, no segment of the original subdivision is vertical.)

In this section we show that if the initial subdivision has cells of constant com-
plexity, then it is possible to condition the input without significantly affecting the
expected-case query time so that it is a trapezoidal map. (The method can be ap-
plied to produce any of the other canonical subdivision forms, but this is the one that
will be most relevant to our construction.) Before giving a formal statement of the
result, we first present a few definitions. Given a planar subdivision S, a refinement
S* is a planar subdivision such that each cell of S* is contained within some cell of
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Fi1G. 4. A subdivision (left) and its trapezoidal map (right).

S. Given S and S*, for each cell z € S, we let F, denote the subset of cells of S*
that are contained within z, called its fragments. Let f, = |F.| be the number of
fragments. We say that S* has fragmentation f if f, < f for all cells z. Clearly
answering point-location queries for S can be reduced to answering queries of S*.

Given a function g : R™ — R™, we say that a point-location structure ¥ is
g-efficient for a weighted subdivision S with entropy H if ¥ answers point location
queries for S in expected time at most H+g(H ). For example, Theorem 1 asserts that
it is possible to construct an O(v/H + 1)-efficient point-location structure. Since the
function g is designed to capture the lower order terms of the query-time complexity,
it should grow at an asymptotic rate that is less than linear. To make this more
formal, we say that a positive function g is admissible if for all reals =,y > 0

e g is subadditive, that is, g(z + y) < g(z) + g(y), and

e g(z)is Oz +1).
It is easy to see that, for any positive constant ¢, the function g(H) = ¢- (vVH 4 1) is
admissible.

An important observation about the point-location construction described in The-
orem 1 is that it is only given the probability p, that a query point lies within each
cell and knows nothing of the probability distribution within each cell. We say that
such a construction is distribution-oblivious. It follows that any structure produced
by such an algorithm must satisfy its expected-case query-time bound for any choice
of the probability distribution within each cell, provided of course that the probability
that a point lies within cell z is indeed p,. This issue arises because in the process
of computing the point-location structure we compute a refinement of the original
subdivision. We do not know what the query distribution is within the cells of the
refined subdivision, and so we cannot compute its expected query time. However, we
know that entropy is maximized when all cells have the same probability. Thus, we
invent a query distribution by splitting the probabilities evenly among the fragments
of each refined cell. We then build an efficient structure for the resulting weighted
subdivision using any distribution-oblivious construction. The following result shows
formally that this strategy leads to an efficient solution to the original problem, irre-
spective of the actual query distribution.

LEMMA 2. Consider a subdivision S and a query distribution on S. Let H denote
its entropy. Let S* be any refinement of S of fragmentation O(1). In O(n) time it
is possible to_assign nonnegative weights to the cells of S*, thus producing a weighted
subdivision S with the following property. Let W be any g-efficient point-location
structure for S produced by a distribution-oblivious construction for an admissible
function g. Then ¥ is an O(g + 1)-efficient point-location structure for the original
subdivision S.

Before presenting the proof, we show how to apply this result to achieve the de-
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sired conditioning. Consider any weighted subdivision S of constant cell complexity
and of total size n. In O(nlogn) time we convert this subdivision into a trapezoidal
map S through a refinement of fragmentation O(1). Clearly the resulting refinement
also has size O(n). Now, we apply the above result to assign weights to this trape-
zoidal map. Assuming that Theorem 1 holds for trapezoidal maps, it follows that in
O(nlogn) time we can construct an O(vH + 1)-efficient point-location structure ¥
for S. By the above result, ¥ can be used as an O(v/H + 1)-efficient point-location
structure for the original subdivision S, albeit with a higher constant factor hidden
by the “O”-notation.

We devote the remainder of this section to proving Lemma 2. Let S denote the
original subdivision of entropy H. Let S* be a refinement of S of fragmentation f.
For each cell z of S, recall that p, is the probability that the query point lies within z.
Also recall that F, denotes the set of f, fragments into which z has been subdivided.
For each fragment y € F, there is some probability p, that the query point lies within
y, but the algorithm does not know this probability. Clearly Zye 7. Py = pz. Let
H* =3 cs2 ycr. Pylog(1l/py) denote the entropy of this (unknown) distribution.

For the purposes of the proof we need to assign probabilities to the fragments.
Since we know that entropy is maximized when probabilities are distributed as evenly
as possible, let us split the weight evenly among the fragments by setting w, = p,/f.
for each fragment y € F.. Since p, < p., and since S* has fragmentation f, we have
wy > py/f. Clearly Zye F, Wy =Dpz. Let S denote the resulting weighted subdivision,
and let

=2 3 wlos -

zESYeEF,

denote its entropy based on this weight assignment. The assignment can easily be
computed in O(n) time. The following lemma asserts that the entropies of all these
subdivisions are related to each other, up to an additive term of log f.

LEMMA 3. Given the weighted subdivisions S, S*, and S defined above, their
respective entropies satisfy

H < H* < H < H+logf.

Proof. To prove the first inequality we observe that if y is a fragment of z, then
py < p. and thus

szlog— Z Zpylog— < Z Zpylog— = H*.

z€S zeES yeF, zeSyeF.,

The second inequality is an immediate consequence of the fact that entropy is max-
imized when the probabilities (weights) are equal to each other [10], which is clearly
the case for the weight assignment defining H. Finally, to prove the last inequality
we use the facts that f. = |F.|, >, p. =1, and f. < f to obtain

ﬁ:ZZwylog = Z pzl sz<log+logfz)
2€S yeF, 2€S yeF, e P> z€S
< (szlog> +logf = H4logf. O

zeS
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Returning now to the proof of Lemma 2, recall that S is our uniformly weighted
refined subdivision. Let ¥ be a g-efficient point-location structure for .S, which results
from a distribution-oblivious construction. Let Fy denote the expected query time for
U assuming the weight assignment w, given above for each cell y of S. (Technically,
qu can only be defined relative to a particular probability distribution such that the
probability that a query point lies within y is w,. However, given that the construction
is distribution-oblivious, we know that for any choice of such a probability distribution
we will have Ey < H 4 g(H). Since this is the only assumption we will make about
Ey we will tolerate this abuse.)

Because ¥ can be viewed abstractly as a BSP and by the remarks made in section
2.1 on the correctness of BSPs for point location, it follows that the region associated
with each leaf cell of ¥ lies within some cell y of S. Thus, each fragment y is further
decomposed by ¥ into subfragments. Let F, denote the subfragments of y, each
associated with a leaf of ¥. (See Figure 5.)

z z z/| Xoq
"""" - oo Xpp

X
Y1 Y2 11| o3

Yi Y2

Fic. 5. Fragments (F. = {y1,y2}) and subfragments (Fy, = {x21,x22,z23}).

