
Cryptogr. Commun. (2012) 4:79–104
DOI 10.1007/s12095-011-0059-x

A simple stream cipher with proven properties

Wenpei Si · Cunsheng Ding

Received: 19 April 2011 / Accepted: 21 November 2011 / Published online: 24 December 2011
© Springer Science+Business Media, LLC 2011

Abstract Both stream ciphers and block ciphers can be used to provide data
confidentiality service. Stream ciphers are preferred in many applications, since they
can destroy statistical properties of natural languages to some extent. However, it
seems hard to design a stream cipher with many proven security properties. The
objective of this paper is to present a binary stream cipher which is secure with
respect to a number of attacks, and has reasonable performance. The advantage of
the stream cipher over existing ones is that it has more proven security properties.

Keywords Cryptography · Linear span · Sequences · Stream Cipher

Mathematics Subject Classifications (2010) 11T71 · 68P25 · 94A55 · 94A60

1 Introduction

In analogy to error-correcting codes which are subdivided into block and convolu-
tional codes, ciphers are generally classified into block ciphers and stream ciphers.
A cipher is called a stream cipher if its encryption transformation defined by a fixed
encryption key is time-varying, and is said to be a block cipher otherwise [4, 22].
The essential distinction between block ciphers and stream ciphers is the internal
memory. In some books, stream and block ciphers are defined differently. This
leads to confusions and is indeed a shame. Stream ciphers are preferred in many
applications since they can destroy statistical properties of natural languages to some

W. Si (B) · C. Ding
Department of Computer Science and Engineering, Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong
e-mail: siwenpei@ust.hk

C. Ding
e-mail: cding@ust.hk

80 Cryptogr. Commun. (2012) 4:79–104

extent (See [2] for experimental results demonstrating this fact). Note that any block
cipher used in the CBC, CFB, OFB, or counter mode becomes a stream cipher (see
Section 6.1.1. of the Handbook of Applied Cryptography [17] for clarification), and
is not a block cipher anymore.

However, as many practical stream ciphers are complex in structure, it is some-
times infeasible to analyse and prove their security properties. There is a need to
develop a type of stream ciphers, which are simple in structure so that it is relatively
easy to evaluate their security properties. One simple type of stream ciphers is the
binary additive stream ciphers with a keystream generator based on permutations,
which was proposed in [4, Section 11.4]. As shown in Fig. 1, the keystream generator
consists of a GF(2n)-generator, a permutation function over GF(2n) with good
nonlinearity and a linear function from GF(2n) to GF(2). The GF(2n) generator
produces all elements of GF(2n) in some order. The secret key of this generator is k =
(a, b), where a, b ∈ GF(2n)∗. The encryption performs the exclusive-or operation on
the corresponding bits of the plaintext stream and the keystream. The decryption
process is the same as the encryption process [4]. However, no detailed analyses of
this kind of keystream generators was provided in [4]. In addition, it was not explored
in which order the elements of GF(2n) should be generated in this reference.

With a little modification and a specification of the keystream generator proposed
in [4], we describe a binary additive stream cipher depicted in Fig. 2. The keystream
generator of this stream cipher consists of a cyclic counter with period N = 2n − 1,
the permutation f (x) = x2n−2 in GF(2n), and the trace function g(x) = Trn

1(x) from
GF(2n) to GF(2), where n is a positive integer that defines the size of the secret
key and the period of the cyclic counter. The cyclic counter has a memory unit and
counts the integers in ZN = {0, 1, 2, · · · , N − 1} cyclically, and the initial content of
the memory unit of the cyclic counter is the initialization value IV which is an integer
in [0, N). Let α be any generator of GF(2n)∗ (the sender and receiver must agree
on the same generator α). Using the cyclic counter we can generate all elements
of GF(2n)∗ in the order α IV, α1+IV, · · · , αN−1+IV cyclically. The secret key of this
generator is k = (a, b), where a, b ∈ GF(2n)∗. The encryption of a message bit is the
exclusive-or of the message bit and the corresponding keystream bit. The decryption
process is the same as the encryption process. Our cryptographic motivations of using
f (x) = x2n−2 and g(x) = Trn

1(x) in this cipher are explained in subsequent sections
and summarized in the last section of this paper.

Fig. 1 A binary additive
stream cipher based on
permutations [4]

Cryptogr. Commun. (2012) 4:79–104 81

Fig. 2 A binary additive
stream cipher based on
permutations with
f (x) = x2n−2 and
g(x) = Trn

1(x)

We now compare the original keystream generator of the cipher depicted in
Fig. 1 with the keystream generator of the cipher of Fig. 2. One difference is that
in the cipher of Fig. 2 f does not take b as an input value, while in the original
generators f takes all elements of GF(2n) as input values. The second difference is
that in the cipher of Fig. 2 the order in which the elements of GF(2n) are generated
is clearly defined, while in the original generators the order is not specified. The
third difference is that in the cipher of Fig. 2 the permutation f is defined, while
in the original generators the permutation f is not specified. We also include an
initialization vector for the resynchronization purpose.

The objective of this study is to provide a specific binary additive stream cipher
based on the permutation x2n−2 and the linear function Trn

1(x), and examine its
security aspects. This paper is organized as follows. Section 2 analyses possible
attacks against the stream cipher based on permutations, and presents corresponding
design criteria for this stream cipher. Security properties of the stream cipher with
respect to possible attacks are examined in Section 3. Section 4 deals with the
performance of the stream cipher. Section 5 describes the detection of loss of syn-
chronization of the cyclic counters. Resynchronization process is given in Section 6.
Section 7 concludes this paper.

2 Possible attacks and design criteria

2.1 The linear complexity attack and the associated design criteria

As a convention, we denote the cardinality of a set S by |S|, and use a mod N̂ to
denote the least nonnegative residue r such that a ≡ r(mod N̂).

Let sL = s(0)s(1) · · · s(L − 1) be a finite sequence over GF(q) with length L and
s∞ = (s(t))∞t=0 be a periodic sequence over GF(q) with period N, where q is a prime
power. If

s
(

k + L̂
)

+ cL̂−1s
(

k + L̂ − 1
)

+ · · · + c1s(k + 1) + c0s(k) = 0,

for all k ≥ 0, then the polynomial

f (x) = xL̂ + cL̂−1xL̂−1 + · · · + c1x + c0 ∈ GF(q)[x],

82 Cryptogr. Commun. (2012) 4:79–104

where GF(q)[x] denotes the set of all polynomials of indeterminate x over GF(q),
is called the characteristic polynomial of the sequence sL over GF(q) [13]. A
characteristic polynomial of minimal degree is called the minimal polynomial of the
finite sequence sL. We use LCsL to denote the linear complexity or linear span of sL,
which is defined to be the degree of the minimal polynomial of sL. The definitions
of the linear complexity and minimal polynomial also apply to the periodic sequence
s∞. Similarly, we denote the linear complexity of the periodic sequence s∞ by LCs∞ .

In engineering terms, the linear complexity of a sequence is the length of the
shortest linear feedback shift register (LFSR) that can generate it. Sequences with
large linear complexity are required in some stream ciphers [4].

If the linear complexity of the keystream sequence generated by the stream cipher
is L̂, then 2L̂ consecutive output bits of the keystream generator can be used to
construct an LFSR of length L̂ that produces the same keystream sequence. The
equivalent LFSR can be constructed using the Berlekamp-Massey algorithm or by
solving a system of linear equations. Hence, the keystream sequence of the stream
cipher based on permutations must have large linear complexity.

Design Criterion 1 The linear complexity of the keystream sequence generated by
the keystream generator based on permutation f in Fig. 1 should be large.

Since only a segment of the whole period of the keystream sequence is used in real
applications, the linear complexity of each segment of the keystream sequence should
be as large as possible. In order to examine the linear complexity of each segment, we
can use the linear complexity profile of a sequence, which is obtained by computing
the linear complexity of s(0)s(1) · · · s(L − 1) against L, for L = 1, 2, · · · . In [22, 23],
it is stated that a cryptographically strong sequence should have a linear complexity
near the maximum possible, and its linear complexity profile should follow the L/2
line “closely but irregularly”.

Design Criterion 2 The linear complexity profile of the keystream sequence gener-
ated by the keystream generator based on permutation f in Fig. 1 should follow the
L/2 line “closely but irregularly”.

2.2 The linear complexity stability attack and the associated design criterion

Even if the keystream sequence has large linear complexity, we can still use a se-
quence with low linear complexity to approximate the original keystream sequence,
if the Hamming distance between these two sequences is very small.

