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Abstract
Locally recoverable codes (LRCs) were proposed for the recovery of data in distributed and
cloud storage systems about nine years ago. A lot of progress on the study of LRCs has been
made by now. However, there is a lack of general theory on the minimum locality of linear
codes. In addition, the minimum locality of many known families of linear codes has not
been studied in the literature. Motivated by these two facts, this paper develops some general
theory about the minimum locality of linear codes, and investigates the minimum locality of
a number of families of linear codes, such as q-ary Hamming codes, q-ary Simplex codes,
generalized Reed-Muller codes, ovoid codes, maximum arc codes, the extended hyperoval
codes, and near MDS codes. Many classes of both distance-optimal and dimension-optimal
LRCs are presented in this paper. To this end, the concepts of linear locality and minimum
linear locality are specified. The minimum linear locality of many families of linear codes
are settled with the general theory developed in this paper.
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1 Introduction of motivations, objectives andmethodology

We first fix some notation and definitions that will be used throughout this paper.

– Let n be a positive integer and let q be a prime power.
– An [n, k, d] code C over GF(q) is a k-dimensional subspace of GF(q)n with Hamming

distance d .
– Ai (C) or Ai , dim(C), d(C) and C⊥ denote the number of codewords of Hamming weight

i in C, the dimension of C, the minimum Hamming distance of C, and the dual of C,
respectively.

– The weight distribution and weight enumerator of C are defined by the sequence
(A0, . . . , An) and the polynomial

∑n
i=0 Ai zi , respectively.

– C is said to be a t-weight code if the sequence (A1, . . . , An) has Hamming weight t .
– Denote [n] = {0, 1, . . . , n − 1} for each positive integer n. We usually index the coordi-

nates of the codewords in a linear code C of length n with the elements in [n].
– An [n, k, d] code C over GF(q) is called an (n, k, d, q; r)-LRC (i.e., locally recoverable

code) if for each i ∈ [n] there is a subset Ri ⊆ [n] \ {i} of size r and a function
fi (x1, . . . , xr ) on GF(q)r such that ci = fi (cRi ) for each codeword c = (c0, . . . , cn−1)

in C, where cRi is the projection of c at Ri . The symbol ci is called the i-th code symbol
and the set Ri is called the repair set or recovering set of the code symbol ci . The
minimum r such that C is an (n, k, d, q; r)-LRC is called the minimum locality of C.

If the i-th coordinate ci of each codeword c in a linear code C of length n is zero, we say
that the i-th coordinate of C is zero. It is easily seen that a linear code C has a zero coordinate
if and only if the dual distance d(C⊥) = 1. A linear code C is called nontrivial if d(C) ≥ 2
and d(C⊥) ≥ 2 and trivial otherwise. In this paper, we consider only nontrivial linear codes,
as trivial linear codes are not interesting for error correction. For each nontrivial linear code
of length n over GF(q), since d(C⊥) ≥ 2, it is easily seen that C is an (n, k, d, q; r)-LRC for
some r with 1 ≤ r ≤ n. Consequently, each nontrivial linear code C has a minimum locality.

In this definition of LRCs above, the degrees of the functions fi are not restricted. If we
require that each fi be a homogeneous function of degree 1 in the definition above, then we
say that C is (n, k, d, q; r)-LLRC (linearly local recoverable code) and has linear locality r .
For the same reasons, each nontrivial linear code C has a minimum linear locality.

By definition, if a linear code has linear locality r , it has locality r . Hence, it is necessary
to study the linear locality of linear codes. It will be proved in Sect. 3.1 that the minimum
locality equals the minimum linear locality (see Lemma 1). This equality may be known to
some people, but a reference pointing out this equality is missing in the literature. Although
the minimum locality and minimum linear locality of any nontrivial linear code are identical,
the complexity of recovering a code symbol ci with a nonlinear function fi (x1, . . . , xr )
and a recovering set Ri may be more than that with a linear function f ′

i (x1, . . . , xr ) =
a1x1 + · · · + ar xr and a recovering set R′

i . Hence, it would be better to distinguish the linear
locality from the locality and study the linear locality and minimum linear locality of linear
codes. In fact, the locality of the linear codes obtained in the literature is actually a linear
locality. These facts show the necessity of studying the linear locality and minimum linear
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The minimum locality of linear codes 85

locality of linear codes. It will be further justified in Sect. 3.1 that it is necessary and sufficient
to study the linear locality and minimum linear locality of linear codes over finite fields. The
following question is then fundamental.

Question 1 What is the minimum linear locality and how does one compute the minimum
linear locality of a nontrivial linear code?

In the literature it was shown that many classes of linear codes have linear locality r for
some r . However, the minimum linear locality of such linear codes is unknown, i.e., Question
1 is open. The first objective of this paper is to answer the question above. We will develop
some general theory answering this question.

For any (n, k, d, q; r)-LLRC, Gopalan et al. proved the following upper bound on the
minimum distance d [19]:

d ≤ n − k −
⌈
k

r

⌉

+ 2. (1)

The bound in (1) is similar to the Singleton bound, so we call it the Singleton-like bound. If
an (n, k, d, q; r)-LLRC meets the Singleton-like bound with equality, then we say that the
(n, k, d, q; r)-LLRC is distance-optimal (d-optimal for short). If an (n, k, d, q; r)-LLRC
meets the Singleton-like bound minus one with equality, then we say that the (n, k, d, q; r)-
LLRC is almost distance-optimal (almost d-optimal for short). Note that the Singleton-like
bound is not tight for codes over small finite fields, as it is independent of the alphabet size
q .

For any (n, k, d, q; r)-LLRC, Cadambe and Mazumdar developed the following bound
on the dimension k [5, 6]:

k ≤ min
t∈Z+

[tr + k(q)
opt (n − t(r + 1), d)], (2)

whereZ+ denotes the set of all positive integers, and k(q)
opt (n, d) is the largest possible dimen-

sion of a linear code with length n, minimum distance d , and alphabet size q . In this paper, we
call the bound in (2) the CM bound. An (n, k, d, q; r)-LLRC that attains the CM bound with
equality is said to be dimension-optimal (k-optimal for short). Note that the CM bound takes
the alphabet size q into consideration, but the bound in (1) is independent of q . However, the
CM bound involves a parameter k(q)

opt (n, d), which may be hard to determine in many cases.
The two bounds may not be derived from each other.

While constructing newoptimal LLRCs is an important task, searching for optimal LLRCs
in the known families of linear codes is also important. The second objective of this paper is
to study the minimum linear locality of certain known families of linear codes and try to find
out d-optimal or k-optimal LLRCs.We focus on non-binary linear codes, as the linear locality
of some families of binary codes were studied in [23]. Our methodology is combinatorial
and group-theoretical.

Locally recoverable codes were proposed for the recovery of data in distributed and cloud
storage systems by Gopalan, Huang, Simitci and Yikhanin [19]. In the past nine years, a lot
of progress on the study of locally recoverable codes has been made. The reader is referred
to [5–9, 19, 23, 26, 27, 29, 32–34, 40, 41] and the references therein for information. Despite
of the good progress made by now, Question 1 looks still open, and there is a lack of general
theory on theminimum linear locality of linear codes. In addition, theminimum linear locality
of many known families of linear codes are not studied in the literature. Motivated by these
two facts, this paper develops some general theory about the minimum linear locality of
linear codes, and investigates the minimum linear locality of a number of families of linear

123



86 P. Tan et al.

codes, such as q-ary Hamming codes, q-ary Simplex codes, generalized Reed-Muller codes,
ovoid codes, maximum arc codes, the extended hyperoval codes, and nearMDS codes. Many
classes of both distance-optimal and dimension-optimal LRCs are presented in this paper.
The minimum linear locality of many families of linear codes are settled with the general
theory developed in this paper.

The rest of this paper is organized as follows. Section 2 introduces some basics of cyclic
and linear codes and the support designs of linear codes. Section 3 develops some general
theory about the minimum linear locality of nontrivial linear codes. Section 4 investigates
the minimum linear locality of several families of famous linear codes, including the q-ary
Hamming codes, the q-ary Simplex codes, the generalized Reed-Muller codes, the ovoid
codes, and the maximum arc codes. Section 5 studies the minimum linear locality of near
MDScodes. Section 6 summarizes the contributions of this paper andmakes some concluding
remarks.

2 Preliminaries

To study the minimum linear locality of linear codes, we need to introduce some basics of
linear codes and cyclic codes. Since our methodology is combinatorial and group-theoretic,
we have to introduce the automorphism groups of linear codes and combinatorial t-designs.
The purpose of this section is to introduce these stuffs very briefly.

2.1 BCH and cyclic codes

An [n, k, d] code C over GF(q) is said to be cyclic if for each (c0, c1, c2, . . . , cn−1) ∈ C we
have (cn−1, c0, c1, c2, . . . , cn−2) ∈ C. We identify a vector (c0, c1, c2, . . . , cn−1) ∈ GF(q)n

with the polynomial c(x) = ∑n−1
i=0 ci xi ∈ GF(q)[x]/〈xn − 1〉. Then a code C of length n

over GF(q) corresponds to a subset C(x) of the quotient ring GF(q)[x]/〈xn − 1〉, where

C(x) :=
{
n−1∑

i=0

ci x
i : c = (c0, c1, . . . , cn−1) ∈ C

}

.