For each z € F,, let p, denote the (unknown) probability that the query point
lies within this subfragment, and let d, denote its search depth in ¥, that is, the
number of primitive comparisons needed to provide an answer for any query point in
x. Since subfragments may have different search depths, we then define the (true)
expected search depth for a fragment y of S* to be

D, = pi Z Prdy.

Y zeF,

It follows easily that if we apply ¥ as a point-location structure for the original
subdivision S, the expected search time, denoted Fy, is given by summing up the
contributions from all the subfragments:

By = 3 3 > pede = Y Y pyDy

z€ES yeF, x€F, zESYEF,

The values of the p,’s are not known to us, and so we cannot compute D,. But
because V¥ is constructed by a distribution-oblivious algorithm, we know that the
upper bound on the expected query time for S holds irrespective of the choice of
probability distribution within each of the fragments. We define such a probability
distribution for S by allocating weights among the subfragments in exactly the same
proportions as their true values. Of course, this is done subject to the constraint that
they sum to w,. We also define the expected depth analogously:

Wy = &wy and ﬁy = 1 Z Wedy.
Py Wy zEFy

We observe that ﬁy is equal to its counterpart in the true distribution:

~ 1
Dy = — Y wpd, = — “Zwyd, = — Y peds = D,
Py zcFy
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The expected search time E‘q, under our constructed distribution is

Eq,: ZZ Zwmdzz ZZwyﬁy

z€ES yeF, xcF, zeSyeF.

By the obliviousness of ¥’s construction and g-efficiency we have

From the observation made prior to Lemma 3 that w, > p,/f and the fact that the
probabilities sum to 1, we have

g(f[)zz Z Zj;’(f)y—log;;) = %Z Zpy <1A)y—logp1y—logf>

zESYEF, z€ES YEF,
1 ~ 1
:? ZZpy D, —log — —log f
2€S yeF. Py

Next, we multiply both sides by f and add log f, and then apply the substitution
D, = D, and the definitions of Fy and H* to obtain

frgH)+logf > Y3 p, (Dy—log;)= Ey —H".
Y

zeSyeF,

Now, from Lemma 3 we know that H* < H<H+ log f. Since g is admissible,
it is also subadditive. Combining this with the fact that the fragmentation f is a
constant, we obtain

Ey—H<Ey—H"+logf < f-g(H+logf)+2logf
< f(g(H) + g(log f)) + 2log f (by subadditivity)
< f(g(H)+O(og f+1))+2log f (by admissibility)
=O0(g(H) +1).

This implies that ¥ is O(g + 1)-efficient as a point-location structure for S, and so
completes the proof of Lemma 2.

In conclusion, we can condition our input subdivision into a trapezoidal map so
that the impact of this conditioning on the expected-case query time is to increase
the constant factor of the lower order terms. This conditioning has a nice side benefit.
Recall from the introduction that the entropy H of the input subdivision may generally
be arbitrarily close to zero, but it does not make sense to talk about query times that
are smaller than 1. As mentioned after the statement of Theorem 1, we therefore suffer
the notational inconvenience of carrying an extra term of “+1” in all our complexity
bounds. We claim that we can avoid this inconvenience henceforth because the entropy
H of the trapezoidal map is at least 1. To see this, observe that every bounded cell
of the initial subdivision has at least three sides and thus will be subdivided by a
vertical line into at least two trapezoids. Our construction distributes the probability
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evenly among the fragments of a cell, and so it follows that for all fragments z in the
final subdivision we have w, < 1/2. Therefore, because the sum of fragment weights
is 1, the entropy of the resulting trapezoidal map is

H = Z Z wy log(1/wy) > Z Z wy = 1,

zES YEF, z€ES YEF,
as desired.

2.3. Overview of our methods. Before presenting our algorithms we provide
an overview of our methods. Our point-location data structure is based on many of
the same methods used in the construction of worst-case efficient point-location struc-
tures, particularly the methods given by Preparata [24] and Seidel and Adamy [27].
Establishing efficient expected query time involves considerably different techniques
from worst-case query time. As mentioned above, a point-location data structure that
is based on linear comparisons can be viewed abstractly as a BSP. What properties
must the associated partition tree possess in order to answer point-location queries ef-
ficiently on average? Observe that since the expected query time is the tree’s weighted
external path length, the contribution of each leaf to the expected query time is its
tree depth times its probability. The probability that the query point lies in the re-
gion associated with a leaf is not known exactly, since we are not given the query
distribution within each cell. Our strategy will be to construct a tree in which the
depth of any leaf generated from a cell z € S is close to log(1/p.).

As we shall see this will lead to a method, which while optimal with respect to
expected-case query time, is not optimal with respect to space. In particular our
best upper bound on space is superlinear in n. (See Theorem 4 below.) To reduce
the storage further we employ a common strategy in computational geometry, called
cuttings. Given a subdivision S with m edges, and a parameter r > 1, a (1/r)-
cutting [7] is a partition of the plane into O(r) trapezoids such that the interior of
each trapezoid is intersected by at most m/r edges of S. If numeric weights are
assigned to the edges, then this can be generalized to a weighted (1/r)-cutting, where
now the total weight of edges intersecting any trapezoid is at most W/r, where W
is the total weight of all the edges. Goodrich, Orletsky, and Ramaiyer [16] and later
Seidel and Adamy [27] applied cuttings in a divide-and-conquer manner to produce
the most space-efficient data structure.

Cuttings cannot be applied directly in our case, however, since the partitioning
process may refine the subdivision in a way that significantly increases its entropy, and
this increases the expected query time. An important contribution of this paper is the
notion of an entropy-preserving cutting, which additionally ensures that the entropy of
the subdivision is increased by at most an additive constant. This will be presented in
section 4. Our approach will be to apply entropy-preserving cuttings to build a two-
level search structure. For the first level we construct an entropy-preserving cutting
of an appropriately chosen size and build the initial point-location structure described
in section 3 for the cutting. This achieves good expected-case query time but leaves
a number of regions to search. We show that the probability that the query point lies
within any of these remaining regions is so small that a relatively sloppy worst-case
optimal point-location algorithm suffices to achieve our desired results.