In such a case, changing a small number of entries in a sequence decreases
the linear complexity of the sequence to a large extent, we say that the linear
complexity of such a sequence is not stable. The linear complexity stability issue
was first proposed in [6]. As a measure of the linear complexity stability, the sphere
complexity for both finite and periodic sequences was introduced in [7]. Later, k-
error linear complexity, which is the minimum of the linear complexity and the
sphere complexity, was proposed in [23].

Let � be any integer with 0 < � < L. The sphere complexity of sL is defined to be

SC�

(
sL) = min

0<WH(ŝL)≤�
LCsL+ŝL ,

Cryptogr. Commun. (2012) 4:79–104 83

where ŝL is any sequence of length L over GF(q) and WH(ŝL) denotes the Hamming
weight of ŝL. Similarly, the sphere complexity of the periodic sequence s∞ is de-
fined as

SC�(s∞) = min
0<WH(ŝN)≤�

LCs∞+ŝ∞ ,

where ŝN is the first periodic segment of the sequence ŝ∞ over GF(q).
Based on the linear complexity stability, the best affine approximation (BAA)

attacks on certain stream ciphers were developed in [7, Chapter 3]. For the binary
additive stream cipher based on permutations of Fig 1, if the sphere complexity
SC�(s∞) of the keystream sequence is small for small �, we can construct an LFSR
with short length to approximate the original keystream generator. Hence we have
another design requirement as follows.

Design Criterion 3 The sphere complexity SC�(s∞) of the keystream sequence gen-
erated by the keystream generator based on permutations in Fig. 1 should be large
enough for small �.

2.3 The key approximation attack and the associated design criteria

In this kind of attack, one will use a key k2 to decrypt the ciphertext encrypted using
the original secret key k1. Let s∞

1 and s∞
2 be two periodic sequences generated by

the keystream generator depicted in Fig. 2 with keys k1 and k2 respectively. The rate
of correct decryption using this attack with respect to the whole period is given by
(1 + Cs2,s1(0))/2, where

Cs2,s1(τ) = 1

N

N−1∑
t=0

(−1)s2(t+τ)−s1(t), 0 ≤ τ ≤ N − 1

is the normalized periodic correlation of the sequences s∞
1 and s∞

2 . If s∞
1 and s∞

2 are
cyclically equivalent, i.e., s2(t) = s1(t + r) for all t’s and an integer r, then Cs2,s1(τ) =
Cs1,s1((τ + r) mod N) is called the autocorrelation of the sequence s∞

1 . If s∞
1 and s∞

2
are cyclically distinct, then Cs2,s1(τ) is the cross-correlation of s∞

1 and s∞
2 .

Let S = {s∞
1 , s∞

2 , · · · , s∞
K } be the set of all cyclically distinct periodic sequences

with period N generated by a specific type of keystream generators based on
permutations in Fig. 2, where K = |S| is the number of distinct sequences in S. Define
Cmax(S) to be

Cmax(S) = max
∣∣Csi,s j(τ)

∣∣ for any 0 ≤ τ ≤ N − 1, 1 ≤ i, j ≤ K,

where τ �= 0 if i = j. Obviously, Cmax(S) is the maximum value of all nontrivial
autocorrelation and cross-correlation of the sequences in the sequence family S.

By the Welch bound [25], Cmax(S) ≥
√

K−1
NK−1 . In order to prevent against the key

approximation attack, we need the following design criterion.

Design Criterion 4 The value Cmax(S) should be less than or equal to c
√

K−1
NK−1 for

some small constant c compared with N.

84 Cryptogr. Commun. (2012) 4:79–104

In real applications, only a small segment of the keystream sequence is used
for encryption. If a segment of length L of the keystream sequence is used for
encryption, then the rate of correct decryption using this attack is (1 + C(L)

s2,s1
(0))/2,

where

C(L)
s2,s1

(τ) = 1

L

L−1∑
t=0

(−1)s2(t+τ)−s1(t), 0 ≤ τ ≤ N − 1.

Let the sequence
{
max1≤τ≤N−1

∣∣C(L)
si,si

(τ)
∣∣ | 1 ≤ L ≤ N

}
be the periodic autocorre-

lation profile of the sequence s∞
i , and the sequence

{
max0≤τ≤N−1

∣∣∣C(L)
si,s j

(τ)

∣∣∣ | 1 ≤ L ≤ N, i �= j
}

be the periodic cross-correlation profile of the sequences s∞
i and s∞

j .
Similar to Cmax(S), we define

C(L)
max(S) = max

∣∣∣C(L)
si,s j

(τ)

∣∣∣ for any 0 ≤ τ ≤ N − 1, 1 ≤ i, j ≤ K,

where τ �= 0 if i = j. As L approaches to N, C(L)
max(S) should approach to c

√
K−1

NK−1 for
some small constant c.

Design Criterion 5 For the keystream sequence generated by the keystream gen-

erator based on permutations, C(L)
max(S) should be close to c

√
K−1

NK−1 for some small
constant c compared with N, when L is close to N.

2.4 The linear approximation attack and the associated design criterion

In order to analyze this kind of attack, we need to examine the nonlinearity of the
underlying functions of the keystream generator. A function f from (A,+) to (B, +)

is called linear if and only if f (x + y) = f (x) + f (y) for all x, y ∈ A. A function g is
called affine if g = f + c for a linear function f from (A, +) to (B,+) and a constant
c ∈ B. One way of measuring the nonlinearity of a function f from (A,+) to (B, +)

is defined by

N f = min
l∈L

d(f, l),

where L denotes the set of all affine functions from (A,+) to (B, +), and d(f, l) =
|{x ∈ A| f (x) − l(x) �= 0}| is the Hamming distance of the two functions f and l. This
measure is related to affine (linear) approximation attacks [4].

In cryptography, both linear and nonlinear building blocks are needed to achieve
diffusion and confusion. The basic idea of linear approximation attack on the stream
cipher is to use a linear function to replace a nonlinear function. If a piece of
the keystream sequence is known, one can use another decryption transform to
approximate the original decryption transform. In order to correctly decrypt the
ciphertext with a higher probability, the Hamming distance between the linear
function and the nonlinear function should be as small as possible. The best affine
approximation (BAA) attacks on some stream ciphers [7] were based on this idea.

The best affine approximation attack on the stream cipher based on permutations
is a known plaintext attack and is conducted as follows. Assume that a piece of

Cryptogr. Commun. (2012) 4:79–104 85

keystream sequence s(i)s(i + 1) · · · s(i + m) is known. By Fig. 2, we have h(x) =
h(aα j + b) = s(j) for all j = i, i + 1, · · · , i + m, where h(x) = g (f (x)) = Trn

1

(
x2n−2

)
as described in Section 1. Consider all affine functions from GF(2n) to GF(2). Choose
the one with the smallest Hamming distance with the function h. We can use the
selected affine function to replace h and use the obtained generator to approximate
the original keystream generator. It is well known that any linear function from
GF(2n) to GF(2) can be expressed as Trn

1 (wx) for some w ∈ GF(2n) [13]. Thus any
affine function from GF(2n) to GF(2) can be denoted by Trn

1 (wx) + c, i ≥ 0, for some
c ∈ GF(2).

Let x = aαi + b , then we have the following equations

Trn
1

(
waαi) + Trn

1(wb) + c = s(i),

Trn
1

(
waαi+1

) + Trn
1(wb) + c = s(i + 1),

· · ·
Trn

1

(
waαi+m) + Trn

1(wb) + c = s(i + m).

It follows that

Trn
1

(
waαi(α − 1)

) = s(i + 1) − s(i),

Trn
1

(
waαi+1(α − 1)

) = s(i + 2) − s(i + 1),

· · ·
Trn

1

(
waαi+m−1(α − 1)

) = s(i + m) − s(i + m − 1). (1)

Note that the sequence
(
Trn

1(waα j(α − 1)
)∞

j=0 is an m-sequence if wa �= 0. When
m ≥ 2n, we can use (1) to construct an LFSR to approximate the original keystream
generator.

In order to thwart the best affine approximation attacks, the Hamming distance
between the function h and any affine function from GF(2n) to GF(2) should be as
large as possible. However, according to the so-called covering radius bound [3], the
minimum Hamming distance between a Boolean function f̂ from GF(2n) to GF(2)

and all affine functions from GF(2n) to GF(2) is N f̂ ≤ 2n−1 − 2n/2−1.