It is easy to see that C is cyclic if and only if the set C(x) is an ideal of the ring GF(q)[x]/〈xn−
1〉.

It is well-known that each ideal of GF(q)[x]/〈xn − 1〉 is principal when gcd(n, q) = 1.
Let C = 〈g(x)〉 be a cyclic code, where g(x) is monic and has the smallest degree among all
the generators of C. Then g(x) is unique and called the generator polynomial, and h(x) =
(xn − 1)/g(x) is referred to as the check polynomial of C.

Let n be a positive integer with gcd(n, q) = 1, and let m = ordn(q) be the order of q
modulo n. Let α be a generator of the multiplicative group GF(qm)∗. Put β = α(qm−1)/n .
Then β is a primitive n-th root of unity in GF(qm). The minimal polynomial Mβs (x) of βs

over GF(q) is defined to be the monic polynomial of the smallest degree over GF(q) with
βs as a root and is given by

Mβs (x) =
∏

i∈Cs

(x − β i ) ∈ GF(q)[x], (3)

where Cs = {sqi mod n : 0 ≤ i ≤ m − 1} and is called the q-cyclotomic coset containing s.
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Let δ be an integer with 2 ≤ δ ≤ n and let h be an integer. A BCH code over GF(q)

with length n and designed distance δ, denoted by C(q,n,δ,h), is a cyclic code with generator
polynomial

g(q,n,δ,h) = lcm(Mβh (x), Mβh+1(x), . . . , Mβh+δ−2(x)). (4)

If h = 1, the code C(q,n,δ,h) with the generator polynomial in (4) is referred to as a narrow-
sense BCH code. If n = qm − 1, then C(q,n,δ,h) is called a primitive BCH code.

BCH codes form a subfamily of cyclic codes with attractive properties and applications.
In many cases BCH codes are the best cyclic codes. For instance, among all binary cyclic
codes of odd lengths n with n ≤ 125 the best cyclic code is always a BCH code except
for two special cases [11]. Reed-Solomon codes can be defined as punctured BCH codes
and have been widely used in data storage systems, communication devices and consumer
electronics.

2.2 Several basic operations on linear codes

Let C be a linear code with length n. Below we introduce several basic operations on C for
obtaining new codes. Let T be a set of coordinate positions in C and let CT denote the code
obtained by puncturing C in all the coordinate positions in T , which has length n − |T |. Let
C(T ) denote the set of codewords whose coordinates are 0 on T , which is a subcode of C.
After puncturing C(T ) on T , we get a linear code over GF(q) with length n − |T |, which
is called a shortened code of C, and is denoted by CT . It is known that (C⊥)T = (CT )⊥ and
(C⊥)T = (CT )⊥. The extended code C of C is defined by

C =
{

(c0, c1, . . . , cn−1, cn) ∈ GF(q)n+1 : (c0, c1, . . . , cn−1) ∈ C with
n∑

i=0

ci = 0

}

.

Let G be a generator matrix of C. Suppose that the all-1 vector is not a codeword of C. Then
the augmented code, denoted by C̃, of C is the linear code over GF(q) with generator matrix

[
G
1

]

,

where 1 denotes the all-1 vector. The augmented code has length n and dimension k + 1.
Later in this paper, we will study the minimum linear locality of some punctured or shortened
or augmented code of some linear codes.

2.3 Automorphism groups of linear codes

The permutation automorphism group of C, denoted by PAut(C), is the set of coordinate
permutations that map a code C to itself. A square matrix having exactly one nonzero element
ofGF(q) in each rowand column is called amonomialmatrix overGF(q). Amonomialmatrix
M can be written in the form DP or the form PD1, where P is a permutation matrix and D
and D1 are diagonal matrices. The monomial automorphism group of C refers to the set of
monomial matrices that map C to itself. Obviously, PAut(C) ⊆ MAut(C). The automorphism
group of C, denoted by Aut(C), is the set of maps of the form Mγ that map C to itself, where
M is a monomial matrix and γ is a field automorphism. If q = 2, PAut(C), MAut(C) and
Aut(C) are the same. If q is a prime, MAut(C) and Aut(C) are identical. In general, we have

PAut(C) ⊆ MAut(C) ⊆ Aut(C).
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By the definitions above, each element inAut(C) is of the form DPγ ,where D is a diagonal
matrix, P is a permutation matrix, and γ is an automorphism of GF(q). The automorphism
groupAut(C) is said to be t-transitive if for every pair of t-element ordered sets of coordinates,
there is an element DPγ of the automorphism group Aut(C) such that its permutation part
P sends the first set to the second set. The automorphism group Aut(C) is said to be t-
homogeneous if for every pair of t-element sets of coordinates, there is an element DPγ of
the automorphism group Aut(C) such that its permutation part P sends the first set to the
second set. If the automorphism group Aut(C) is t-transitive, then it must be t-homogeneous.
But the conversemay not be true. For simplicity, we say that Aut(C) is transitive (respectively,
homogeneous) if Aut(C) is 1-transitive (respectively, 1-homogeneous).

2.4 The support designs of linear codes

Let P be a set of n elements, and let B be a set of k-subsets of P , where 1 ≤ k ≤ n. Let
t be an integer with 1 ≤ t ≤ k. The pair D := (P,B) is an incidence structure, where the
incidence relation is the set membership. The incidence structure D = (P,B) is called a
t-(n, k, λ) design, or simply t-design, if each t-subset of P is contained in λ elements of B.
The elements of P are referred to as points, and those of B are called blocks. If B does not
contain any repeated blocks, then the t-design is called simple. This paper considers only
simple t-designs. A t-(n, k, λ) design is referred to as a Steiner system if t ≥ 2 and λ = 1,
and is denoted by S(t, k, n).

There are different ways to construct t-designs. A coding-theoretic construction of t-
designs is briefly described below. Let C be a linear code over GF(q) with length n. For each
k with Ak �= 0, let Bk(C) denote the set of the supports of all codewords with Hamming
weight k in C, where the coordinates of a codeword are indexed by (0, 1, . . . , n − 1). Let
P(C) = [n]. The incidence structure (P(C),Bk(C)) may be a t-(n, k, λ) design for some
positive integer λ, which is called a support design of the code C, and is denoted by Dk(C). In
such a case, we say that the codewords of weight k in C support or hold a t-(n, k, λ) design,
and for simplicity, we say that C supports or holds a t-(n, k, λ) design.

The following theorem, called the Assmus-Mattson Theorem, demonstrates that the pair
(P(C),Bk(C)) defined by a linear code C is a t-design under certain conditions [3].

Theorem 1 Let C be an [n, k, d] code over GF(q). Let d⊥ denote the minimum distance of
C⊥. Let w be the largest integer satisfying w ≤ n and

w −
⌊

w + q − 2

q − 1

⌋

< d.

Define w⊥ analogously using d⊥. Let (Ai )
n
i=0 and (A⊥

i )ni=0 denote the weight distribution
of C and C⊥, respectively. Fix a positive integer t with t < d, and let s be the number of i
with A⊥

i �= 0 for 1 ≤ i ≤ n − t . Suppose s ≤ d − t . Then

– all the codewords of weight i in C support a simple t-design provided Ai �= 0 and
d ≤ i ≤ w, and

– all the codewords of weight i in C⊥ support a simple t-design provided A⊥
i �= 0 and

d⊥ ≤ i ≤ min{n − t, w⊥}.
The Assmus-Mattson Theorem above is a useful tool in constructing t-designs from linear

codes (see, for example, [13]), but does not characterize all linear codes supporting t-designs.
The reader is referred to [36] for a generalized Assmus-Mattson theorem.
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The minimum locality of linear codes 89

Using the automorphism group of a linear code C, the following theorem gives another
sufficient condition for the code C to hold t-designs [24, p. 308].

Theorem 2 [24] Let C be a linear code of length n overGF(q) such thatAut(C) is t-transitive
or t-homogeneous. Then the codewords of any weight i ≥ t of C hold a t-design.

3 General theory on theminimum locality of linear codes

The objective of this section is to develop some general theory about the minimum locality
of linear codes over finite fields. In particular, we will answer Question 1 raised in Sect. 1.
As made clear in Sect. 1, we consider only nontrivial linear codes C over finite fields, i.e.,
linear codes C with d(C) > 1 and d(C⊥) > 1. Recall that we use the elements in [n] to index
the coordinate positions in a linear code of length n.

3.1 Minimum locality andminimum linear locality of nontrivial linear codes are
identical

The minimum locality and minimum linear locality of linear codes were defined in Sect. 1.
A referee of this paper has informed the authors of this paper that the proof of the Singleton
bound for LRCs in [19] implies the minimum locality and minimum linear locality are equal.
Since a complete proof of this equality is missing in the literature, we present a proof of the
following lemma.