Extending these results to convex subdivisions with uniform query distributions
involves a simple refinement step. Each convex cell is triangulated by a process that
extracts a triangle whose area is a constant fraction of the total area, and then recurses
on each of the three resulting fragments. We show that if the query distribution is
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uniform, then the increase in entropy in the resulting refined subdivision is at most
an additive constant.

3. Initial solution. In this section we present an algorithm for answering point-
location queries that is optimal in expected time but suboptimal in space. Recall that
from the results of section 2 we may assume that the subdivision S is presented as a
weighted trapezoidal map of nonvertical segments and its entropy H is at least 1.

THEOREM 4. Given a trapezoidal map S of size n, together with probabilities p,
that a query point lies within each cell z, we can build a data structure that answers
point-location queries in expected query time

1
H+2v2H + ilogH—i-O(l),

where H is the entropy of S. The space for the data structure is

1

Other than the probabilities p, we make no assumptions about the query proba-
bility distribution within each cell. Recall that 1 < H < logn. It is easy to verify that
2V2H /\/H increases monotonically for H > 1/(v/2In2)? ~ 1.04, and so the space is
maximized when H = logn. Thus, the space is at most O(n2vV2'°2"\/logn), which is
O(n'*e) for any € > 0. The preprocessing time is O(N +nlogn), where N is the total
space of the data structure. Thus the asymptotic preprocessing time is dominated by
the above space bound.

3.1. Construction of the search tree. As mentioned earlier, our data struc-
ture is based on constructing a BSP W for S. Before building the tree we map the cell
probabilities to an assignment of weights to the vertices of the subdivision as follows.
Recall that n is the combinatorial complexity of S. For each trapezoid z € S, we
assign a weight of w, /4 to each of its (at most four) corner vertices, where

(See Figure 6.) If a vertex is a corner of multiple trapezoids, then its weight is the
sum of the contributions from all such trapezoids. It is easy to see that the total
weight of all the trapezoids is at most 1, and this holds as well for the total weight
of all the vertices. The 1/n term in the definition of the weight will be important
in limiting the fragmentation of cells of very small probability. This in turn will be
needed to establish our space bounds.

Fic. 6. Assignment of weights.

The tree ¥ is built recursively in a top-down fashion. Each node u of ¥ will be
associated with a trapezoidal region, denoted A,. We define the weight of a region to
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be the sum of the weights of the subdivision vertices in the interior of the region, and
we define the weight of a node u to be the weight of A,,. The construction is based on
a recursive process, which is broken into stages. Each stage replaces an existing leaf
node whose associated region overlaps two or more cells of S with a new subtree. Let
us consider one such stage. Suppose that we are working on the subdivision contained
within a trapezoid A,, associated with some node u. (Initially u is the root of the tree
and A, is the entire space.) Let w, denote u’s weight. (For example, in the upper
left of Figure 7(a) w,, is the sum of the weights of the black and gray vertices lying
in the interior of the trapezoid A,.) We split A, into two vertical slabs, by passing
a vertical line through a subdivision segment endpoint, such that the weight of each
slab is at most w, /2. We repeat this for ¢ levels, where ¢ > 1 is a suitable parameter
(to be fixed later), each time ensuring that the sum of the weights is halved. This
partitioning can be represented in a natural way by a balanced tree having up to 2¢
leaves, representing the 2! vertical slabs. (There may in fact be fewer, since some
slabs may contain no interior vertices before the splitting process ends.)

After this, each slab is further partitioned into trapezoids by the segments of
the subdivision that completely cross it. (See Figure 7(b).) Following Seidel and
Adamy [27], we build a weighted search tree [22] for each slab. There is a technical
difficulty, however. A trapezoid that contains no vertices in its interior (called an
empty trapezoid) has a weight of 0, and so we cannot reasonably bound its depth
in the tree. To handle this the weighted search tree is based on the following set of
adjusted weights. The adjusted weight of a nonempty trapezoid is just its weight,
that is, the sum of weights of its interior vertices. The adjusted weight of an empty
trapezoid cell is defined to be w,/(h2!), where z is the trapezoid of S that contains
this cell, and where h > 1 is a suitable parameter (to be fixed later). (See Figure
7(b).) After building the weighted search tree for the trapezoids of each slab, we
recurse on each of the nonempty trapezoids. The process ends when there are no
nonempty trapezoids.

(a) (b)

Fic. 7. Construction of the initial search structure for t = 2.

For the purpose of analysis, it is convenient to view this partitioning scheme as a
multiway tree as follows. Each stage involves splitting a trapezoid u into 2! vertical
slabs, each of which is then partitioned into smaller trapezoids. In the multiway
tree, there is a node representing trapezoid u, which is made the parent of the nodes
representing these smaller trapezoids. Let ¥’ denote this multiway tree. Note that
each node of ¥’ corresponds to a unique node of ¥ and represents the same region.
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This construction can be implemented efficiently as follows. We assume that we
maintain the following for each node wu:

(i) Su =SnNA, (ie., the original subdivision S clipped to within A,), and

(i) a list of the vertices of S that lie within the interior of A, and their associated

weights, sorted according to their x-coordinates.

We assume that S, is represented in a manner that supports efficient processing
and traversal, say as a doubly connected edge list (DCEL) [11]. We also assume that
there are cross links between each vertex of the sorted list and its corresponding vertex
of the DCEL. This information can be computed for the root of the tree in O(nlogn)
time. Let us also define T,, to be the set of (unclipped) trapezoids of S that intersect
the interior of A,,. Thus each (clipped) trapezoid 2’ € S, arises by intersecting some
(unclipped) trapezoid z € T, with A,,.

Now consider the single-stage construction for a fixed internal node u of the
multiway tree. Let n, denote the combinatorial complexity of S,. Let m, denote
the total number of empty and nonempty trapezoids that result from one stage of the
construction or, equivalently, the total number of nodes in all the weighted trees for
all of u’s slabs. In O(n,,) time it is possible to scan the sorted vertex list from left to
right, to generate the (up to) 2¢ slabs with the desired weights. We then cut S, into
slabs by tracing along each of the 2t — 1 vertical lines that define the slab boundaries.
Because each cell of S, is of constant combinatorial complexity, by standard results
on DCELs [11] we can do this in O(1) time for each intersection between a segment of
Sy and a cutting line. The overall time is O(m,,). As we are cutting out each slab, we
note which of the segments of S cut clear through the slab. From this information we
can determine which of the resulting trapezoids are empty and which are nonempty.
Then, for each nonempty trapezoid, we can construct the DCEL representation of
the subdivisions lying within the trapezoid in time proportional to its size. This
takes time O(n,) when summed over all the nonempty trapezoids. After this the
subdivisions are ready for the next recursive step.