Design Criterion 6 For the function h = g ◦ f of the keystream generator based on
permutations in Fig. 2, the Hamming distance between h and every affine function
from GF(2n) to GF(2) should be as close to 2n−1 − 2n/2−1 as possible.

3 Security properties of the binary additive stream cipher based on f (x) = x2n−2

and g(x) = Trn
1(x)

According to Fig. 2, the periodic keystream sequence ŝ∞ of the stream cipher is

ŝ(t) = g
(

f
(
aαt + b

)) = Trn
1

(
(aαt + b)2n−2

)
, (2)

where t is the content of the counter at time unit t.

86 Cryptogr. Commun. (2012) 4:79–104

3.1 The security of the stream cipher with respect to the linear complexity attack

The following Lemma is needed to compute the linear complexity of the keystream
sequence of the stream cipher.

Lemma 1 [1] Any periodic sequence s∞ over GF(q) of period qn − 1 has a unique
expansion of the form

s(t) =
qn−2∑
i=0

ciα
it, for all t ≥ 0,

where α is a generator of GF(qn)∗ and ci ∈ GF(qn). Let the index set I = {i | ci �= 0},
then the minimal polynomial m(x) of s∞ is

m(x) =
∏
i∈I

(
x − αi) ,

and the linear complexity of s∞ is |I|.

Let a = αra and b = αrb , then (2) becomes

ŝ(t) = Trn
1

(
(αt+ra + b)2n−2

) = Trn
1

(
b 2n−2(αt+ra−rb + 1)2n−2

)
. (3)

Let β = b 2n−2. For the periodic sequence s∞ with the expression

s(t) = Trn
1

(
β(αt + 1)2n−2) , (4)

we have s(t + ra − rb) = ŝ(t) for all t’s. It follows that ŝ∞ and s∞ are cyclically
equivalent. Thus LSs∞ = LSŝ∞ , and we just need to examine the linear complexity
of the sequence s∞ instead of ŝ∞.

Using the well-known binomial formula

(u + v)m =
m∑

i=0

(
m
i

)
uivm−i, where

(
m
i

)
= m!

i!(m − i)! ,

we can expand (4) as,

s(t) = Trn
1

(
β

(
2n−2∑
i=0

(
2n − 2

i

)
αit

))
= Trn

1

(
2n−2∑
i=0

β

(
2n − 2

i

)
αit

)
.

The following Lemma is needed to evaluate
(2n−2

i

)
mod 2.

Lemma 2 [15] If m and i are positive integers with the base-2 representations m =
mr2r + · · · + m12 + m0 and i = ir2r + · · · + i12 + i0 respectively, then

(
m
i

)
≡

(
mr

ir

)
· · ·

(
m1

i1

)(
m0

i0

)
(mod 2).

Since 0 ≤ i ≤ 2n − 2, we have the base-2 representations 2n − 2 = 1· 2n−1 + · · · +
1· 21 + 0· 20 and i = in−12n−1 + · · · + i12 + i0 respectively. By Lemma 2, we have

(
2n − 2

i

)
≡

(
1

in−1

)
· · ·

(
1

i1

)(
0

i0

)
≡

(
0

i0

)
(mod 2).

Cryptogr. Commun. (2012) 4:79–104 87

Thus,
(2n−2

i

)
mod 2 = 1 iff i0 = 0, which means i mod 2 = 0. Since s∞ is over GF(2),

we have

s(t) = Trn
1

⎛
⎝

2n−1−1∑
i=0

βα2it

⎞
⎠ . (5)

To determine the linear complexity, we need to introduce cyclotomic cosets. The
cyclotomic coset C j modulo 2n − 1 is defined as

C j = {
j, j2, j22, · · · , j2m j−1

}
,

where m j is the smallest positive integer such that j2m j ≡ j (mod 2n − 1) [16, 18]. The
integer m j is also called the size of C j. The subscript j is chosen as the smallest integer
in C j, and j is called the coset leader of C j. We denote by � the set of all coset leaders
modulo 2n − 1, and by �∗ the set � − {0}. Let B j = {i | i ∈ C j and 0 ≤ i ≤ 2n−1 − 1}.

Lemma 3 [9] A 2-cyclotomic coset modulo 2n − 1 of length l exists if f l divides n.

By Lemma 3, for all j ∈ � there exists an unique integer l j such that n = m j ∗ l j.

3.1.1 The general case

For any j ∈ � and i ∈ B j, there is one and only one 0 ≤ kij ≤ m j − 1, such that

2i· 2kij ≡ j (mod N). (6)

It follows from (5) that

s(t) = Trn
1

⎛
⎝

2n−1−1∑
i=0

βα2it

⎞
⎠

= Trn
1

⎛
⎝∑

j∈�

∑
i∈B j

βα2it

⎞
⎠

=
∑
j∈�

∑
i∈B j

Trn
1

(
βα2it)

=
∑
j∈�

∑
i∈B j

m j−1∑
u=0

l j−1∑
h=0

(
β2kij

α jt
)2u+m jh

=
∑
j∈�

∑
i∈B j

m j−1∑
u=0

l j−1∑
h=0

(
β2kij+u+m jh

α jt 2u+m jh
)

88 Cryptogr. Commun. (2012) 4:79–104

=
∑
j∈�

∑
i∈B j

m j−1∑
u=0

α jt2u

⎛
⎝

l j−1∑
h=0

β2kij+u+m jh

⎞
⎠

=
∑
j∈�

m j−1∑
u=0

α jt2u

⎛
⎝∑

i∈B j

l j−1∑
h=0

β2kij+u+m jh

⎞
⎠

=
∑
j∈�

m j−1∑
u=0

α jt2u

⎛
⎝∑

i∈B j

l j−1∑
h=0

β2kij+m jh

⎞
⎠

2u

. (7)

For the sake of representation, we want to rewrite (6) and (7) in a simpler way.

Lemma 4 For any j ∈ �, if (i1, h1) �= (i2, h2), where i1, i2 ∈ B j and h1, h2 ∈
{0, 1, · · · , l j − 1}, we have 2ki1 j+m jh1 �≡ 2ki2 j+m jh2 (mod N).

Proof Suppose

2ki1 j+m jh1 ≡ 2ki2 j+m jh2 (mod N). (8)

Since 0 ≤ ki1 j + m jh1 ≤ n − 1 and 0 ≤ ki2 j + m jh2 ≤ n − 1, we have 1 ≤ 2ki1 j+m jh1 ≤
2n−1 and 1 ≤ 2ki2 j+m jh2 ≤ 2n−1. Thus (8) gives 2ki1 j+m jh1 = 2ki2 j+m jh2 . Then we obtain

ki1 j + m jh1 = ki2 j + m jh2. (9)

Since (ki1 j + m jh1) ≡ (ki2 j + m jh2) (mod m j), we have that ki1 j ≡ ki2 j (mod m j).
Note that 0 ≤ ki1 j ≤ m j − 1 and 0 ≤ ki2 j ≤ m j − 1, we have then

ki1 j = ki2 j. (10)

Also, from (9) and (10), we obtain m jh1 = m jh2, which gives h1 = h2. Hence
(i1, h1) = (i2, h2).
�

Let f j(x) = ∑
i∈B j

∑l j−1
h=0 x2kij+m jh mod N ∈ GF(2)[x], where j ∈ �. By Lemma 4, no

terms in f j(x) can cancel each other. Also, 0 ≤ kij + m jh ≤ n − 1, we have

f j(x) =
∑
i∈B j

l j−1∑
h=0

x2kij+m jh =
n−1∑
k=0

f j,kx2k ∈ GF(2)[x].

where

f j,k =
{

1 if k = kij + m jh for some i ∈ B j and h ∈ {0, 1, · · · , l j − 1},
0 otherwise.

(11)

Lemma 5 For any j ∈ � and k ∈ {0, 1, · · · , n − 1}, k = kij + m jh for some i ∈ B j and
h ∈ {0, 1, · · · , l j − 1} holds if f (j 2n−k mod N) mod 2 = 0.

Proof If k = kij + m jh for some i ∈ B j and h ∈ {0, 1, · · · , l j − 1}, then by (6), we
have 2i· 2k−m jh ≡ 2i· 2k ≡ j (mod N). Thus 2i ≡ j 2n−k (mod N). Since 0 ≤ 2i ≤ 2n −
2, we obtain (j 2n−k mod N) = 2i. Thus (j 2n−k mod N) mod 2 = 0.