Lemma 1 The minimum locality and minimum linear locality of a nontrivial linear code are
identical.

Proof Let C be a nontrivial linear code of length n over GF(q). Since C is nontrivial, d(C) > 1
and d(C⊥) > 1. By definition, C has locality r if it has linear locality r . This means that the
minimum locality is no more than the minimum linear locality of C.

Suppose that C has minimum locality r . Consider any code symbol ci0 with i0 ∈ [n].
Let 1 ≤ s ≤ r be the smallest integer such that ci0 can be recovered from s other code
symbols, say, ci1 , . . ., cis , where i1, . . . , is are pairwise distinct and {i1, . . . , is} ⊆ [n] \ {i0}.
By definition, there is a function F from GF(q)s to GF(q) such that

ci0 = F(ci1 , . . . , cis ). (5)

Let C(i0, i1, . . . , is) denote the code obtained by puncturing C on the coordinate positions
in [n] \ {i0, i1, . . . , is}. Then C(i0, i1, . . . , is) is a linear code of length s + 1 over GF(q). It
then follows from (5) that

|C(i0, i1, . . . , is)| ≤ qs .

We then deduce that C(i0, i1, . . . , is) is a proper subspace of GF(q)s+1. Consequently,

C(i0, i1, . . . , is)
⊥ �= {0}.

Let (a0, a1, . . . , as) be a nonzero codeword in C(i0, i1, . . . , is)⊥. Then
s∑

j=0

a j ci j = 0. (6)

123
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If a0 = 0, then one of a1, . . . , as must be nonzero. Without loss of generality, assume that
a1 �= 0, then

ci1 = −a−1
1 (a2ci2 + · · · + ascis ). (7)

Combining (5) and (7), we deduce that the code symbol ci0 can be recovered from ci2 , . . . , cis ,
which is contrary to the minimality of s. Consequently, a0 �= 0.

Since a0 �= 0, (6) means that ci0 can be linearly recovered from ci1 , . . . , cis . Consequently,
the minimum linear locality is no more than the minimum locality of C. Summarizing the
discussions above, we conclude that the minimum locality and minimum linear locality of a
nontrivial linear code are identical. �


In general, the complexity of recovering a code symbol linearly from other code s symbols
is no more than the complexity of recovering it from a nonlinear method. Consequently, it
would be better to distinguish the linear locality from the general locality for linear codes.
These justify the motivation of studying the linear locality and minimum linear locality of
linear codes over finite fields. Lemma 1 allows us to settle the minimum locality of many
families of linear codes by determining their minimum linear locality. It should be noticed
that the minimum locality and the minimum linear locality of some nonlinear codes may be
different.

3.2 Some general theory of theminimum locality of nontrivial linear codes

The following lemma follows from the definition of linear locality of linear codes. For
completeness, we provide a proof of it below.

Lemma 2 Let C be a nontrivial linear code of length n. Then C has linear locality r if and
only if for each i ∈ [n] the dual code C⊥ has a codeword c⊥ of Hamming weight at most
r + 1 such that i ∈ supp(c⊥), where supp(c⊥) denotes the support of the codeword c⊥.

Proof Suppose that C is over GF(q) and has linear locality r . By definition, for each i ∈ [n]
there are a subset {i1, . . . , ir } ⊆ [n] \ {i} and r elements a1, . . . , ar in GF(q) such that
ci = a1ci1 + · · · + ar cir . Let c

⊥ = (c⊥
0 , . . . , c⊥

n−1), where c
⊥
i = 1, c⊥

i j
= −a j for 1 ≤ j ≤ r

and c⊥
h = 0 if h ∈ [n] \ {i, i1, . . . , ir }. Then c⊥ has weight at most r + 1 and is a codeword

in C⊥.
Suppose that for each i ∈ [n] there is a codeword c⊥ = (c⊥

0 , . . . , c⊥
n−1) in C⊥ such that

i ∈ supp(c⊥). Assume that supp(c⊥) = {i, i1, . . . , is} with s ≤ r . We have then

ci = −(c⊥
i )−1(c⊥

i1ci1 + · · · + c⊥
is cis ).

This means that ci can be linearly recovered from ci1 , . . . , cis . Hence, C has linear locality
r . �

Theorem 3 Let C be a nontrivial linear code of length n. Then there exists a positive integer
w with 2 ≤ w ≤ n such that Aw(C⊥) > 0 and

w⋃

j=1

⋃

S∈B j (C⊥)

S = [n]. (8)

Let w be the smallest integer such that (8) holds. Then C has minimum locality w − 1.
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The minimum locality of linear codes 91

Proof Suppose that there is an integer i in [n] such that

i /∈
n⋃

j=1

⋃

S∈B j (C⊥)

S.

Then c⊥
i = 0 for all codewords c⊥ = (c⊥

0 , . . . , c⊥
n−1) in C⊥. Consequently, the vector

c = (0, . . . , 0, 1, 0, . . . , 0)of lengthn, which has only one nonzero coordinate 1 in coordinate
position i , is a codeword in C. This is contrary to the assumption that d(C) ≥ 2.

Let w be the smallest integer such that Aw(C⊥) > 0 and (8) holds. Then every integer
i ∈ [n] is contained in supp(c⊥), where c⊥ is some codeword with weight at most w in C⊥.
Then the code symbol ci in C can be recovered by a linear combination of the coordinates in
the positions in supp(c⊥) \ {i}. Then C has linear locality w − 1.

If the code symbol ci in every codeword c in C can be recovered linearly by

ci = u1ci1 + · · · + uhcih

where ui �= 0 and Ri = {i1, . . . , ih} is the corresponding recovering set of the code symbol
ci . Then C⊥ has a codeword with weight h + 1. Hence, w − 1 is the minimum linear locality,
which is the minimum locality. �


Theorem 3 means that every nontrivial linear code has a minimum locality, and tells us
how to calculate the minimum locality. In practice, it is also necessary and important to find
a recovering set Ri for each code symbol ci . But we will not deal with this problem in this
paper.

3.3 Linear codes C withminimum locality d(C⊥) − 1

It follows from Lemma 2 that the minimum locality of a nontrivial linear code C is at least
d(C⊥)−1. Hence, nontrivial linear codes C with minimum locality d(C⊥)−1 would be very
interesting in both theory and practice. In this subsection, we develop some general results
for such special codes. It will be seen later that there are indeed nontrivial linear codes C with
minimum locality more than d(C⊥) − 1.

Corollary 1 Let C be a nontrivial linear code of length n and put d⊥ = d(C⊥). Then C has
minimum locality d⊥ − 1 if and only if

⋃

S∈Bd⊥ (C⊥)

S = [n]. (9)

Proof The desired conclusion directly follows from Theorem 3 and Lemma 2.

The following result is well known in the literature [29]. We show that it is a corollary of
Theorem 3.

Corollary 2 [29] Let C be a nontrivial cyclic code of length n. Then C has minimum locality
d(C⊥) − 1.

Proof Put d⊥ = d(C⊥). Let i ∈ [n]. Let c⊥ = (c⊥
0 , . . . , c⊥

n−1) be a minimum weight
codeword in C⊥. By definition, the Hamming weight wt(c⊥) ≥ 2. Consequently, c⊥ has a
nonzero coordinate. Since C⊥ is also cyclic, we can assume c⊥

i �= 0. We then deduce that
⋃

S∈Bd⊥ (C⊥)

S ⊇ {i}.
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The desired conclusion then follows from Theorem 3. �

Corollary 3 Let C be a nontrivial linear code of length n and put d⊥ = d(C⊥). If
(P(C⊥),Bd⊥(C⊥)) is a 1-(n, d⊥, λ⊥

1 ) design with λ⊥
1 ≥ 1, then C has minimum locality

d⊥ − 1.

Proof By the definition of 1-designs, every i ∈ P(C⊥) is covered in λ⊥
1 blocks in the block

set Bd⊥(C⊥). Hence,

d⊥
⋃

j=1

⋃

S∈B j (C⊥)

S =
⋃

S∈Bd⊥ (C⊥)

S = [n].

The desired conclusion then follows from Theorem 3. �

It should be noted that there are many nontrivial linear codes with minimum locality

d(C⊥) − 1, but (P(C⊥),Bd⊥(C⊥)) is not a 1-design. Hence, the converse of Corollary 3 is
not true. Corollary 3 will be one of the tools for studying the minimum locality of some
families of linear codes in this paper. Another tool is documented in the following corollary,
which is a slight strengthening of Lemma 2 in [29].

Corollary 4 Let C be a nontrivial linear code. If Aut(C) or Aut(C⊥) is transitive, then C has
minimum locality d(C⊥) − 1 and C⊥ has minimum locality d(C) − 1.