Next we consider how to update the sorted vertex list. Consider each nonempty
trapezoid 7;. We traverse the associated subdivision and, for each vertex lying in
the interior of the trapezoid, we access the cross link to the sorted list and label the
associated list entry with the integer i. Through the use of any stable integer sorting
algorithm (e.g., counting sort [9]) we sort these labels in O(n,) time. By collecting
adjacent entries with the same label, we can partition the sorted vertex lists among
the various nonempty trapezoids, while maintaining the sorted order, all in O(n,,)
time.

Thus, the total processing time for node u is O(n, + m,). The sum of the m,,
terms over all the nodes is essentially equal to the number of nodes of ¥/, which is
bounded above by the total number of nodes of ¥. Because each subdivision vertex
appears in the region associated with at most one node at each level of ¥/, the sum
of the n, terms for each level is O(n). In Lemma 4 below we show that the number
of levels in ¥’ is at most (1/t)logn + 5. Therefore the overall construction time is
O(N + nlogn), where N is the total number of nodes in the tree. We will bound N
later in Lemma 5.

3.2. Analysis of the space and query time. We now analyze the space and
expected query time as a function of the parameters ¢ and h. For a node u of W,
let p, denote the probability of the query point lying in its associated region A,
(or, equivalently, the probability of visiting u during point location). Recall that w,,
denotes the weight of all the vertices in the interior of A,. The following lemma
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bounds the number of levels in multiway tree ¥’.

LEMMA 4. The number of levels in ¥’ is at most (1/t)logn + 5.

Proof. Consider any path in the multiway tree ¥’ descending from the root to a
leaf. Along any edge that leads from one internal node to another the weight decreases
by a factor of at least 2t. Since the weight of the root is at most 1, the weight of
any internal node v at level 7 of ¥’ is at most 1/2!¢=1) Since u is internal, it must
contain the corner vertex of some trapezoid z in its interior. Recall that the weight
of each of the corner vertices of trapezoid z is at least w,/4 (more if it is a corner of
multiple trapezoids). It follows that

1 Wy
ot(i—1) = 4 -
Simplifying this gives

1 1 1 1
1 < —(log— +1logd | +1 < —log— + 3.
t W, t W,

Since w, > 1/(2n) it follows that the level of any internal node is at most (1/t) log n+4,
and the number of levels is higher by 1. O

Using this, we can bound the total size of the tree.

LEMMA 5. The total number of nodes of ¥ is at most O(n2t((logn)/t + 1)).

Proof. Consider any trapezoid z of S. We first show that the number of leaves of
¥ generated by z is at most

1
4.9 <tlogn+4>.

It follows from our construction that any internal node of the multiway tree ¥’ that
overlaps the interior of z must contain at least one of the four corner vertices of z.
Thus, there are at most four such internal nodes at any level of ¥’. (In fact, a more
careful analysis shows that there are at most two such nodes, one for the left side and
one for the right side.) From the proof of Lemma 4 it follows that the total number of
internal nodes of ¥’ that overlap the interior of z is at most 4((1/t)logn + 4). Since
any node of ¥’ can have at most 2¢ children that overlap the interior of z, the above
bound follows.

By summing this bound over all O(n) trapezoids, the total number of leaves of
U is at most O(n2!((logn)/t 4+ 1)). Since V¥ is binary, the number of internal nodes
cannot be larger. O

In Lemma 7, we bound the depth of a leaf generated from a trapezoid z € S. To
this end, we need the following technical result.

LEMMA 6. Let u be an internal node in the multiway tree O'. Let o be any of the
2t wertical slabs into which A, is partitioned. Then the total adjusted weight of the
weighted search tree corresponding to o is at most (w,/2t)(1+4/h).

Proof. Recall that the segments of S partition ¢ into empty and nonempty trape-
zoids. Since the weight associated with o is at most w, /2, the total adjusted weight
of all the nonempty trapezoids is at most w, /2¢. We will show that the total adjusted
weight of the empty trapezoids is at most 4w, /(2'h), which will complete the proof.

Recall that T, denotes the set of (unclipped) trapezoids of S that intersect the
interior of A,. The construction implies that the trapezoids of T, have at least one
of their four corner vertices in the interior of A,. Since w,, is the sum of the weights
of all the vertices in the interior of A,, it follows that w, > ZzGTu w, /4.
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Next observe that a trapezoid of T, can generate at most one empty trapezoid in
slab 0. Recall that the adjusted weight of an empty trapezoid generated by trapezoid
z € Sis w,/(2'h). Thus the total adjusted weight of the empty trapezoids in o is at
most Y. w./(2'h). By the bound on w, from the previous paragraph, this is at
most 4w, /(2th). O

The following lemma establishes the essential property given in section 2.3, by
showing that the depth of any leaf associated with a cell is proportional to the loga-
rithm of its reciprocal probability.

LEMMA 7. Let u be a leaf of U generated by any trapezoid z € S. Then the depth
of u in ¥ is at most

1 6\ 1 1
log— +1t+ (2+) —log — +logh + O(1).
W, h/t W,

Proof. Let P = uy,us,...,up be the path from the root to the leaf u = uy in the
multiway tree U’. Recall that each node of ¥’ corresponds to a unique node of W.
Consider a fixed ¢, 1 < ¢ < {. Let o denote the vertical slab in A,,, that contains the
trapezoid associated with u;41, and let v denote the node of ¥ corresponding to o.
To prove the lemma, we will separately bound the length of the paths in ¥ from u;
to v and from v to u;41. By construction, the length of the path in ¥ from wu; to v is
at most .

To bound the length of the path in ¥ from v to w41, recall that w;41 is a leaf in
the weighted search tree for slab o. By standard results on weighted search trees [22],
the length of the path in ¥ from v to u;11 is at most log(W/w) + 2, where W is the
total adjusted weight of all the trapezoids in slab ¢ and w is the adjusted weight of
the trapezoid associated with u;y1. By Lemma 6, W < (w,,/2")(1 + 4/h). We now
consider two cases: (i) 1 < i < ¢—2and (ii) ¢ = £ — 1. In the first case, u;;1 is a
nonempty trapezoid, so its adjusted weight w is the same as its weight w,,,,,. Thus,
the length of the path in ¥ from v to u;41 is at most

g (220 4

Wy

4
>+2 — (1ngu1—logwui+1)_t+bg <1+h>+2

i+1

In the second case, u;y1 = uy is an empty trapezoid, so its adjusted weight w is
w,/(2th). Thus, the length of the path in ¥ from v to u, is at most

o L2270
w,/(2th)

4
) +2 = (logwy,_ , —logw,) + logh + log (1 + h) +2.