Cryptogr. Commun. (2012) 4:79–104 89

If (j 2n−k mod N) mod 2 = 0, then (j 2n−k mod N) = 2i′. Since 0 ≤ 2i′ ≤ 2n − 2, we
have 0 ≤ i′ ≤ 2n−1 − 1. Note that i′ ∈ C j, we have i′ ∈ B j. It follows from (6) that
2i′· 2k ≡ 2i′· 2k mod m j ≡ j ≡ 2i′· 2ki′ j (mod N). Thus

(
2i′· 2k mod m j mod N

) = (
2i′· 2ki′ j mod N

)
.

Since 0 ≤ ki′ j ≤ m j − 1, we have k mod m j = ki′ j. Hence k = ki′ j + m jh for some i′ ∈
B j and h ∈ {0, 1, · · · , l j − 1}.
�

By Lemma 5 and (11) we have

f j,k =
{

1 if (j 2n−k mod N) mod 2 = 0,

0 otherwise.
(12)

Then (7) becomes

s(t) =
∑
j∈�

m j−1∑
u=0

α jt2u (
f j(β)

)2u

=
∑
j∈�

m j−1∑
u=0

α jt2u

(
n−1∑
k=0

f j,kβ
2k

)2u

=
∑
j∈�

m j−1∑
u=0

α jt2u

(
n−1∑
k=0

f j,kβ
2k+u

)
. (13)

Since β = b 2n−2 = αrb (2n−2) ∈ GF(2n), β2n = β. Hence (13) becomes

s(t) =
∑
j∈�

m j−1∑
u=0

α jt2u

(
n−1∑
k=0

f j,kβ
2(k+u) mod n

)
. (14)

Thus we have expanded the keystream sequence as the sum of powers-of-α. Then
by Lemma 1, we need to count the number of nonzero terms in (14). Since in (14),
the terms α jt 2u

, where j ∈ � and u ∈ {0, 1, · · · , m j − 1}, are pairwise distinct, we have

LCs∞ =
∣∣∣∣∣

{
(j, u) |

n−1∑
k=0

f j,k β2(k+u) mod n �= 0, j ∈ �, u ∈ {0, 1, · · · , m j − 1}
}∣∣∣∣∣

= ∣∣{ (j, u) | j ∈ �, u ∈ {0, 1, · · · , m j − 1} }∣∣

−
∣∣∣∣∣

{
(j, u) |

n−1∑
k=0

f j,k β2(k+u) mod n = 0, j ∈ �, u ∈ {0, 1, · · · , m j − 1}
}∣∣∣∣∣

= 2n − 1 −
∣∣∣∣∣

{
(j, u) |

n−1∑
k=0

f j,k β2(k+u) mod n = 0, j ∈ �, u ∈ {0, 1, · · · , m j − 1}
}∣∣∣∣∣

= 2n − 1 −
∣∣∣∣∣

{
(j, u) |

n−1∑
k=0

f j,(k−u) mod n β2k = 0, j ∈ �, u ∈ {0, 1, · · · , m j − 1}
}∣∣∣∣∣ .

(15)

90 Cryptogr. Commun. (2012) 4:79–104

To determine the number of (j, u)’s such that
∑n−1

k=0 f j,(k−u) mod n β2k = 0, we need
the following two lemmas.

Lemma 6 For all j ∈ �∗, we have that j is odd and 1 ≤ j ≤ 2n−1 − 1.

Proof Suppose j is even. Since j ≡ j
2 · 2 (mod N), we obtain j

2 ∈ C j. Since 2 ≤ j ≤
2n − 2, we have 1 ≤ j

2 < j ≤ 2n − 2, which contradicts with the definition of �∗.
Suppose 2n−1 ≤ j ≤ 2n − 2, then 2n ≤ 2 j ≤ 2n+1 − 4. Thus 2n − N ≤ 2 j − N ≤

2n+1 − 4 − N, which gives 1 ≤ 2 j − N ≤ 2n − 3. However, since 2 j − N < j and 2 j −
N ∈ C j, this also contradicts with the definition of �∗.
�

Then we examine the polynomial
∑n−1

k=0 f j,(k−u) mod n x2k ∈ GF(2)[x].

Lemma 7 If (j1, u1) �= (j2, u2), where j1, j2 ∈ �, ui ∈ {0, 1, · · · , m ji − 1} for i ∈ {1, 2},
then the polynomial

∑n−1
k=0 f j1,(k−u1) mod n x2k

is dif ferent from
∑n−1

k=0 f j2,(k−u2) mod n x2k
.

Proof Suppose
∑n−1

k=0 f j1,(k−u1) mod n x2k
and

∑n−1
k=0 f j2,(k−u2) mod n x2k

are identical. We
have

f j1,(k−u1) mod n = f j2,(k−u2) mod n, (16)

for all k ∈ {0, 1, · · · , n − 1}. According to (12), (16) is equivalent to
(

j1 2n−((k−u1) mod n) mod N
)

mod 2 = (
j2 2n−((k−u2) mod n) mod N

)
mod 2,

which is further equivalent to
(

j1 2n−k+u1 mod N
)

mod 2 = (
j2 2n−k+u2 mod N

)
mod 2, (17)

for all k ∈ {0, 1, · · · , n − 1}. Since 0 ≤ j1 ≤ 2n − 2 and 0 ≤ j2 ≤ 2n − 2, let the base-
2 representations of j1 and j2 be j1 = ∑n−1

i=0 j1,i2i and j2 = ∑n−1
i=0 j2,i2i respectively.

Then we have

j1 2n−k+u1 mod N =
n−1∑
i=0

j1,i2
(i+n−k+u1) mod n =

n−1∑
i=0

j1,(i−n+k−u1) mod n2i.

It follows that
(

j1 2n−k+u1 mod N
)

mod 2 = j1,(0−n+k−u1) mod n = j1,(k−u1) mod n.

Similarly, we have
(

j2 2n−k+u2 mod N
)

mod 2 = j2,(k−u2) mod n.

By (17), we obtain

j1,(k−u1) mod n = j2,(k−u2) mod n, (18)

for all k ∈ {0, 1, · · · , n − 1}. Note that

j1 2u1 mod N =
n−1∑
k=0

j1,k2(k+u1) mod n =
n−1∑
k=0

j1,(k−u1) mod n2k

Cryptogr. Commun. (2012) 4:79–104 91

and

j2 2u2 mod N =
n−1∑
k=0

j2,k2(k+u2) mod n =
n−1∑
k=0

j2,(k−u2) mod n2k.

By (18), we have

j1 2u1 mod N = j2 2u2 mod N. (19)

It follows that j1 and j2 are in the same cyclotomic coset. Since j1 ∈ � and j2 ∈ �, we
have j1 = j2. Hence (19) becomes (j1 2u1 mod N) = (j1 2u2 mod N). Since 0 ≤ u1 ≤
m j1 − 1 and 0 ≤ u2 ≤ m j1 − 1, we obtain u1 = u2. Hence (j1, u1) = (j2, u2).
�

Theorem 1 The linear complexity LCs∞ of the sequence s∞ ≥ 2n−1.

Proof Let V(x) = ∑n−1
k=0 vkx2k ∈ GF(2)[x] and V∗ = {V(x) | V(x) �= 0}. Then there

are 2n − 1 different polynomials in V∗. Since there are totally 2n − 1 different values
of (j, u), where j ∈ � and u ∈ {0, 1, · · · , m j − 1}, according to Lemma 7, there are
2n − 1 different polynomials

∑n−1
k=0 f j,(k−u) mod n x2k

. Also, from Lemma 6, 2 j ∈ C j is
even, for all j ∈ �∗. Thus f j,n−1 = 1 by (12). When j = 0, we have f j,k = 1, for all
k ∈ {0, 1 · · · , n − 1}. It follows that the polynomials

∑n−1
k=0 f j,(k−u) mod n x2k �= 0, for all

j ∈ �. Hence the polynomials
∑n−1

k=0 f j,(k−u) mod n x2k
exhaust all possible polynomials

in V∗. By (15) and Lemma 7, we have

LCs∞ = 2n − 1 −
∣∣∣∣∣

{
(j, u) |

n−1∑
k=0

f j,(k−u) mod n β2k = 0, j ∈ �, u ∈ {0, 1, · · · , m j − 1}
}∣∣∣∣∣

= 2n − 1 − ∣∣{ V(x) | V(β) = 0, V(x) ∈ V∗ }∣∣
= 2n − 1 − (|{ V(x) | V(β) = 0 }| − 1)

= 2n − |{ V(x) | V(β) = 0 }| . (20)

Note that C =
{

(v0, v1, · · · , vn−1) | V(x) = ∑n−1
k=0 vkx2k ∈ GF(2)[x], V(β) = 0

}
is

an [n, m, d] linear code over GF(2), where m is the dimension and d is the minimum
nonzero Hamming weight of C. Since β2k �= 0 for all k ∈ {0, 1, · · · , n − 1},

d ≥ 2. (21)

According to the Singleton bound [19], m ≤ n − d + 1 ≤ n − 1. It follows that the
size of the linear code is 2m ≤ 2n−1. Thus |{V(x) | V(β) = 0}| ≤ 2n−1. Then we have
LCs∞ ≥ 2n − 2n−1 = 2n−1.
�

3.1.2 Special cases

Theorem 2 If n is a prime and β �= 1, then LCs∞ ≥ 2n−1 + 2n−2.