Proof Put d⊥ = d(C⊥). Let C be over GF(q) and have length n. Suppose that Aut(C⊥) is
transitive. Let c⊥ be aminimumweight codeword in C⊥. Thenwt(c⊥) ≥ 2. Let i ∈ supp(c⊥).
For each j ∈ [n] \ {i}, there is an automorphism DPγ in Aut(C⊥) such that the permutation
part P sends i to j , as Aut(C⊥) is transitive. This means there is another minimum weight
codeword (c′)⊥ in C⊥ such that j ∈ supp((c′)⊥). Consequently,

d⊥
⋃

j=1

⋃

S∈B j (C⊥)

S =
⋃

S∈Bd⊥ (C⊥)

S = [n].

It then follows from Theorem 3 that C has minimum locality d(C⊥) − 1.
In general, Aut(C) and Aut(C⊥) are different. However, it is straightforward to prove that

Aut(C) is transitive if and only if Aut(C⊥) is so. Then the remaining desired conclusion
follows from the first conclusion proved above. �


Lemma 2 in [29] can be employed to conclude that the minimum locality of C is at most
d(C⊥) − 1 if Aut(C) is transitive. Hence, Corollary 4 is a slight strengthening of Lemma 2
in [29].

Note that combining Theorem 2 and Corollary 3 gives another proof of Corollary 4.
Sometimes we may need to use Corollary 3, as the automorphism group of a code may be
unknown. Sometimes it ismore convenient to useCorollary 4. Sometimes both corollaries can
be used to study the linear locality of some linear codes. Inmany cases, both corollaries cannot
be used to do so. It looks impossible to find out all nontrivial linear codes with minimum
locality d(C⊥) − 1. But Corollaries 3 and 4 can be employed to find many families of such
codes.Most of the families of linear codes documented in themonograph [13] are such codes,
as they support t-designs with t ≥ 2 or their automorphism groups are doubly homogeneous.
Other families of such linear codes are not documented in [13], as the monograph [13] does
not include linear codes supporting 1-designs but not 2-designs.

The following result would also be useful in some cases.
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Theorem 4 Let C be a nontrivial linear code. If C⊥ is spanned by its minimum weight code-
words, then C has minimum locality d(C⊥) − 1.

Proof Let C have length n. Let i ∈ [n]. If
i /∈

⋃

S∈Bd⊥ (C⊥)

S,

then (0, . . . , 0, 1, 0, . . . , 0) would be a codeword in C, where the nonzero coordinate 1 is in
coordinate position i , as all the minimum weight codewords in C⊥ span C⊥. This is contrary
to the fact that C is nontrivial. The desired conclusion then follows from Corollary 1. �


3.4 Theminimum locality of extended cyclic code

While any nontrivial cyclic code C has minimum locality d(C⊥) − 1, extended cyclic codes
may not have such property. Note that even if C is nontrivial, the extended code C may be

trivial, as d(C⊥
) could be 1. The automorphism group of any cyclic code is transitive and

each cyclic code supports 1-designs. But these may not be true for extended cyclic codes. In
this section, we consider the linear locality of the extended cyclic codes and their duals.

Let H and H denote the parity-check matrix of C and C, respectively. Then we have the
following well known lemma [24].

Lemma 3 Let C be an [n, κ, d] code overGF(q). Then C is an [n+1, κ, d] linear code, where
d = d or d + 1. In the binary case, d = d if d is even, and d = d + 1 otherwise.

In addition, the parity-check matrix H of C can be deduced from that of C by

H =
[
1 1
H 0

]

, (10)

where 1 = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0)T .

We now prove the following result, which will be needed later.

Theorem 5 Let C be a nontrivial cyclic code. If d(C) = d(C) + 1, then (C)⊥ has minimum
locality d(C).

Proof Let C have length n. By definition, d(C) ≥ 2 and d(C⊥) ≥ 2. Since d(C) = d(C) + 1,
we know that d((C)⊥) ≥ 2. Therefore, C is nontrivial. Let c1, . . . , ch be all the minimum
weight codewords in C, and let ci be the extended codeword of ci in C. Since d(C) ≥ 2 and
C is cyclic, we have

h⋃

i=1

supp(ci ) = [n].

Since d(C) = d(C) + 1, the extended coordinate in each ci is nonzero. As a result, we get

h⋃

i=1

supp(ci ) = [n + 1].

The desired conclusion then follows from Corollary 1. �
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Corollary 5 Let C be a nontrivial binary cyclic code. If d(C) is odd, then (C)⊥ has minimum
locality d(C).

Proof The desired conclusion follows from Lemma 3 and Theorem 5. �


Corollary 5 has determined the minimum locality of (C)⊥ for all binary cyclic codes.
Specifically, either (C)⊥ is a trivial code or nontrivial binary linear code with minimum
locality d(C) for each nontrivial cyclic code C.

4 Theminimum locality of some known families of linear codes

The objective of this section is to study the minimum locality of several families of linear
codes which are geometric codes and their punctured and shortened codes. We wish to find
out some families of optimal LLRCs.

4.1 Theminimum locality of the q-ary Hamming codes and Simplex codes

Aparity checkmatrix H(q,m) of the Hamming codeH(q,m) over GF(q) is defined by choosing
for its columns a nonzero vector from each one-dimensional subspace of GF(q)m . In terms
of finite geometry, the columns of H(q,m) are the points of the projective geometry PG(m −
1,GF(q)). Hence H(q,m) has length n = (qm − 1)/(q − 1) and dimension n − m. It is well
known thatH(q,m) hasminimumweight 3 and any [(qm−1)/(q−1), (qm−1)/(q−1)−m, 3]
code over GF(q) is monomially equivalent to the Hamming code H(q,m) [24]. Note that
the Hamming code H(q,m) is permutation-equivalent to a cyclic code when gcd(m, q −
1) = 1. By Corollary 2, its minimum locality is known in this case. However, its minimum
locality may not be known for the case that gcd(m, q − 1) �= 1. The linear locality of the
binary Hamming and Simplex codes was settled in [23]. Note that binary Hamming and
Simplex codes are permutation-equivalent to cyclic codes. In this subsection, we investigate
the minimum locality of the q-ary Hamming and Simplex codes.

The weight distribution of H(q,m) is given in the following lemma [28].

Lemma 4 [28] The weight distribution of H(q,m) is given by

qm Ak (H(q,m)) =
∑

0≤i≤ qm−1−1
q−1

0≤ j≤qm−1

i+ j=k

⎡

⎣
( qm−1−1

q−1
i

)(
qm−1

j

)(

(q − 1)k + (−1) j (q − 1)i (qm − 1)

)
⎤

⎦

for 0 ≤ k ≤ (qm − 1)/(q − 1).

The duals of the Hamming codes H(q,m) are called Simplex codes, denoted by S(q,m),
which have parameters [(qm − 1)/(q − 1),m, qm−1]. The nonzero codewords of the [(qm −
1)/(q − 1),m, qm−1] Simplex codes all have weight qm−1.

Theorem 6 TheHamming codeH(q,m) is an (n, n−m, 3, q; qm−1−1)-LLRCand the Simplex
code S(q,m) is an (n,m, qm−1, q; 2)-LLRC. Furthermore, the Hamming code H(q,m) and
S(q,m) are k-optimal.
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Proof The Hamming code H(q,m) has parameters [n, n − m, 3] and its dual code is a one-
weight code. Then by the Assmus-Mattson Theorem, the codewords of minimum weight in
the Hamming code and Simplex code both hold a 2-design. So (P(H(q,m)),B3(H(q,m))) and
(P(H⊥

(q,m)),Bqm−1(H⊥
(q,m))) are 1-designs. Hence, the conclusions on the minimum locality

of the two codes follow from Corollary 3.
We now prove the dimension optimality of H(q,m). Putting t = 1 and the parameters of

the (n, n − m, 3, q; qm−1 − 1)-LLRC into the right-hand side of the CM bound in (2), we
have

k ≤ min
s∈Z+

{rs + k(q)
opt (n − (r + 1)s, d)}

≤ r + k(q)
opt (n − (r + 1), d)

= qm−1 − 1 + k(q)
opt (n − qm−1, 3)

≤ n − m,

where the last inequality holds due to the fact that k(q)
opt (n − qm−1, 3) ≤ n − qm−1 − m + 1,

which follows from the sphere packing bound. Therefore, the Hamming code H(q,m) is
k-optimal.

Putting t = 1 and the parameters of (n,m, qm−1, q; 2)-LLRC into the right-hand side of
the CM bound in (2), we have

k ≤ r + k(q)
opt (n − (r + 1), d)

= 2 + k(q)
opt (n − 3, qm−1)

≤ m,

where the last inequality holds due to the fact that k(q)
opt (n−3, qm−1) ≤ m−2, which follows

from the Plotkin bound. Therefore, the Simplex code S(q,m) is k-optimal. This completes the
proof. �


According to the Singleton-like bound in (1), we can obtain the following family of d-
optimal LLRCs.

Corollary 6 Whenm = 3, the Hamming codeH(q,3) is a (q2+q+1, q2+q−2, 3, q; q2−1)-
LLRC and is both d-optimal and k-optimal.