By using the above claim to bound the lengths of the paths in ¥ between adja-
cent pairs of vertices in P, the fact that w,, < 1, and summing and cancelling the
telescoping probability terms, it is easy to see that the depth of v in ¥ is at most

(1) logl+t+<2+log<1+;‘;>)(€—l)+logh.
w

z

Recall the trapezoid z in the statement of the lemma. Since uy_; must contain
at least one of the corner vertices of trapezoid z, it follows that w,,_, > w,/4. Also,
since the weight of a node at level i is at most 1/2/~1) | we have w,, , < 1/2(¢=2),

Thus,
1 1 1 1 1 1
— log < —(log— +logd) < —|log— +2].
t t w t

Wy z w,

(-2

IA
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Substituting this value of ¢ into (1) and using the facts that log(1l + 4/h) < 6/h,
h > 1, and t > 1, we obtain the bound on the depth of u given in the statement of the
lemma. ]

We can now bound the expected query time.

LEMMA 8. The expected query time using the BSP VU is at most

H
H+t+(2+2)t+logh+0(1).

Proof. For any trapezoid z € S, let £, denote the set of leaves generated by z.
The expected query time is given by

DD pu:

zeSueLl,

where p, denotes the probability that the query point lies in the region associated
with node u, and d,, denotes the depth of u. By applying Lemma 7 it follows that
this sum is at most

1 1 1
S pu [1og+t+(2+6)log+logh+0(1)].
W, h/)t W,

zeESuEL,

Using the facts that ) . p, =p. and ), _gp. =1, this is at most

1 6\ 1 1
(szlong> +i+ (2+h) n (szlogw> +logh + O(1).

2€8 z€S ?

Noting that w, > p./2, h > 1, and ¢ > 1, we obtain the desired bound. ]
In order to obtain the best bound on the expected query time, we choose t =
[V2H| and h = VH in Lemma 8. This yields an expected query time of at most

1
H+2v2H + §logH+O(1).

Using Lemma 5 and noting that ¢ is at most O(y/logn), we obtain a bound on the
space of

logn
0 2¢2H) |
(n VH

This completes the proof of Theorem 4.

Remark. By setting t = [\/ﬁ] +¢, where ¢ is a fixed positive integer and h = v H,
it is easy to see from Lemma 7 that the maximum depth in the search tree, that is, the
worst-case query time, is (1 + O(1/c))logn. Simultaneously, the bound on expected
performance given by Theorem 4 also holds.

Remark. For the next section on entropy-preserving cuttings, it will be necessary
to derive a bound on query times that is sensitive to the cell containing the query
point. The following lemma establishes this for us.

LEMMA 9. We are given a trapezoidal map S of size n, together with a nonnegative
weight w, for each cell z € S, such that ZZGS w, <1, and a real parameter 1 < B <
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Vlogn. Then we can build a data structure that answers point-location queries for
each cell z € S in time

vo(1)] el orm)

The space and preprocessing time for the data structure are O(n2vV2°8"\/logn).
Proof. Let h = B and t = [B\/QT From Lemma 7 it follows that the time to
locate a query point in any cell z of S is at most

1 6\ 1 1
log— +1t+ (2+) —log — +logh + O(1)
e h/)t Wy

1 6 1

- [1 +0 (]13)] log wi +0(B),

as desired.
From Lemma 5, the total number of nodes of ¥ is at most

19 <n2t (b?l—&—l)) -0 <n2B\/§ (b?l—i-l)).

For B > 1/(v/21n2) ~ 1.02, it is easy to verify that 23‘/5/3 is an increasing function
of B, and since B < /logn, it follows that the space is at most

s [ logn 5 Toa
O(n2 2logn <+1 = O(n? 21°g”\/logn).
Vlogn

Recall that the preprocessing time is O(N +nlogn), where N is the total space of the
data structure. Thus the preprocessing time is dominated by the above space bound.
This completes the proof. 0

4. Entropy-preserving cuttings. Although the query time given in Theorem 4
is as desired, the space bound is still superlinear in n. In this section we introduce
the notion of an entropy-preserving cutting, that is, a cutting that ensures that the
entropy of the subdivision is increased by at most an additive constant. Then, in
sections 4.1 and 4.2 we will see how to apply this idea to reduce the space to linear.

Recall that we are given a subdivision S, presented to us as a weighted trapezoidal
map of a set X of nonvertical segments, whose entropy H is at least 1. The results of
the previous section provide optimal expected query time (up to lower order terms),
but the space required is superlinear in n. In this section we show how to apply the
well-known notion of cuttings in the expected-case setting to produce a structure of
linear space. Suppose that each z € X is associated with a positive weight w,. Let
W = 3. cx w, denote the total weight. Consider a positive parameter r. For our
purposes we define a (1/r)-cutting of X to be a partition of the plane into trapezoids
(in general these are canonical shapes of constant combinatorial complexity) such that
the total weight of the segments of X that intersect the interior of any trapezoid is
at most W/r. It is known that it is possible to compute such a cutting of size O(r) in
O(nlogn) time by a randomized algorithm, and it can be computed deterministically
in polynomial time [7,16]. The construction also provides for each trapezoid of the
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cutting the set of segments that intersect this trapezoid. Furthermore, this construc-
tion has the property that each trapezoid in this cutting is bounded from above and
below by a subsegment of some segment of X. (See Figure 8.)

The point-location construction of the previous section was based primarily on an
assignment of weights to the vertices of S. Our approach here will involve a similar
assignment of weights to the segments of X. For each cell z € S, recall that p,
denotes the probability that the query point lies within z, and that we make no other
assumptions about the query distribution within a cell.

(a)

Fic. 8. A set X of segments (a) and a cutting of X (shown with broken lines) and a cell of the
cutting (shaded) (b).

Each trapezoid of S can be associated by a subset of at most four defining seg-
ments of X, which together define its four sides. These are the segments defining the
trapezoid’s upper and lower sides, any segment whose endpoint lies on its left vertical
side, and any segment whose endpoint lies on its right vertical side. (These segments
are indicated with an asterisk in Figure 9.) We begin by assigning weights to the
segments of X as follows. For each trapezoid z € S, we assign a weight of w./4 to
each of its defining segments, where

s (1)
w, = —max|p,, — |.
2 n

If a segment is a defining segment of multiple trapezoids, then its weight is the sum
of the contributions from all such trapezoids. Note that the total weight of all the
segments is at most 1.