Proof Let s = rb (2n − 2) mod N. When β = b 2n−2 = αrb (2n−2) = αs �= 1, we have s �=
0. If there are k1 and k2, where 0 ≤ k1, k2 ≤ n − 1, such that β2k1 + β2k2 = 0, then
β2k1 = αs 2k1 = β2k2 = αs 2k2 . Since α is a generator of GF(2n)∗, we have αs 2k1 = αs 2k2

iff
(
s 2k1 mod N

) = (
s 2k2 mod N

)
. Since n is prime, by Lemma 3, the length of each

92 Cryptogr. Commun. (2012) 4:79–104

cyclotomic coset except {0} is n. Thus k1 = k2. It follows that d �= 2. By (21), the
minimum nonzero Hamming weight d ≥ 3. According to the Singleton bound [19],
the size of the linear code is 2m ≤ 2n−2. Thus |{V(x) | V(β) = 0}| ≤ 2n−2 and

LCs∞ ≥ 2n − 2n−2 = 2n−1 + 2n−2.

�

Theorem 3 If β = 1, then LCs∞ = 2n−1.

Proof By (20), when β = 1,

LCs∞ = 2n − |{V(x) | V(1) = 0, V(x) ∈ GF(2)[x]}|

= 2n −
∣∣∣∣∣

{
(v0, v1, · · · , vn−1) |

(
n−1∑
k=0

vk

)
mod 2 = 0, vk ∈ GF(2)

}∣∣∣∣∣

= 2n −
((

n
0

)
+

(
n
2

)
+

(
n
4

)
+ · · ·

)

= 2n − 2n−1

= 2n−1.

�

According to Theorems 1, 2 and 3, the linear complexity of the periodic keystream
sequence is quite large compared with its period.

Although it is difficult to determine the linear complexity profile of the first period
of the keystream sequence of the binary additive stream cipher based on permu-
tations, our experiments show that the sequence has very good linear complexity
profile. Since the whole period of the keystream sequence is too large when n is
large and only a segment of the keystream sequence is used in practice, we only
illustrate the linear complexity profile of a piece of the whole period of the keystream
sequence. Figure 3 illustrates the linear complexity profile of the first 20,000 bits of
the first period of the keystream sequence s∞ generated by the keystream generator
with n = 127, k = (α−3, α−3) and IV = 0.

Since the linear complexity of each segment of the keystream sequence is about
half of its length, the linear complexity attack on the stream cipher does not work.

3.2 The security of the stream cipher with respect to the linear complexity stability
attack

In general, it is difficult to obtain theoretical results on the sphere complexity and the
sphere complexity profile. Since the sphere complexity profile is more important in
practice, we focus attention on the sphere complexity profile. Experimental results
show that SC�(sL) is good for small �. Figure 4 illustrates the SC1(sL) and SC2(sL)

profiles of the first 700 bits of the first period of the keystream sequence s∞ generated
by the keystream generator with n = 127, k = (α−3, α−3) and IV = 0, which indicates
that the SC1(sL) and SC2(sL) profiles are near L/2. Thus the keystream sequence
should be able to resist linear complexity stability attacks.

Cryptogr. Commun. (2012) 4:79–104 93

Fig. 3 A linear complexity
profile

3.3 The security of the stream cipher with respect to the key approximation attack

In (4), since | {β |β ∈ GF(2n)∗ } | = N, there are N cyclically different keystream
sequences with expression (4), which can be generated by the stream cipher with
k = (β2n−2, β2n−2). Thus in order to give an upper bound on the correlation of all the
keystream sequences generated by the stream cipher, it is sufficient to give an upper
bound on the correlation of cyclically different keystream sequences with expression
(4) generated by the stream cipher.

Let s1(t) = Trn
1(β1(α

t + 1)2n−2) and s2(t) = Trn
1(β2(α

t + 1)2n−2). The function χ1

defined by

χ1(c) = (−1)Trn
1 (c) for all c ∈ GF(2n),

is the canonical additive character of GF(2n). For any b , c ∈ GF(2n), function χb (c) =
χ1(bc) is also an additive character of GF(2n).

Fig. 4 Sphere complexity
SC1(sL) and SC2(sL) profiles

94 Cryptogr. Commun. (2012) 4:79–104

Theorem 4 For any 0 ≤ τ ≤ N − 1 and β1, β2 ∈ GF(2n)∗, we have
∣∣Cs2,s1(τ)

∣∣ ≤ 1

N

(
2
√

2n + 4
)

,

where τ �= 0 if β1 = β2.

Proof When 1 ≤ τ ≤ N − 1 and β1, β2 ∈ GF(2n)∗, the correlation of the sequences
s∞

1 and s∞
2 is

Cs2,s1(τ) = 1

N

N−1∑
t=0

(−1)s2(t+τ)−s1(t)

= 1

N

N−1∑
t=0

(−1)Trn
1 (β2(α

t+τ +1)2n−2)−Trn
1 (β1(α

t+1)2n−2)

= 1

N

N−1∑
t=0

(−1)
Trn

1

(
β2(α

t+τ +1)2n−2−β1(α
t+1)2n−2

)

= 1

N

∑
x∈GF(2n)

x�=0,x�=− 1
ατ ,x�=−1

χ1
(
β2(α

τ x + 1)−1 − β1(x + 1)−1
)

+ 1

N
χ1

(
−β1

(
1 − 1

ατ

)−1
)

+ 1

N
χ1

(
β2(1 − ατ)−1

)
. (22)

Let y = 1−ατ

ατ (1+x)
+ 1. Replacing x in (22) by 1−ατ

ατ (y−1)
− 1, we have

Cs2,s1(τ) = 1

N

∑
y∈GF(2n)

y�= 1
ατ ,y�=0,y�=1

χ1

(
β2

(
ατ

(
1 − ατ

ατ (y − 1)
− 1

)
+ 1

)−1

−β1

(
1 − ατ

ατ (y − 1)
− 1 + 1

)−1
)

+ 1

N
χ1

(
β1α

τ

1 − ατ

)
+ 1

N
χ1

(
β2

1 − ατ

)

= 1

N

∑
y∈GF(2n)

y�= 1
ατ ,y�=0,y�=1

χ1

(
β2

(
1 − ατ

y − 1
− ατ + 1

)−1

− β1

(
ατ (y − 1)

1 − ατ

))

+ 1

N
χ1

(
β1α

τ

1 − ατ

)
+ 1

N
χ1

(
β2

1 − ατ

)

= 1

N

∑
y∈GF(2n)

y�= 1
ατ ,y�=0,y�=1

χ1

(
β2(y − 1)

(1 − ατ)y
− β1α

τ (y − 1)

1 − ατ

)

+ 1

N
χ1

(
β1α

τ

1 − ατ

)
+ 1

N
χ1

(
β2

1 − ατ

)

Cryptogr. Commun. (2012) 4:79–104 95

= 1

N

∑
y∈GF(2n)

y�= 1
ατ ,y�=0,y�=1

χ1

(
β2 + β1α

τ

1 − ατ
− β2

(1 − ατ)y
− β1α

τ y
1 − ατ

)

+ 1

N
χ1

(
β1α

τ

1 − ατ

)
+ 1

N
χ1

(
β2

1 − ατ

)

= 1

N

∑
y∈GF(2n)∗

χ1

(
β2 + β1α

τ

1 − ατ
− β2

(1 − ατ)y
− β1α

τ y
1 − ατ

)

+ 1

N
χ1

(
β1α

τ

1 − ατ

)
+ 1

N
χ1

(
β2

1 − ατ

)

− 1

N
χ1

(
β2 + β1α

τ

1 − ατ
− β2

(1 − ατ) 1
ατ

− β1α
τ 1

ατ

1 − ατ

)

− 1

N
χ1

(
β2 + β1α

τ

1 − ατ
− β2

1 − ατ
− β1α

τ

1 − ατ

)

= 1

N

∑
y∈GF(2n)∗

χ1

(
β2 + β1α

τ

1 − ατ

)
χ1

(
− β2

(1 − ατ)y
− β1α

τ y
1 − ατ

)
+ 1

N
χ1

(
β1α

τ

1 − ατ

)

+ 1

N
χ1

(
β2

1 − ατ

)
− 1

N
χ1 (β2 − β1) − 1

N
χ1 (0) .