Proof The parameters and dimension optimality of H(q,3) directly follow from Theorem 6.
Hence, we only need to prove the distance optimality. It is easy to verify that the parameters of
H(q,3) satisfy the equality in (1). Hence, it is a d-optimal (q2+q+1, q2+q−2, 3, q; q2−1)-
LLRC. This completes the proof. �


If a linear code C supports 2-designs, then the punctured code C{t1} or shortened code
C{t1} may support 1-designs. Then we can settle the minimum locality of C{t1} or C{t1}. The
parameters of some punctured codes and shortened codes of the Hamming code are given in
the following lemma [28].

Lemma 5 [28] Let n = (qm − 1)/(q − 1) ≥ 4, and let t1 be any coordinate position of
codewords in H(q,m). Then the following hold:

– (H(q,m)){t1} is an [n − 1, n − m − 1, 3] code over GF(q) with

Ak((H(q,m)){t1}) = n − k

n
Ak(H(q,m))
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for 0 ≤ k ≤ n − 1, where Ak(H(q,m)) was given in Lemma 4.
– ((H(q,m)){t1})⊥ is an [n − 1,m, qm−1 − 1] code over GF(q) with weight enumerator

1 + (q − 1)qm−1zq
m−1−1 + (qm−1 − 1)zq

m−1
.

– (S(q,m)){t1} is an [n − 1,m − 1, qm−1] code over GF(q) with weight enumerator 1 +
(qm−1 − 1)zq

m−1
.

– ((S(q,m)){t1})⊥ is an [n − 1, n − m, 2] code over GF(q) with weight enumerator

1

qm−1 [(1 + (q − 1)z)n−1 + (qm−1 − 1)(1 − z)q
m−1

(1 + (q − 1)z)n−1−qm−1 ].

With the Assmus-Mattson Theorem, we can deduce that the codewords of minimum
weight in these codes in Lemma 5 hold a 1-design. Then by Corollary 3, we can settle the
minimum locality of these codes in Lemma 5.

Theorem 7 Let n = (qm−1)/(q−1) ≥ 4, and let t1 be any coordinate position of codewords
in H(q,m). Then we have the following.

– (H(q,m)){t1} is a k-optimal (n − 1, n − m − 1, 3, q; qm−1 − 2)-LLRC.
– ((H(q,m)){t1})⊥ is a k-optimal (n − 1,m, qm−1 − 1, q; 2)-LLRC.
– (S(q,m)){t1} is a k-optimal (n − 1,m − 1, qm−1, q; 1)-LLRC.
– (S(q,m)){t1})⊥ is a k-optimal (n − 1, n − m, 2, q; qm−1 − 1)-LLRC.

Proof The conclusions on the parameters of the codes follow from Lemma 5, the Assmus–
Mattson Theorem and Corollary 3. The proofs of the dimension optimality of (H(q,m)){t1}
and (S(q,m)){t1})⊥ are similar to that in Theorem 6, and are omitted. �


Furthermore, we can obtain the following d-optimal LLRCs.

Corollary 7 The code (H(q,3)){t1} is a (q2 + q, q2 + q − 3, 3, q; q2 − 2)-LLRC and the code
((S(q,3)){t1})⊥ is a (q2 + q, q2 + q − 2, 2, q; q2 − 1)-LLRC. Furthermore, they are both
d-optimal and k-optimal.

Proof The parameters of the codes follow from Theorem 7. The d-optimality and k-opmality
of the codes are with respect to the Singleton-like bound and CM bound and can be easily
verified. �

Remark 1 Recently, Grezet and Hollanti [21, Corollary 1] also determined the locality of the
punctured Simplex code using some tools from matroid theory. Our method is more generic
in the sense that it also works for many other linear codes.

4.2 Theminimum locality of the generalised Reed-Muller codes over GF(q)

The general affine group GA1(GF(qm)) is defined by

GA1(GF(qm)) = {ax + b : a ∈ GF(qm)∗, b ∈ GF(qm)},
which acts on GF(qm) doubly transitively [13, Section 1.7].

We can index the coordinates of a linear code of length qm with the elements of GF(qm).
When each permutation in GA1(GF(qm)) is applied to a codeword, it is applied to the indices
of the coordinates. A linear code C of length qm is said to be affine-invariant if GA1(GF(q))

fixesC. It follows fromTheorem2 that affine-invariant codes supports 2-designs.ByCorollary
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4, all affine-invariant codes C have minimum locality d(C⊥) − 1. There are many infinite
families of affine-invariant codes [13, Chapter 6]. Our objective in this section is to study the
minimum locality of the generalised Reed-Muller codes and obtain a class of either k-optimal
or almost k-optimal LLRCs.

For any integer j = ∑m−1
i=0 ji qi , where 0 ≤ ji ≤ q − 1 for all 0 ≤ i ≤ m − 1 and m is a

positive integer, we define

wtq( j) =
m−1∑

i=0

ji , (11)

where the sum is taken over the ring of integers, and is called the q-weight of j . Let � be
a positive integer with 1 ≤ � < (q − 1)m. The �-th order punctured generalized Reed-
Muller code Rq(�,m)∗ over GF(q) is the cyclic code of length n = qm − 1 with generator
polynomial

g(x) =
∏

1≤ j≤n−1
wtq ( j)<(q−1)m−�

(x − α j ), (12)

where α is a generator of GF(qm)∗. Since wtq( j) is a constant function on each q-cyclotomic
coset modulo n = qm − 1, g(x) is a polynomial over GF(q).

The generalized Reed-Muller code Rq(�,m) is defined to be the extended code of
Rq(�,m)∗, and its parameters are given below [4].

Theorem 8 [4] Let 0 ≤ � < q(m − 1). Then the generalized Reed-Muller code Rq(�,m)

has length n = qm, dimension

κ =
�∑

i=0

m∑

j=0

(−1) j
(
m

j

)(
i − jq + m − 1

i − jq

)

, (13)

and minimum weight

d = (q − �0)q
m−�1−1, (14)

where � = �1(q − 1) + �0 and 0 ≤ �0 < q − 1.

The minimum locality of the generalized Reed-Muller code Rq(�,m) is given in the
following theorem.

Theorem 9 Let 0 ≤ � < q(m−1) andm(q−1)−1−� = �′
1(q−1)+�′

0 with 0 ≤ �′
0 < q−1.

The generalized Reed-Muller codeRq(�,m) is a [qm, κ, d, q; (q − �′
0)q

m−�′
1−1 − 1] LLRC,

where κ and d were given in (13) and (14), respectively.

Proof The dimension and minimum weight of the code were given in Theorem 8. We
only prove its minimum locality. It is well known that the generalised Reed-Muller code
Rq(�,m) is affine-invariant [13, Chapter 6]. By Corollary 4, the code has minimum locality
d(Rq(�,m)⊥) − 1. It was proved in [4] that

Rq(�,m)⊥ = Rq(m(q − 1) − 1 − �,m). (15)

It then follows from Theorem 8 that the minimum locality is

r = d(Rq(�,m)⊥) − 1 = d(Rq(m(q − 1) − 1 − �,m)) − 1 = (q − �′
0)q

m−�′
1−1 − 1.

This completes the proof. �
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Corollary 8 Let q > 2. ThenRq(1,m) is a (qm, 1+m, (q−1)qm−1, q; 2)-LLRC and its dual
Rq(1,m)⊥ is a (qm, qm − 1−m, 3, q; (q − 1)qm−1 − 1)-LLRC. Both codes are k-optimal.

Proof The parameters of the two codes were given in Theorem 9. Putting the parameters of
Rq(1,m)⊥ into the right-hand side of the CM bound in (2), we have

k ≤ min
s∈Z+

{rs + k(q)
opt (n − (r + 1)s, d)}

≤ r + k(q)
opt (n − (r + 1), d)

= (q − 1)qm−1 − 1 + k(q)
opt (q

m−1, 3)

≤ qm − m − 1,

where the last inequality holds due to the fact that k(q)
opt (q

m−1, 3) ≤ qm−1 − m + 1, which
follows from the Sphere packing bound. Therefore, the code Rq(1,m)⊥ is k-optimal.

Putting the parameters of Rq(1,m) into the right-hand side of the CM bound in (2), we
have

k ≤ min
s∈Z+

{rs + k(q)
opt (n − (r + 1)s, d)}

≤ r + k(q)
opt (n − (r + 1), d)

= 2 + k(q)
opt (q

m − 3, (q − 1)qm−1)

≤ m + 1,

where the last inequality holds due to the fact that k(q)
opt (q

m − 3, (q − 1)qm−1) ≤ m − 1,
which follows from the Plotkin bound. Therefore,Rq(1,m) is k-optimal. This completes the
proof. �


In this section, we identified two classes of affine-invariant codes R1(1,m) and
Rq(1,m)⊥, which are k-optimal. It would be nice if other classes of d-optimal or k-optimal
affine-invariant codes could be found. Notice that many classes of affine-invariant codes are
documented in [13]. In addition, there are other classes of affine-invariant codes with very
good locality properties and higher rate than RM codes [22].