SE

A‘NE
ENRS

A‘NE

()
F1G. 9. Defining segments (a) and the weight distribution ((b) and (c)).

We next present our construction of entropy-preserving cuttings. Using the weight
assignment w,, defined above, we compute a standard weighted (1/r)-cutting for X.
As mentioned at the start of this section, such a cutting has size O(r) and can be
computed in O(nlogn) time. Furthermore, each trapezoid of this cutting is bounded
from above and below by a subsegment of some segment of X. Let C* denote this
cutting.

We modify the cutting C* by applying the following procedure on each trapezoid
z € S. If a trapezoid of the cutting lies within z, then by the properties of the
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cutting, this trapezoid is bounded from above and below by the same segments that
bound z from above and below. Thus, any adjacent trapezoids of the cutting that
are contained within z must be separated from each other by a vertical line segment,
and hence a collection of adjacent cutting trapezoids within z occurs as a contiguous
sequence. If z contains such a contiguous sequence of trapezoids of C*, we merge
each such maximal subsequence into a single trapezoid. (See Figure 10.) Since no
segment of X intersects the interior of the merged trapezoid, it follows that C also
satisfies the properties of a weighted (1/r)-cutting. Let C denote this new cutting,
and let S* denote the subdivision formed by superimposing C on S. In Lemma 11,
we will establish the key properties enjoyed by C. In particular, we will show that C
is entropy-preserving; that is, the entropy of S* exceeds the entropy of S by at most
a constant.

Fic. 10. Merging contiguous trapezoids of the cutting.

Clearly, the cells of S* are trapezoids; we use the term fragments to refer to these
cells. We distinguish between two types of fragments. Consider a fragment w that
arises from the intersection of a cutting cell A and a subdivision cell z. If A C z,
we call it a type-1 fragment; otherwise it is a type-2 fragment. Let F,, F., and F/
denote the set of all fragments, type-1 fragments, and type-2 fragments, respectively,
that are contained within z. Let F' = U,csF. denote the set of all type-1 fragments
and F” = U,esF. denote the set of all type-2 fragments. Finally, let C’ denote the
set of trapezoids of C that are contained within a single cell of S, and let C” denote
the rest of the trapezoids of C. Note that type-1 fragments are contained inside the
trapezoids of C’' (in fact, 7/ = C’), while type-2 fragments are contained inside the
trapezoids of C”.

For any trapezoid A (not necessarily in C), we define the following items. We let
Sa = SNA (ie., the original subdivision S clipped to within A). We let pa be the
probability that the query point lies within A. We will use XA to denote the set of
segments in X that intersect the interior of A, and Ta to denote the set of trapezoids
of S that intersect the interior of A. Observe that Sa and Ta are exactly analogous to
Sy and Ty, introduced in section 3.1. In particular, each (clipped) trapezoid z’ € Sa
arises by intersecting some (unclipped) trapezoid z € Ta with A.

The following technical lemma will be useful in proving Lemma 11.

LEMMA 10. Let A be any trapezoid of C"'. Then

() Toer, - = O(1/r),

(i) pa = O(1/r),

(it}) |Xa| = O(n/r).

Proof. Consider a trapezoid A in C” and any trapezoid z in Ta. We claim that at
least one of the defining segments of z belongs to Xa. To prove this claim, recall that
A is bounded from above and below by some segment of X. Since S is a trapezoidal
map of X it follows that z cannot cross the segments of X that bound A from above
and below. We consider two cases. First, suppose either that the segment bounding
z from above differs from the segment bounding A from above or that the segment
bounding z from below differs from the segment bounding A from below. (See Figure
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11(a).) Then clearly the differing segment must intersect the interior of A and thus
belongs to Xa. Since the segments bounding z from above and below are defining
segments of z, the claim holds. Otherwise, it follows that the segments of X bounding
A from above and below also bound z from above and below. (See Figure 11(b).) In
this case, one of the two vertical sides of z must intersect the interior of A (because
otherwise A would be a subset of z, and then A would belong to C’). It follows that
the segment of X that defines this vertical side of z must belong to Xa. This proves

the claim.

o—:-+A»H««:—o defining segment o—-+A»m-«:—o

(a) (b)

Fia. 11. Proof of Lemma 10.

Recall that trapezoid z assigns a weight of at least p./8 to each of its defining
segments. It follows from the above claim that z assigns a weight of at least p,/8 to
some segment in Xa. Therefore,

S Y

z€TA reXa

Since C is a weighted (1/r)-cutting for X, we have > .y, w, = O(1/r). Thus,
> .ers P= = O(1/r), which implies (i). Recalling that each (clipped) trapezoid 2’ €
Sa is a subset of some (unclipped) trapezoid of z € Ta, we have p,» < p, and so

paA = Z Dz < Z bz = 0(1/7"),

z'eSa z€TA

which implies (ii). Finally, since the weight of each segment of X is at least 1/(8n)
and } cx . wy = O(1/r), it follows that there can be at most O(n/r) segments in
XA. O

LEMMA 11 (entropy-preserving cuttings). For any r > 1, in time O(nlogn) we
can partition the plane into O(r) trapezoids satisfying the following properties. Let C
denote the cutting formed by these O(r) trapezoids, S* denote the subdivision formed
by superimposing C on S, and A denote any trapezoid of C.

(i) If A € C”, then the probability pa that the query point lies within A is O(1/r).

(ii) The number of segments, | X |, intersecting the interior of A is O(n/r).
(111) ZAGC ZZETA Pz = O(l)

(iv) Let Hs = ) .gP- logp% and Hg« = ) cgeDu logp% be the respective en-
tropies of these subdivisions. Then the increase in entropy, Hg~ — Hg, is at
most a constant.

The construction also provides for each trapezoid of the cutting the set of segments

that intersect this trapezoid.

Proof. We claim that the cutting C described above satisfies the four properties

given in the statement of the lemma. Let A denote any trapezoid of C. If A € C’,
then, by definition, A is contained within a trapezoid of S, and so (ii) obviously holds.
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Otherwise A € C”, and, by applying Lemma 10(ii) and (iii), we have pao = O(1/r)
and |Xa| = O(n/r). This proves (i) and (ii).

We next prove (iii). For any trapezoid z € S, let f., f., and f! denote the
number of all fragments, type-1 fragments, and type-2 fragments, respectively, that
are contained within z. Observe that Y \cc >, cp, P- is the same as ) g p.f.. We
will show that the latter quantity is O(1), which will prove (iii).