Applying the bound on Kloosterman sum [13], we have

∣∣Cs2,s1(τ)
∣∣ ≤ 1

N

∣∣∣∣∣∣
∑

y∈GF(2n)∗
χ1

(
β2 + β1α

τ

1 − ατ

)
χ1

(
− β2

(1 − ατ)y
− β1α

τ y
1 − ατ

)∣∣∣∣∣∣

+ 1

N

∣∣∣∣χ1

(
β1α

τ

1 − ατ

)∣∣∣∣

+ 1

N

∣∣∣∣χ1

(
β2

1 − ατ

)∣∣∣∣ + 1

N
|−χ1 (β2 − β1)| + 1

N
|−χ1 (0)|

≤ 1

N

∣∣∣∣∣∣
∑

y∈GF(2n)∗
χ1

(
− β2

(1 − ατ)y
− β1α

τ y
1 − ατ

)∣∣∣∣∣∣
+ 4

N

≤ 1

N

(
2
√

2n + 4
)

. (23)

When τ = 0 and β1 �= β2, we obtain

Cs2,s1(0) = 1

N

N−1∑
t=0

(−1)s2(t)−s1(t)

= 1

N

N−1∑
t=0

(−1)Trn
1 (β2(α

t+1)2n−2)−Trn
1 (β1(α

t+1)2n−2)

96 Cryptogr. Commun. (2012) 4:79–104

= 1

N

N−1∑
t=0

(−1)
Trn

1

(
(β2−β1)(α

t+1)2n−2
)

= 1

N

∑
y∈GF(2n)

y�=1,y�=0

χβ2−β1(y) + 1

N
χβ2−β1 (0)

= 1

N

∑
y∈GF(2n)

χβ2−β1(y) + 1

N
χβ2−β1 (0) − 1

N
χβ2−β1 (1) − 1

N
χβ2−β1 (0)

= 0 − 1

N
χβ2−β1 (1)

= − 1

N
(−1)Trn

1 (β2−β1).

Thus in this case,

∣∣Cs2,s1(0)
∣∣ = 1

N
. (24)

By (23) and (24), we have

∣∣Cs2,s1(τ)
∣∣ ≤ 1

N

(
2
√

2n + 4
)

for all 0 ≤ τ ≤ N − 1 and β1, β2 ∈ GF(2n)∗,

where τ �= 0 if β1 = β2.
�

Clearly, the number of distinct sequences in S is |S| = K = N. By Theorem 4 and
mathematical induction, we can easily prove that

Cmax(S) ≤ 2
√

N + 1 + 4

N
≈ 2

√
N − 1

N2 − 1
= 2

√
K − 1

NK − 1
, (25)

when n ≥ 20. Since n is larger than 20 in practice, Design Criterion 4 is satisfied.
In practice, it is difficult to acquire theoretical results of the autocorrelation and

cross-correlation profiles of the keystream sequences. However, our experiments

show that C(L)
max(S) approaches to 3

√
K−1

NK−1 when L is close to N. Figure 5 illustrates
the autocorrelation profile of the first period of the keystream sequence s∞ generated
by the keystream generator with n = 12, k = (α−3, α−3) and IV = 0. However, when
n is large, i.e., n is more than 64, it is impossible for us to give experimental results of
max1≤τ≤N−1 |C(L)

s,s (τ)| due to the large computational complexity.
The theoretical and experimental results show that the key approximation attack

should not work.
Two encryption keys are called equivalent if they define the same encryption

transformation. The discussions in this section proved that the cipher described in
this paper does not have equivalent keys, while in most ciphers it is open if equivalent

Cryptogr. Commun. (2012) 4:79–104 97

Fig. 5 An autocorrelation
profile

keys exist. We are able to prove this security property for this cipher due to the
simplicity of its encryption algorithm.

3.4 The security of the stream cipher with respect to the linear approximation attack

We now estimate the Hamming distance between h(x) = g (f (x)) = Trn
1

(
x2n−2

)
as

described in Section 1 and any affine function from GF(2n) to GF(2). Any affine
function from GF(2n) to GF(2) can be denoted to be Trn

1 (wx) + c for some w ∈
GF(2n) and c ∈ GF(2), as described in Section 2.4.

Define

H =
∑

x∈GF(2n)

(−1)h(x)+Trn
1 (wx)+c.

Then the Hamming distance between h(x) and Trn
1 (wx) + c is equal to

2n − H
2

.

Using the similar method in Section 3.3, we have

H =
∑

x∈GF(2n)

(−1)
Trn

1

(
x2n−2+wx

)
+c

= (−1)c
∑

x∈GF(2n)

(−1)
Trn

1

(
x2n−2+wx

)

= (−1)c
∑

x∈GF(2n)∗
χ1

(
x−1 + wx

) + (−1)cχ1(0).

98 Cryptogr. Commun. (2012) 4:79–104

By the Kloosterman sum theorem [13], we have

|H| ≤
∣∣∣∣∣∣
(−1)c

∑
x∈GF(2n)∗

χ1
(
x−1 + wx

)
∣∣∣∣∣∣
+ ∣∣(−1)cχ1(0)

∣∣

=
∣∣∣∣∣∣

∑
x∈GF(2n)∗

χ1
(
x−1 + wx

)
∣∣∣∣∣∣
+ 1

≤ 2
√

2n + 1.

Thus −2
√

2n − 1 ≤ H ≤ 2
√

2n + 1. Hence

2n−1 − 2n/2 − 1

2
≤ 2n − H

2
≤ 2n−1 + 2n/2 + 1

2
,

which is close to the covering radius bound [3]. Hence any linear attack on the stream
cipher should not work.

Here the lower and upper bounds on H come directly from the well known
Kloosterman sum bound. In fact, more information on H can be found in [14].

3.5 The security of the cipher with respect to algebraic attacks

Although algebraic attacks on ciphers have different technical details from case to
case, the general idea of any algebraic attack is the following.

1. Find out a set of equations involving plaintext bits, ciphertext bits and secret key
bit using the encryption or decryption function.

2. Simplify this set of equations for the easiness of solving them when secret-key
bits are treated as unknowns and plaintext bits and ciphertext bits are treated as
known constants.

3. Solve the set of simplified equations obtained in Step 2 using given plaintext-
ciphertext pairs, aiming at recovering the secret key.

Step 1 is easy to do, as a set of equations could be obtained easily from the
encryption or decryption function of the cipher. Any algebraic attack must start from
the encryption or decryption function. However, Step 2 above may be hard to carry
out as the set of equations obtained in Step 1 may be extremely complex for a cipher
with good confusion and diffusion defined by Claude Shannon. In addition, the way
for carrying Step 2 may not be unique. Anyway, if a set of simple equations cannot
be obtained in Step 2, Step 3 would be infeasible. Clearly, this idea of attacking
applies to any cipher. So it should not work for well designed ciphers as the idea
is too general.

Now we consider the security of the cipher described in this paper with respect to
an algebraic attack. We assume that a segment of the sequence (ŝ(t)) are known to
the adversary. The objective of the adversary is to recover the secret key (a, b).