4.3 Theminimum locality of ovoid codes

In the projective space PG(3,GF(q))with q > 2, an ovoid V is a set of q2+1 points such that
no three of them are collinear (i.e., on the same line). In other words, an ovoid is a (q2+1)-cap
(a cap with q2 + 1 points) in PG(3,GF(q)), and thus a maximal cap. Two ovoids are said to
be equivalent if there is a collineation (i.e., automorphism) of PG(3,GF(q)) that sends one
to the other.

A classical ovoid V can be defined as the set of all points given by

V = {(0, 0, 1, 0)} ∪ {(x, y, x2 + xy + ay2, 1) : x, y ∈ GF(q)}
where a ∈ GF(q) is such that the polynomial x2 + x +a has no root in GF(q). Such ovoid is
called an elliptic quadric, as the points come from a non-degenerate elliptic quadratic form.

For q = 22e+1 with e ≥ 1, there is an ovoid which is not an elliptic quadric, and is called
the Tits ovoid. It is defined by

T = {(0, 0, 1, 0)} ∪ {(x, y, xσ + xy + yσ+2, 1) : x, y ∈ GF(q)},
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where σ = 2e+1.
Let V be an ovoid in PG(3,GF(q)) with q > 2. Denote V = {v1, v2, . . . , vq2+1}, where

each vi is a column vector in GF(q)4. Let CV be the linear code over GF(q) with generator
matrix GV = [v1v2 . . . vq2+1]. It is known that CV is a [q2 + 1, 4, q2 − q] code over GF(q)

with weight enumerator

1 + (q2 − q)(q2 + 1)zq
2−q + (q − 1)(q2 + 1)zq

2

and its dual C⊥
V is a [q2 + 1, q2 − 3, 4] almost MDS code over GF(q) [13, Chapter 13].

Conversely, the set of column vectors of a generatormatrix of any [q2+1, 4, q2−q] code over
GF(q) is an ovoid in PG(3,GF(q)). Hence, ovoids in PG(3,GF(q)) and [q2 + 1, 4, q2 − q]
codes over GF(q) are equivalent in the sense that one can be used to construct the other, and
a [q2 + 1, 4, q2 − q] code over GF(q) is called an ovoid code over GF(q).

Ovoid codes are very interesting in combinatorics, as they support 3-designs, which are
documented below [13, Chapter 13].

Lemma 6 [13] The supports of all minimum weight codewords in an ovoid code form a 3-
(q2 + 1, q2 − q, (q − 2)(q2 − q − 1)) design and the supports of all codewords of weight 4
in the dual of the ovoid code form a 3-(q2 + 1, 4, q − 2) design.

The linear locality of an ovoid code and its dual is described in the next theorem.

Theorem 10 An ovoid code Co is a (q2 + 1, 4, q; q2 − q, 3)-LLRC and its dual C⊥
o is a

(q2 +1, q2 −3, 4, q; q2 −q −1)-LLRC. Moreover, Co is k-optimal and C⊥
o is d-optimal and

k-optimal.

Proof The parameters follow from Lemma 6 and Corollary 3. It is easy to check the distance
optimality of C⊥

o . Then we check the dimension optimality of C⊥
o . Putting t = 1 into the

right-hand side of the CM bound in (2), one has

k ≤ r + k(q)
opt (n − (r + 1), d)

= (q − 1)q − 1 + k(q)
opt (q + 1, 4)

≤ q2 − 3,

where the last inequality holds due to the fact that k(q)
opt (q + 1, 4) ≤ q − 2, which follows

from the classical Singleton bound. Therefore, the code C⊥
o is k-optimal.

Putting the parameters of Co into the right-hand side of the CM bound in (2), one has

k ≤ min
t∈Z+

{r t + k(q)
opt (n − (r + 1)t, d)}

≤ r + k(q)
opt (n − (r + 1), d)

= 3 + k(q)
opt (q

2 − 3, q2 − q)

≤ 4,

where the last inequality holds due to the fact that k(q)
opt (q

2 − 3, q2 − q) ≤ 1, which follows
from the Plotkin bound. Therefore, Co is k-optimal. This completes the proof. �


In [28], Liu et al. studied some shortened and punctured codes of an ovoid code, and
obtained the following results.
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Lemma 7 [28] Let q ≥ 4, and let Co be a [q2 + 1, 4, q2 − q] code over GF(q). For any
coordinate position {t1}, the following hold.

– (Co){t1} is a [q2, 3, q2 − q] code over GF(q) with weight enumerator

1 + q(q2 − 1)zq
2−q + (q − 1)zq

2
.

– ((Co){t1})⊥ is a [q2, q2 − 3, 3] almost MDS code over GF(q).
– ((C⊥

o ){t1})⊥ is a [q2, 4, q2 − q − 1] code over GF(q) with weight enumerator

1 + q2(q − 1)zq
2−q−1 + q(q2 − 1)zq

2−q + q2(q − 1)zq
2−1 + (q − 1)zq

2
.

– (C⊥
o ){t1} is a [q2, q2 − 4, 4] almost MDS code over GF(q).

Furthermore, these codes hold 2-design.

The minimum locality of these punctured and shortened codes of ovoid codes and their
duals are documented in the following theorem.

Theorem 11 Let q ≥ 4. Then the code (Co){t1} is a k-optimal (q2, 3, q2 −q, q; 2)-LLRC and
the code ((C⊥

o ){t1})⊥ is a k-optimal (q2, 4, q2 − q − 1, q; 3)-LLRC. The code (C⊥
o ){t1} is a

(q2, q2−4, 4, q; q2−q−2)-LLRC and the code ((Co){t1})⊥ is a (q2, q2−3, 3, q; q2−q−1)-
LLRC. Furthermore, (C⊥

o ){t1} and ((Co){t1})⊥ are both d-optimal and k-optimal.

Proof The parameters of these codes follow from Lemma 7 and Corollary 3. It is easy to
verify the distance optimality of (C⊥

o ){t1} and ((Co){t1})⊥ with respect to the Singleton-like
bound. The proofs of dimension optimality of (C⊥

o ){t1} and ((Co){t1})⊥ are similar, so we just
prove the dimension optimality of (C⊥

o ){t1}. Putting t = 1 into the right-hand side of the CM
bound in (2), one arrives at

k ≤ r + k(q)
opt (n − (r + 1), d)

= (q − 1)q − 2 + k(q)
opt (q + 1, 4)

≤ q2 − 4,

where the last inequality holds due to the fact that k(q)
opt (q+1, 3) ≤ q−2, which follows from

the classical Singleton bound. Therefore, the code (C⊥
o ){t1} is k-optimal. This completes the

proof. �

Ovoid codes are very attractive in the sense that C⊥

o , (C⊥
o ){t1} and ((Co){t1})⊥ are both d-

optimal and k-optimal. Recall that ovoid codes are the same as ovoids in projective geometry.
In addition, ovoid codes support 3-designs, which are related to inversive planes (also called
Möbius planes) [13, Chapter 13]. Furthermore, the trace codes of some ovoid codes are also
optimal [12]. These facts show that ovoid codes are really diamonds.

4.4 Theminimum locality of maximal arc codes

Throughout this section, let q = 2m for some positive integer m ≥ 2. A maximal (n, h)-arc
A in the projective plane PG(2,GF(q)) is a subset of n = hq + h − q points such that every
line meetsA in 0 or h points. A maximal (n, h)-arcA in PG(2,GF(q)) exists if and only if h
divides q , where 2 ≤ h < q . Hence, in this section, we let h = 2i for some i with 1 ≤ i < m.
There are several known families of maximal arcs and the reader is referred to [13, Section
12.7] for further information.
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Let A be a maximal (n, h)-arc in PG(2,GF(q)). Denote A = {a1, a2, . . . , an}, where
each ai is a column vector in GF(q)3. Let C(A) denote the linear code over GF(q) with
generator matrix GA = [a1a2 . . . an]. We call C(A) a maximum arc code. The following
theorem was proved in [13, Section 12.7].

Theorem 12 [13] Let q = 2m for any m ≥ 3 and h = 2i with 2 ≤ i < m. LetA be a maximal
(n, h)-arc in PG(2,GF(q)). Then the maximum arc code C(A) has parameters [n, 3, n− h]
and weight enumerator

1 + (q2 − 1)n

h
zn−h + (q3 − 1)h − (q2 − 1)n

h
zn, (16)

where n = hq + h − q. The dual code C(A)⊥ has parameters [n, n − 3, 3]. Furthermore,
the minimum weight codewords in both C(A) and C(A)⊥ support a 2-design.

Theorem 13 Let q = 2m for any m ≥ 3 and h = 2i with 2 ≤ i < m. Let A be a maximal
(n, h)-arc in PG(2,GF(q)). Then C(A) is a k-optimal (n, 3, n − h, q; 2)-LLRC and C(A)⊥
is a d-optimal and k-optimal (n, n − 3, 3, q; n − h − 1)-LLRC.