In view of the merging process (recall Figure 10), it is clear that there must be a

fragment of type 2 between any two fragments of type 1, and so f, < f/ + 1. Thus

2 Y oS = Y op(FHS) < D 1) = 14+2) pfl

z€S zeS zeS zeS

Note that > p.f. is the same as Y xcen D .cp, P-- By Lemma 10(i), for each
A el Y . cp - = O(1/r). Since |C"| < [C| = O(r), it follows that . _gp.f] =
O(1). Substituting into (2), we have ) _¢p.f. = O(1), which completes the proof
of (ii).
For convenience we express part (iv) of the lemma as
(3) > pu 10g —=> p. 10g — = 0(1).
ues* z€8

The left-hand side of (3) can be written as

Z KZ pu10g> —pzlogpll :

2€S u€F, ?

Since ), cr. Pu = Pz, it follows from basic properties of entropy (see, e.g., [10]) that
Y e 7. Pu log(1/p,,) is maximized when the probability of all the fragments u € F, is
equal, i.e., p./f.. Thus

> pulogf—szlogf <y |:fz 7 log—pzlogl]

Z

ueS* zeS z€S
:ZPZIngz < szfz~
zE€S z€S

In proving (iii) above, we showed that ) __sp.f. = O(1), which establishes (3).

Finally, standard cutting construction already provides the set of segments that
intersect each trapezoid, and so it is trivial to adapt our construction to do so as
well. O

4.1. Space reduction through entropy-preserving cuttings. We are now
ready to describe our space-efficient data structure. We set the parameter r to the
value n/(2vV21°8",/logn) and construct the entropy-preserving cutting C described in
Lemma 11. In O(nlogn) time, we obtain C along with X for each cutting trapezoid
A. Let ¢ = > nce D .ern D=y Which by Lemma 11(iii) is O(1). For each trapezoid
A € C, we assign it a weight wa proportional to the sum of probabilities of the
overlapping trapezoids, that is, wa = > .7, p./c. By our choice of ¢ we have
> acc WA = 1. From our initial conditioning, we know that Hg > 1. So using these
weights, and setting B = v/Hg, we can now apply Lemma 9 to build a point-location
data structure for C. Since |C| = O(n/(2V2!°8"\/logn)), it follows that the space and
preprocessing time for this data structure are O(n).
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Additionally, for each trapezoid A € C”, we build any standard worst-case point-
location data structure for the subdivision Sa. This data structure uses O(]Xal)
space and answers queries in time O(log|Xa|). Each such structure can be computed
in O(|Xa|log|Xal) time by standard algorithms [11]. By Lemma 11(ii) we know that
| Xalis O(2V218"/logn). Since the number of trapezoids in C” is O(n/(2V21°e"\/logn)),
the total space and preprocessing time for all the point location structures correspond-
ing to the trapezoids A € C"” are O(n) and O(n+/logn), respectively.

Together with the space used by the point-location structure for C, it follows that
the total space used is O(n). The preprocessing time is O(nlogn) and is dominated
by the time to construct the cutting and determine the segments of X intersecting
each cutting trapezoid. In the next section we discuss how the data structure is used
to answer queries and analyze the expected query time, which is the last step needed
to establish Theorem 1.

2. Query processing. In order to locate the cell containing a query point g,
we use the point-location structure for C to identify the trapezoid A € C that contains
qg. If A € C’, then we can directly output the cell of S that contains q. Otherwise
A € (", and we use the point location structure for Sa to locate the cell of Sa (and
hence of S) that contains q.

To analyze the query time, suppose that ¢ lies in a fragment u that arises from
the intersection of a trapezoid A € C with a cell z € S. Let ¢; denote the time it takes
to determine the trapezoid A € C that contains ¢. By Lemma 9 and using the facts
that B = VHg and wa > p./c (where c is the constant defined in the first paragraph
of section 4.1), we have

ty

IA

[1+O(¢%>}logé+0(\/ﬁ)
[1+O(¢%>]log;z+0(\/ﬁs).

If A € C' (that is, v € F.), then we are done after finding A, and so the
query time is #;. Otherwise A € C” (that is, v € F/), and we need an addi-
tional time t; = O(log|Xa|) to search Sa and determine u. By Lemma 11(ii),
|Xa| = 022V 7 /logn), so ty = O(y/logn). Putting it all together, we have shown
that the expected query time is

S S (140 )|+ 0 (V) )+ X 0.0 (Vioen)

z€S |ueF, ueF!

IN

Using the facts that Zuefz Py = p. and ) _¢p. = 1 and substituting Hg for
> .cgP=log(1/p.), this simplifies to

(4) Hs +0 (VHs) +0 (s Vlogn) ,

where p” = ZzES Zue}';/ DPu = ZuE}_" Pu-

To complete the analysis we need to establish a relationship between p” and the
entropy Hg. Intuitively, the following lemma shows that p” is small when the entropy
Hg is small.

LEMMA 12. Let p” be the probability that the query point falls in a fragment
u € F". Thenp’ = O(Hg/logn).
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Proof. We first compute a lower bound on Hg«. Clearly

Hge = Y pulog(l/pu) > > pulog(l/pu).

u€eS* ueF"

By Lemma 11(i), for each A € C”, pa = O(2V2"°8"\/logn/n). Let p,, = max,ecr py.
Since any fragment in F” is a subset of some A € C”, it follows directly that p,, =
O(2v2'eny/logn/n). Recall that p”’ ="~ p,. By basic properties of entropy [10],
the entropy is minimized by maximizing the disparity among the probabilities. This
is done by setting as many of the p,’s to p,, as possible, subject to the condition that
they sum to p”. Thus, we obtain a lower bound on ) . 7/ p, log(1/p,) by assuming
that [p”/pm | of the fragments v € F” have p, = py,, one fragment u € F” has the
leftover probability p, = p” — [p”/Pm ] Pm, and all remaining fragments v € F” have
Py = 0. Thus

& 1 1
s = (L) pulor - > plog = = O(1) > (" logn 1)
Also, by Lemma 11(iv), Hg+ < Hg + O(1). Combining the lower and upper bound
on Hg+, we obtain Hg + O(1) = Q(p” logn — 1). Recalling that Hg > 1, the lemma
follows. O

Applying Lemma 12 to (4), we see that the expected query time is

HS+0<¢FS)+O(HS/¢@) < Hs-‘rO(\/IZTS)v

where we have used the fact that Hg = O(logn).
This completes the proof of our main result, Theorem 1.