Cryptogr. Commun. (2012) 4:79–104 99

From the discussion in Section 3.1, the adversary has

ŝ(t) = Trn
1

(
(aαt + b)2n−2

)

= Trn
1

(
2n−2∑
i=0

(
2n − 2

i

) (
aαt)i

b 2n−2−i

)

= Trn
1

⎛
⎝

2n−1−1∑
i=0

(
aαt)2i

b 2n−2−2i

⎞
⎠

=
2n−1−1∑

i=0

n−1∑
j=0

(
b (2n−1−1)2 j (

b−1aαt)i2 j)
. (26)

To carry out Step 2, the adversary needs to simplify the expression in (26), which
has n2n−1 terms. It is possible that some of the n2n−1 terms in (26) cancel each other.
However, after the cancellation of some terms, the simplified expression of (26) has
at least 2n−1 terms, as the linear complexity of the keystream sequence is at least 2n−1.
Hence, what the adversary has after carrying out Step 2 is a set of equations, where
each equation has at least 2n−1 terms, given a segment of the keystream sequence. In
practice, n should be at least 64. So in each equation, there are at least 263 terms. On
the other hand, for the following set of equations

ŝ(t) =
2n−1−1∑

i=0

n−1∑
j=0

(
b (2n−1−1)2 j (

b−1aαt)i2 j)
, t = t1, t1 + 1, · · · , t1 + L − 1, (27)

where t1 and L are some nonnegative integers, it looks hard to find out simple
relations among them, so that simpler equations can be derived from the L equations.
Hence, the complexity of Step 3 would be too high. It looks that this algebraic attack
should not work. Of course, this is an argument, rather than a rigorous proof.

The cipher of this paper makes use of the function Trn
1(ux2n−2), which can be

viewed as a Boolean function with n variables when x is expressed as x = ∑n
i=1 xiβi

where {β1, β2, · · · , βn} is a basis of GF(2n) over GF(2). The algebraic immunity of the
function Trn

1(ux2n−2) is upper bounded by 2�√n� [18]. Although this upper bound is
not high, it would be hard to carry out an algebraic attack on this cipher using the
algebraic immunity of the functions Trn

1(ux2n−2) due to the following:

1. According to [18], it is too complex to determine the algebraic immunity of each
function Trn

1(ux2n−2) when n > 25, while in real applications n should be at least
64.

2. For any two distinct positive integers 0 ≤ t < 2n − 1 and 0 ≤ t′ < 2n − 1, let x =
aαt + b = ∑n

i=1 xiβi and y = aαt′ + b = ∑n
i=1 yiβi. The relation between these xi

and these y j are nontrivial.

There might be other algebraic attacks. The reader is invited to consider other
possible algebraic attacks on this cipher.

100 Cryptogr. Commun. (2012) 4:79–104

3.6 Security against other attacks

A distinguishing attack on a cipher is based on a formal model of security, where an
adversary tries to distinguish between the output of a particular cipher and the output
of a truly random process, with a non-negligible probability. In the context of additive
synchronous stream ciphers, a distinguishing attack tries to distinguish a keystream
sequence from a truly random sequence. Any keystream sequence produced by any
machine must be different from a truly random sequence as the memory of the
machine must be limited. Many properties of the keystream sequences of the cipher
dealt with in this paper are very close to those of a truly random sequence. We do
not see any distinguishing attack can recover the key of the cipher, and invite the
reader to propose such an attack. Greg Rose and Philip Hawkes concluded that the
existence of distinguishing attacks against stream ciphers is unrelated to their security
in practical use [21].

In a guess-and-determine (GD) attack, the attacker first guesses (the values of) a
set of state elements of a cipher, called a basis. The basis can correspond to different
elements of different states or key. Next, the attacker determines the remaining state
elements or remaining part of the key. If the remaining state elements or part of
the key has a solution, then the guessed values are regarded as true; otherwise, the
attacker should repeat the above scenario with other guessed values. Thus, the attack
complexity is roughly equal to the computation needed for repeating the above
scenario for all possible guesses.

For the cipher of this paper, the initial state of the counter is the IV. The attacker
may guess a value for a, and try to solve the set of equations

ŝ(t) =
2n−1−1∑

i=0

n−1∑
j=0

(
b (2n−1−1)2 j (

b−1aαt)i2 j)
, t = t1, t1 + 1, · · · , t1 + L − 1,

aiming to solve b . If the set of equations has a solution b , the pair (a, b) is regarded
as the true key. Otherwise, the attacker will make another guess for a. However,
after guessing a value for a, we do not see any easy way to solve this set of equations.
We have the same conclusion when the attacker first guess a value of b and then
solve the set of equations. Hence, we do not see any guess-and-determine attack that
works on the cipher of this paper.

There might be other attacks on the cipher of this paper. We invite the reader to
analyse the security of this cipher.

3.7 The mathematical problem defining the security of this cipher

The security of the cipher of this paper with respect to known-plaintext attacks is
equivalent to the difficulty of solving the following set of equations:

Trn
1

((
aαt + b

)2n−2
)

= ŝ(t), t = 1, 2, · · · , 2n, (28)

where a and b are unknowns. The cipher is secure with respect to known-plaintext
attacks if and only if there is no polynomial-time algorithm for solving this set of
equations.

Cryptogr. Commun. (2012) 4:79–104 101

As stated in Section 3.5, (28) can be expressed as (27) with L = 2n. Solving (27)
with L = 2n should be difficult, due to the reasons given in Section 3.5:

1. Each equation has at least 2n−1 terms even if some terms cancel each other, where
n is large in practice.

2. It seems hard to find relations among these 2n equations.

Also, we can convert (28) to a system of Boolean functions, in order to show
the hardness of this problem. The function Trn

1((aαt + b)2n−2), where a and b are
unknowns, can be viewed as a Boolean function with 2n variables when a and b are
expressed as a = ∑n

i=1 aiβi and b = ∑n
i=1 biβi respectively, where {β1, β2, · · · , βn} is

a basis of GF(2n) over GF(2). Then (28) can be expressed as a system of 2n Boolean
equations with 2n variables. According to [11], the general problem of solving a
Boolean equation system is computationally hard, and there is no polynomial time
solution technique. Since n is usually larger than 64 in practice, solving the system of
2n Boolean equations with 2n variable should be a computational hard task.

We invite the reader to analyse whether there are efficient methods to solve the
system of equations (28).

4 Performance of the stream cipher

If we express every element w in GF(2n) as (w0, w1, · · · , wn−1) ∈ GF(2)n, where
w = w0α

0 + w1α
1 + · · · + wn−1α

n−1, then the secret key k = (a, b) of the stream
cipher has 2n bits. We tested the performance of the stream cipher using the Magma
software. The build-in trace function and the inverse function x−1 in Magma were
used. All experiments were run on a Pentium(R) 4 computer with 3.20GHz and
2.99GB main memory. The encryption or decryption rate of the stream cipher with
n = 127 was 5.47 kilobytes per second. When n = 193, the encryption or decryption
rate was 2.04 kilobytes per second. Although its performance is not good, it can be
used for offline applications. Since computing the inverse x−1 over GF(2n) is more
time-consuming compared with the addition, the subtraction and the multiplication,
fast algorithms of computing the multiplicative inverse over GF(2n) are the keys to
improve the performance of the software implementation of the stream cipher. In
[10, 12, 24] some algorithms of computing the multiplicative inverse over GF(2n) are
presented. With the implementation of some of these algorithms, the cipher of this
paper should have a reasonable performance in software.

We now examine the performance of a hardware implementation of the stream
cipher. Reference [20] gives a fast algorithm of computing the multiplicative inverse
over GF(2n), and implements the proposed algorithm in hardware for the computa-
tion of x−1 over GF(2193). With respect to our stream cipher, we can use the field
squarer block given in [20] to compute x2n

over GF(2193), in order to compute the
trace function

∑n−1
i=0 x2i

in hardware efficiently, where x ∈ GF(2193). We may also
directly use the hardware implementation of the inverse function x−1 over GF(2193)

given in [20]. Since only the timing of the inverse computation is given in [20] and
the inversion is the most consuming computation, the encryption or decryption rate
of the hardware implementation of the stream cipher with n = 193 is expected to
be about 100 kilobytes per second, which is about 50 times faster than the speed of
the stream cipher given in our software experiment. As there are always trade-offs

102 Cryptogr. Commun. (2012) 4:79–104

between performance and security, the performance is acceptable as we have a cipher
with large key size when n = 193.

5 The detection of the loss of synchronization of the cyclic counters

Note that the cipher depicted in Fig. 2 is a synchronous stream cipher. Synchronous
stream ciphers have the advantage that bit errors in the ciphertext introduced by
channel noise during transmission affect only the corresponding bits in the decrypted
text. However, the price paid for this strength is that synchronization is required
between the sender and receiver for this kind of stream ciphers [5]. Thus the
detection of the loss of synchronization and the resynchronization are necessary.

There are different methods for detecting the loss of synchronization. One method
may have advantages and disadvantages over another one. A patent of detecting loss
of cipher synchronization in a video processing system has been given in [8]. For the
cipher of this paper, we propose the following simple method.