Proof It follows from Corollary 3 and Theorem 12 that C(A)⊥ has minimum locality
d(C(A)) − 1 and C(A) has minimum locality d(C(A)⊥) − 1. The parameters of the two
codes then follow from Theorem 12. It is straightforward to verify that the parameters of
C(A)⊥ meet the Singleton-like bound. We now prove the dimension optimality of C(A)⊥.
Putting t = 1 into the right-hand side of the CM bound in (2), we have

k ≤ r + k(q)
opt (n − (r + 1), d)

= n − h − 1 + k(q)
opt (h, 3)

≤ n − 3,

where the last inequality holds due to the fact that k(q)
opt (h, 3) ≤ h − 2, which follows from

the classical Singleton bound. Therefore, the C(A)⊥ is k-optimal.
Plugging the parameters of C(A) into the right-hand side of the CM bound in (2), one has

k ≤ min
t∈Z+

{r t + k(q)
opt (n − (r + 1)t, d)}

≤ r + k(q)
opt (n − (r + 1), d)

= 2 + k(q)
opt (n − 3, n − h)

≤ 3,

where the last inequality holds due to the fact that k(q)
opt (n − 3, n − h) ≤ 1, which follows

from the Plotkin bound. Therefore, C(A) is k-optimal. This completes the proof. �


A family of extended cyclic codes with the parameters of the code in Theorem 12 were
documented in [13, Section 12.8]. We are interested in maximal arc codes, as they are k-
optimal LLRCs and their duals are d-optimal and k-optimal LLRCs.
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5 Theminimum locality of near MDS codes

5.1 Some general theory on theminimum locality of near MDS codes

The Singleton defect of an [n, k, d] code C is defined by def(C) = n − k + 1 − d . Thus,
MDS codes are codes with defect 0. A code C is said to be almost MDS (AMDS for short)
if it has defect 1. Hence, AMDS codes have parameters [n, k, n − k]. A code is said to be
near MDS (NMDS for short) if the code and its dual code both are AMDS. By definition, C
is near MDS if and only if C⊥ is so. Then an [n, k] code C over GF(q) is NMDS if and only
if d(C) + d(C⊥) = n [15]. The following lemma will be needed later [15, 17].

Lemma 8 [15, 17] Let C be an [n, k, n − k] AMDS code over GF(q).

– If k ≥ 2, then C is generated by its codewords of weight n − k and n − k + 1.
– If k ≥ 2 and n − k > q, then C is generated by its minimum weight codewords.

Theorem 14 Let C be a nontrivial NMDS code. Then the minimum locality of C is either
d(C⊥) − 1 or d(C⊥). In particular, the minimum locality of C is d(C⊥) − 1 if the minimum
weight codewords in C⊥ generate C⊥.

Proof Let n denote the length of C. If C⊥ is generated by its minimum weight codewords, it
then follows fromTheorem 4 that C hasminimum locality d(C⊥)−1. Assume now that all the
minimum weight codewords in C⊥ do not generate C⊥. Since C⊥ is nontrivial, dim(C⊥) ≥ 2.
It then follows from Lemma 8 that C⊥ is generated by all the codewords of weights d(C⊥)

and d(C⊥) + 1. If the union of the supports of all the codes of weights d(C⊥) and d(C⊥) + 1
does not contain i ∈ [n], then C must be have a zero coordinate in position i . This means
that d(C) = 1, which contradicts to our assumption that C is nontrivial. It then follows from
Theorem 3 that the minimum locality of C is either d(C⊥) − 1 or d(C⊥). �


MDS codes are very interesting due to the following theorem whose proof is straightfor-
ward by following the assumptions and the parameters of NMDS codes.

Theorem 15 If a nontrivial NMDS code C over GF(q) with parameters [n, k, n − k] has
minimum locality d(C⊥) − 1, then C is a d-optimal and k-optimal (n, k, n − k, q; k − 1)-
LLRC with respect to the Singleton-like bound and the CM bound, respectively.

If a nontrivial NMDS code C over GF(q) with parameters [n, k, n − k] has minimum
locality d(C⊥), then C is an almost d-optimal and k-optimal (n, k, n − k, q; k)-LLRC with
respect to the Singleton-like bound and the CM bound, respectively.

We will demonstrate later that some nontrivial NMDS codes C have minimum locality
d(C⊥) − 1 and some nontrivial NMDS codes C indeed have minimum locality d(C⊥). Of
course, nontrivial NMDS codes C with minimum locality d(C⊥) − 1 are better. Therefore,
we are more interested in nontrivial MDS code C with minimum locality d(C⊥) − 1.

Corollary 9 Let C be a nontrivial NMDS code over GF(q) with parameters [n, k, n − k]. If
C⊥ does not have a codeword of weight d(C⊥) + 1, then C is a d-optimal and k-optimal
(n, k, n − k, q; k − 1)-LLRC.

Proof By definition, C⊥ has parameters [n, n − k, k]. Since C is nontrivial, d(C⊥) = k ≥ 2.
By Lemma 8, C⊥ is generated by its codewords of weights d(C⊥) and d(C⊥) + 1. Since
C⊥ does not have a codeword of weight d(C⊥) + 1, C⊥ is generated by its codewords of
weight d(C⊥). By Theorem 4, C has minimum locality d(C⊥) − 1. The desired conclusion
then follows from Theorem 15. �
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We remark that under the condition of Corollary 9, it can be proved that the minimum
weight codewords in C⊥ support a 1-design [14]. To prove another result about the minimum
locality, we need the following lemma [17].

Lemma 9 [17] Let C be an NMDS code. Then for every minimum weight codeword c in
C, there exists, up to a multiple, a unique minimum weight codeword c⊥ in C⊥ such that
supp(c) ∩ supp(c⊥) = ∅. In particular, C and C⊥ have the same number of minimum weight
codewords.

We now provide the following result, which is useful in certain cases.

Theorem 16 Let C be an NMDS code and let d⊥ = d(C⊥). If
⋂

S∈Bd⊥ (C⊥)

S = ∅,

then C⊥ has minimum locality d(C) − 1.

Proof Let C have parameters [n, k, d] with d = n− k. It follows from Lemma 9 that each set
in Bd(C) is the complement of a set in Bd⊥(C⊥) and vice versa. If an integer i ∈ [n] is not in
∪S∈Bd (C), we then deduce that it must be in ∩S∈Bd⊥ (C⊥). This is contrary to the assumption
that ∩S∈Bd⊥ (C⊥)S = ∅. Consequently,

⋃

S∈Bd (C)

= [n].

The desired conclusion then follows from Corollary 1. �


5.2 Theminimum locality of NMDS cyclic codes

According to Corollary 2 and Theorem 15, every nontrivial NMDS cyclic code C and its
dual are both d-optimal and k-optimal LLRCs. In this subsection, we document such NMDS
cyclic codes. We begin with the following example.

Example 1 The ternary Golay code CGolay has parameters [11, 6, 5] and weight enumerator
1+ 132z5 + 132z6 + 330z8 + 110z9 + 24z11. The dual code C⊥

Golay has parameters [11, 5, 6]
and weight enumerator 1 + 132z6 + 110z9. Hence, the ternary Golay code is an nontrivial
NMDS. It is well known that CGolay is a BCH code, an irreducible cyclic code, and also a
quadratic residue code. Therefore both codes are d-optimal and k-optimal LLRCs.

The following two theorems report infinite classes of d-optimal and k-optimal LLRCs
from some known NMDS.

Theorem 17 Let q = 2s with s ≥ 4 being even or q = 3s with s ≥ 2. Then the narrow-sense
BCH code C(q,q+1,3,1) overGF(q) is a d-optimal and k-optimal (q, q−3, 4, q; q−4)-LLRC.
In addition, its dual code C⊥

(q,q+1,3,1) is a d-optimal and k-optimal (q, 4, q − 3, q; 3)-LLRC.
Proof The desired conclusions follow directly from Corollary 2, Theorem 15, and Theorems
21 and 23 in [14]. �

Theorem 18 Let m ≥ 5 be odd and q = 2m. Then the narrow-sense BCH code C(q,q+1,4,1)
over GF(q) is a d-optimal and k-optimal (q + 1, q − 5, 6, q; q − 6)-LLRC. In addition, its
dual code C⊥

(q,q+1,4,1) a d-optimal and k-optimal (q + 1, 6, q − 5, q; 5)-LLRC.
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Proof The desired conclusions follow directly from Corollary 2, Theorem 15, and Theorems
34, 35, and 37 in [35]. �


Many NMDS codes have been constructed (see, for example, [1, 2, 10, 15–18, 25, 30,
37–39]). It is worthwhile to check if some of them are cyclic.

5.3 Theminimum locality of the extended codes of some NMDS cyclic codes

In this section, we investigate the minimum locality of the extended codes of some NMDS
cyclic codes, and will make use of Theorem 5.