5. Convex polygons with uniform distribution. In this section we establish
Theorem 2. We are given a planar convex subdivision and assume that the query
distribution within each cell is uniform. We prove the following lemma, which states
that it is possible to triangulate this subdivision so that the entropy increases by
only a additive constant. Theorem 2 follows by applying Theorem 1 to the resulting
triangulation.

LEMMA 13. Let S be a planar subdivision of size n whose cells are convez poly-
gons, and assume that the query distribution within each polygon is uniform. We can
triangulate each polygon such that the entropy of the resulting subdivision exceeds the
entropy of S by at most an additive constant. The new subdivision can be constructed
in O(nlogn) time.

The proof of this lemma relies on the straightforward observation that, given a
convex polygon P, in linear time it is possible to compute a triangle whose area is
at least 1/4 the area of P. This is easy to prove by considering the triangle formed
by the endpoints of the line segment defining P’s diameter and the vertex of P that
is farthest from this segment. (Although we do not need it, a better bound can be
obtained by combining Téth’s bound of 3v/3/47 = 0.41 on the fraction of area of
the largest triangle in a convex polygon [15] with Dobkin and Snyder’s linear-time
algorithm for computing the largest triangle contained in a convex polygon [12].)

Proof of Lemma 13. We triangulate each convex cell of S as follows. Let z denote
any convex polygon. By the above observation we can find a triangle contained
within z whose area is at least 1/4 the area of z. We insert this triangle into the
triangulation. This partitions the remainder of z into at most three convex polygons,
which we triangulate recursively.
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We bound the entropy of this triangulation. Let F, denote the set of trian-
gles in the triangulation of z, constructed by the above procedure. Define @, to be

> wer, Pelog(1/p,). We claim that

(5) ®. < p:log Ly 8p--
Pz

The proof of this claim is by induction on the number of sides of z. For the basis case,
z has three sides, and the claim is trivially true. Suppose that the claim holds for any
convex polygon with at most ¢ sides for some i > 3. We will establish the claim for
any convex polygon z with ¢ + 1 sides.

Let y denote the first triangle added to the triangulation of z. Since the area of y
is at least 1/4 the area of z and the query distribution within z is uniform, p, > p. /4.
Note that the remainder z \ y consists of (at most) three convex polygons, denoted
71, 22, and z3. By the induction hypothesis, ®,, < p,, log(1/p,,) + 8p,, for 1 <i < 3.
Thus ®, can be written as

3 3
1 1 1
pylog -+ > @, <p, log  + > (pzi log —— + 8pzi>

Yooi=1 Z—— 2
1< 1 2
(6) = (pylog—i—szi log) +82pzi-
Py 53 Pz i=1

Obviously p, + Z?:lpzi = p.. Since py, > p./4, it follows that Z?:l Dz < 3p./4.
Also, by basic properties of entropy [10], the maximum value of

1< 1
pylog— + » p., log—
ylog - 4> pslog —

voo=1 o

subject to the constraint that p, -+ Zg’zl Dz, = p, occurs when py = p,, = p,, = p,, =
p-/4, and is given by p, log(4/p.). Using these bounds in (6), we obtain

o, < Pz IOg i +38 <3pz> =Pz IOg i + 8p.,
Dz 4 z
which completes the proof by induction.

Summing both sides of (5) over all the polygons of S, it follows that the entropy
of the triangulation exceeds the entropy of S by at most 8.

Finally, we discuss the time it takes to construct the triangulation. Let m denote
the size of a convex polygon z € S. By the observation made just prior to the proof
of Lemma 13, it takes O(m) time to find the first triangle y in z and decompose the
remainder z \ y into (at most) three convex polygons z1, z2, and z3. If z\ y consists of
just one polygon with m — 1 vertices, then continuing in this way, it may take O(m?)
time to complete the triangulation of z. To reduce this to O(mlogm), we make a
small change to the construction. At each step in the recursion, we partition the
current polygon into two polygons with roughly equal numbers of vertices, and then
find a triangle with large area in each of these two polygons. This reduces the depth
of the recursion to O(logm), and since the time taken for each level of the recursion
is O(m), the total time becomes O(mlogm). It is now a simple exercise to extend
the above proof to show that this modified triangulation algorithm also preserves the
entropy (only the constant 8 increases). 0
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6. Concluding remarks. We have shown that, given a polygonal subdivision
S of size n consisting of cells of constant combinatorial complexity and a query dis-
tribution presented as a weight assignment to the cells of S, it is possible to answer
point location queries H + O(\/ﬁ + 1), where H is the entropy of the subdivision.
Our data structure requires O(n) space, and it can be constructed in O(nlogn) time
by a randomized algorithm. We make no assumptions about the distribution of query
points within each cell of the subdivision. We have also shown that this result can
be extended to convex subdivisions of arbitrary combinatorial complexity, assuming
that the query distribution is uniform within each cell.

There are a number of open problems suggested here. If point location is based
on the results of primitive comparisons, it is known that the entropy is a lower bound
on the expected running time, and so our results are optimal up to lower order terms.
Assuming that the query distribution within the cells is unknown, a stronger lower
bound of H + v H — O(1) is known in the trapezoidal search graph model [21]. Can
the lower-bound analysis be refined to justify the presence of the O(\/ﬁ ) term, when
information on the query distribution within the cells is available? Taking this in a
different direction, suppose that the query distribution is not known at all. That is,
the probabilities that the query point lies within the various cells of the subdivision
are unknown. In the 1-dimensional case it is known that there exist self-adjusting
data structures, such as splay trees [29], that achieve good expected query time in the
limit. Do such self-adjusting structures exist for planar point location?

A related observation is that, in the case of worst-case query time, Seidel and
Adamy [27] showed an analogous lower order term of 2v/logn. An interesting ques-
tion along these lines is whether it is possible to reduce the lower order term in
Theorem 4, say to 2v/H. Another interesting question is the computational complex-
ity of computing the BSP that minimizes the expected search time, assuming, say,
the extended trapezoidal search graph model and an oracle that can answer questions
about the query distribution.

As mentioned earlier, our results are based on the trapezoidal search graph model
used by Seidel and Adamy [27]. The two comparison primitives used in the trape-
zoidal search graph model have significantly different computation times. (One is a
1-dimensional orientation test, and the other is a 2-dimensional orientation test.) This
raises the question of the computational complexity of point location in even more
primitive models of computation, for example, the number of arithmetic operations
on coordinates.
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