We assume that the maximum length of any message to be encrypted is 2m, where
m is a positive integer and is agreed by the sender and receiver. It is safe to assume
that m = 64. To have the capability of detecting the loss of synchronization, an m-
bit block is padded to the original message by the sender. The padded block is the
binary representation of the length of the original message to be encrypted. The
sender will then encrypt the padded message. After receiving the ciphertext, the
receiver will do decryption first. The receiver will then use the last m bits in the
decrypted text to compute the length value. The receiver will next count the length
of the remaining part in the decrypted text. If the computed length value matches the
length of the remaining decrypted text, synchronization is okay. Otherwise, the loss
of synchronization is detected and resynchronization is invoked.

6 The resynchronization process

The resynchronization of the cipher in Fig. 2 is to ensure that the counters at the
sender and the receiver side have the same internal state at the same time unit. If
the loss of synchronization is detected, resynchronization should be initiated so that
decryption is correctly done at the receiver’s side.

As described in Section 1, the initial content of the memory unit of the counter in
Fig. 2 is the IV. At both the sender and receiver side, the resynchronization of the
stream cipher depicted in Fig. 2 is conducted as follows:

1. Change the contents of the memory units of the counters at both sides to be IV.
2. Clock the keystream generator n times without changing the secret key. In this

way an n-bit keystream z0z1 · · · zn−1 is output by the keystream generators. Now
the new IV for resynchronization is (

∑n−1
i=0 zi2i) mod N. This new IV is computed

by both sides in the same way.
3. Both sides put the newly computed IV into the counter as the current content.

Note that the new IV is computed from the current IV and the secret key using
the algorithm of the keystream generator. The resynchronization process does not
decrease the security level of the cipher.

Cryptogr. Commun. (2012) 4:79–104 103

7 Conclusions and remarks

In this paper, we analysed possible attacks of a specific binary additive stream cipher
based on permutations, and derived a number of design criteria. Experiments of this
stream cipher were conducted in the case that no theoretical result is available. A
detection of loss of synchronization of the cyclic counters and a resynchronization
process are also described so that the stream cipher is ready for applications.
Although we are not able to claim the security of the stream cipher based on the
properties examined in this paper, the stream cipher is secure with respect to a
number of attacks. In addition, this stream cipher is practical for offline applications
with high security requirements, as its performance is somewhat inferior to those in
the literature. The advantages of the stream cipher presented in this paper are that
it is simpler in structure and has more proven security properties. Of course, we are
not claiming that the cipher proposed in this paper is secure. In fact, the only cipher
with proven security is the one-time pad which is not practical at all. The reader is
invited to further analyse the security of cipher.

The motivations for choosing the inverse function x2n−2 for the cipher are the
following:

1. It is a one-to-one function so that the keystream sequences are balanced.
2. It has optimal nonlinearity with respect to (GF(2n),+) and (GF(2),+).
3. It guarantees that the linear complexity and its stability of the keystream

sequences are good enough.
4. It guarantees that the correlation between any two keystream sequences defined

by two distinct keys are good enough.

We tested other known APN permutations and they are not as good as the inverse
function x2n−2 considering all the requirements above.

Acknowledgements The authors wish to thank the reviewers for their comments and suggestions
that improved the quality of this paper.

References

1. Antweiler, M., Bomer, L.: Complex sequences over GF(pM) with a two-level autocorrelation
function and a large linear span. IEEE Trans. Inf. Theory 38, 120–130 (1992)

2. Block cipher modes of operation. http://en.wikipedia.org/wiki/Block_cipher_modes_of_
operation. Accessed 10 Apr 2011

3. Carlet, C., Ding, C.: Nonlinearities of S-boxes. Finite Fields Their Appl 13, 121–135 (2007)
4. Cusick, T., Ding, C., Renvall, A.: Stream Ciphers and Number Theory, Revised edn., vol. 55. The

North-Holland Mathematical Library, Elsevier, Amsterdam (1998)
5. Deamen, J., Govaerts, R., Vandewalle, J.: Resynchronization weakness in synchronous stream

ciphers. In: Helleseth, T. (ed.) Advances in Cryptology – EUROCRYPT’93. Lecture Notes in
Computer Science, vol. 765, pp. 159–167. Springer-Verlag (1993)

6. Ding, C.: Lower bounds on the weight complexity of cascaded binary sequences. In: Seberry,
J. (ed.) Proc. of Auscrypt’90, Advances in Cryptology. LNCS 453, pp. 39–43. Springer-Verlag,
Heidelberg (1990)

7. Ding, C., Xiao, G., Shan, W.: The stability theory of stream ciphers. Lecture Notes in Computer
Science, vol. 561. Springer-Verlag, Heidelberg (1991)

8. Graunke, G.L.: Method and apparatus for detection of loss of cipher synchronization. Patent
number: US7369661 (2008)

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation

104 Cryptogr. Commun. (2012) 4:79–104

9. Gupta, K.C., Maitra, S.: Primitive polynomials over GF(2) – a cryptologic approach. In: Qing,
S., Okamoto, T., Zhou, J. (eds.) Information and Communications Security. Lecture Notes in
Computer Science, vol. 2229, pp. 23–34. Springer-Verlag, Heidelberg

10. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal
basis. Inf. Control 78, 171–177 (1988)

11. Keinänen, M.: Techniques for solving Boolean equation systems. Research Report A105, Doc-
toral Dissertation, Helsinki University of Technology, Laboratory for Theoretical Computer
Science, Espoo, Finland, 3–5 (2006)

12. Li, Y., Chen, G., Chen Y., Li, J.: An extension of TYT inversion algorithm in polynomial basis.
Inf. Process. Lett. 110, 300–303 (2010)

13. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge Univ. Press, Cambridge (1997)
14. Lachaud, G., Wolfmann, J.: The weights of the orthogonals of the extended quadratic binary

Goppa codes. IEEE Trans. Inf. Theory 36, 686–692 (1990)
15. Lucas, E.: Théorie des fonctions numériques simplement périodiques. Am. J. Math. 1, 229–231

(1878)
16. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North Holland,

Amsterdam (1986)
17. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC

Press (1996)
18. Nawaz, Y., Gong, G., Gupta, K.C.: Upper bounds on algebraic immunity of boolean power

functions. In: Fast Software Encryption, Lecture Notes in Computer Science, vol. 4047, pp. 375–
389. Springer-Verlag, Berlin (2006)

19. Pless, V.S., Huffman, W.C., Brualdi, R.A.: An introduction to algebraic codes. In: Pless, V.S.,
Huffman, W.C. (eds.) Handbook of Coding Theory, pp. 3–139. Elsevier, Amsterdam (1998)

20. Rodríguez-Henríquez, F., Morales-Luna, G., Saqib, N.A., Cruz-Cortés, N.: Parallel Itoh-Tsujii
multiplicative inversion algorithm for a special class of trinomials. Des. Codes Cryptography 45,
19–37 (2007)

21. Rose, G., Hawkes, P.: On the applicability of distinguishing attacks against stream ciphers. In:
Proceedings of the 3rd NESSIE Workshop (2002)

22. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer-Verlag (1986)
23. Stamp, M., Martin, C.F.: An algorithm for the k-error linear complexity of binary sequences with

period 2n. IEEE Trans. Inf. Theory 39, 1398–1401 (1993)
24. Takagi, N., Yoshiki, J., Takagi, K.: A fast algorithm for multiplicative inversion in GF(2m) using

normal basis. IEEE Trans. Comput. 50, 394–398 (2001)
25. Welch, L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inf.

Theory 20, 397–399 (1974)

	A simple stream cipher with proven properties
	Abstract
	Introduction
	Possible attacks and design criteria
	The linear complexity attack and the associated design criteria
	The linear complexity stability attack and the associated design criterion
	The key approximation attack and the associated design criteria
	The linear approximation attack and the associated design criterion

	Security properties of the binary additive stream cipher based on f(x)=x2n-2 and g(x)=Tr1n(x)
	The security of the stream cipher with respect to the linear complexity attack
	The general case
	Special cases

	The security of the stream cipher with respect to the linear complexity stability attack
	The security of the stream cipher with respect to the key approximation attack
	The security of the stream cipher with respect to the linear approximation attack
	The security of the cipher with respect to algebraic attacks
	Security against other attacks
	The mathematical problem defining the security of this cipher

	Performance of the stream cipher
	The detection of the loss of synchronization of the cyclic counters
	The resynchronization process
	Conclusions and remarks
	References