Theorem 19 Let q = 3s with s ≥ 2. Then the extended code C(q,q+1,3,1) over GF(q) has
parameters [q+2, q−3, 5], and its dual code (C(q,q+1,3,1))

⊥ has parameters [q+2, 5, q−3].
Furthermore, (C(q,q+1,3,1))

⊥ is a d-optimal and k-optimal (q + 2, 5, q − 3, q; 4)-LLRC.
Proof Put n = q + 1. Let α be a generator of GF(q2)∗ and β = αq−1. Then β is an n-th
root of unity in GF(q2). Let Mβ(x) and Mβ2(x) denote the minimal polynomial of β and β2

over GF(q), respectively. Note that Mβ(x) has only roots β and βq and Mβ2(x) has roots
β2 and βq−1. We deduce that Mβ(x) and Mβ2(x) are distinct irreducible polynomials of
degree 2. By definition, g(x) := Mβ(x)Mβ2(x) is the generator polynomial of C(q,q+1,3,1).
Put γ = β−1. Then γ q+1 = β−(q+1) = 1. It then follows from Delsarte’s theorem that the
trace expression of C⊥

(q,q+1,3,1) is given by

C⊥
(q,q+1,3,1) = {c(a,b) : a, b ∈ GF(q2)},

where c(a,b) = (Trq2/q(aγ i + bγ 2i ))
q
i=0. Define

H =
[
1 γ 1 γ 2 . . . γ q

1 γ 2 γ 4 . . . γ 2q

]

.

It is easily seen that H is a parity-check matrix of C(q,q+1,3,1), i.e.,

C(q,q+1,3,1) = {c ∈ GF(q)q+1 : cHT = 0}.
Note that {1, γ } is a basis of GF(q2) over GF(q). Every γ j can be expressed as γ j =
a j,0 + a j,1γ , where a j,0 ∈ GF(q) and a j,1 ∈ GF(q). Later, H refers to the 4 × n matrix
over GF(q) defined by these a j,i .

From Lemma 3, C(q,q+1,3,1) has parameters [q + 2, q − 3, d(C(q,q+1,3,1))] and the parity-
check matrix H of C(q,q+1,3,1) is

H =
[
1 1
H 0

]

,

where 1 = (1, 1, . . . , 1) and 0 = (0, 0, . . . , 0)T .
Note that d(C(q,q+1,3,1)) = d(C(q,q+1,3,1)) + 1 or d(C(q,q+1,3,1)) = d(C(q,q+1,3,1)). Now

we prove that d(C(q,q+1,3,1)) = d(C(q,q+1,3,1)) + 1 = 5. Let Uq+1 denote the set of all
(q + 1)-th roots of unity in GF(q2). Suppose d(C(q,q+1,3,1)) = d(C(q,q+1,3,1)) = 4. Then
there are four pairwise distinct elements x, y, z, w in Uq+1 such that

a

⎡

⎣
1
x
x2

⎤

⎦ + b

⎡

⎣
1
y
y2

⎤

⎦ + c

⎡

⎣
1
z
z2

⎤

⎦ + d

⎡

⎣
1
w

w2

⎤

⎦ = 0, (17)
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where a, b, c, d ∈ GF(q)∗. Raising to the q-th power both sides of the equation ax + by +
cz + dw = 0 yields

ax−1 + by−1 + cz−1 + dw−1 = 0. (18)

Combining (17) and (18) gives

a

⎡

⎢
⎢
⎣

x−1

1
x
x2

⎤

⎥
⎥
⎦ + b

⎡

⎢
⎢
⎣

y−1

1
y
y2

⎤

⎥
⎥
⎦ + c

⎡

⎢
⎢
⎣

z−1

1
z
z2

⎤

⎥
⎥
⎦ + d

⎡

⎢
⎢
⎣

w−1

1
w

w2

⎤

⎥
⎥
⎦ = 0.

It then follows that
∣
∣
∣
∣
∣
∣
∣
∣

x−1 y−1 z−1 w−1

1 1 1 1
x y z w

x2 y2 z2 w2

∣
∣
∣
∣
∣
∣
∣
∣

= (x − y)(x − z)(x − w)(y − z)(y − w)(z − w)

xyzw
= 0.

This is contrary to our assumption that x, y, z, w are pairwise distinct. Hence,

d(C(q,q+1,3,1)) = d(C(q,q+1,3,1)) + 1 = 5. (19)

We now prove the following equalities:

(C(q,q+1,3,1))
⊥ = ˜C⊥

(q,q+1,3,1), (20)

where D̃ denotes the augmented code of a code D. It is easily verified that the sum of all
coordinates in each codeword

c(a,b) = (Trq2/q(aγ i + bγ 2i ))
q
i=0

is zero, as both γ and γ 2 are n-th roots of unity. Consequently, C⊥
(q,q+1,3,1) is generated by

the matrix [H0], where H is the 4×n matrix over GF(q) defined above. Then the equality in
(20) follows from Lemma 3. By (19), we conclude that the all-one vector is not a codeword
in C⊥

(q,q+1,3,1). It then follows from (20) that

dim((C(q,q+1,3,1))
⊥) = 1 + dim(C⊥

(q,q+1,3,1)) = 5.

Now we prove d((C(q,q+1,3,1))
⊥) = q − 3. Note that (C(q,q+1,3,1))

⊥ has generator matrix
H and

C⊥
(q,q+1,3,1) = {c(a,b) : a, b ∈ GF(q2)},

where c(a,b) = (Trq2/q(aγ i + bγ 2i ))
q
i=0. It follows from (20) that the codewords in

(C(q,q+1,3,1))
⊥ have the form (c(a,b) + c1, c), where c ∈ GF(q). Let u ∈ Uq+1. Then

Trq2/q(au + bu2) + c = au + bu2 + aqu−1 + bqu−2 + c

= u−2(bu4 + au3 + aqu + bq + cu2).

Hence, there are at most four u ∈ Uq+1 such that Trq2/q(au + bu2) + c = 0 if (a, b, c) �=
(0, 0, 0). As a result, for (a, b, c) �= (0, 0, 0), we have

wt((c(a,b) + c1, c)) = wt(c(a,b) + c1) + 1 ≥ q + 1 − 4 + 1 = q − 2,
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and for (a, b) �= (0, 0), c = 0, we have

wt((c(a,b), 0)) = wt(c(a,b)) ≥ q + 1 − 4 = q − 3.

Thismeans that d((C(q,q+1,3,1))
⊥) ≥ q−3. If d((C(q,q+1,3,1))

⊥) = q−2, then (C(q,q+1,3,1))
⊥

would be an MDS code and C(q,q+1,3,1) would also be an MDS code, which leads to a
contradiction. We then conclude that d((C(q,q+1,3,1))

⊥) = q − 3. Now both C(q,q+1,3,1) and
its dual are AMDS. Since d(C(q,q+1,3,1)) = 5 = d(C(q,q+1,3,1))+1, by Theorem 5we deduce
that (C(q,q+1,3,1))

⊥ has locality d(C(q,q+1,3,1)) = 4. The optimality of (C(q,q+1,3,1))
⊥ then

follows from Theorem 15. �

Theorem 20 Let q = 2s with s ≥ 4 being even. Then the extended code C(q,q+1,3,1) over
GF(q) has parameters [q + 2, q − 3, 5], and its dual code (C(q,q+1,3,1))

⊥ has parameters
[q + 2, 5, q − 3]. Furthermore, (C(q,q+1,3,1))

⊥ is a d-optimal and k-optimal (q + 2, 5, q −
3, q; 4)-LLRC.
Proof The proof of this theorem is similar to that of Theorem 19 and is omitted. �


Notice that the two theorems above provide not only two families of d-optimal and k-
optimal LLRCs, but also two families of NMDS codes with new parameters.

5.4 The linear locality of some NMDS codes from oval polynomials

Oval polynomials were used to construct NMDS codes in [39]. These NMDS codes are not
cyclic. In this subsection, we study the minimum locality of some of them. To introduce these
codes, we need oval polynomials. Throughout this subsection, let q = 2m , where m ≥ 3.

An oval polynomial f (x) on GF(q) is a polynomial such that

– f is a permutation polynomial of GF(q) with deg( f ) < q and f (0) = 0, f (1) = 1; and
– for each a ∈ GF(q), ga(x) := ( f (x + a) + f (a))xq−2 is also a permutation polynomial

of GF(q).

Every oval polynomial f can be used to construct a hyperoval in PG(2,GF(q)) [13, Chapter
12]. The following is a list of known infinite families of oval polynomials in the literature.

Theorem 21 [13] Let m ≥ 4 be an integer. The following are oval polynomials of GF(q),
where q = 2m.

– The translation polynomial f (x) = x2
h
, where gcd(h,m) = 1.

– The Segre polynomial f (x) = x6, where m is odd.
– The Glynn oval polynomial f (x) = x3×2(m+1)/2+4, where m is odd.
– The Glynn oval polynomial f (x) = x2

(m+1)/2+2(m+1)/4
for m ≡ 3 (mod 4).

– The Glynn oval polynomial f (x) = x2
(m+1)/2+2(3m+1)/4

for m ≡ 1 (mod 4).
– The Cherowitzo oval polynomial f (x) = x2

e + x2
e+2 + x3×2e+4, where e = (m + 1)/2

and m is odd.

– The Payne oval polynomial f (x) = x
2m−1+2

3 + x2
m−1 + x

3×2m−1−2
3 , where m is odd.

– The Subiaco polynomial

fa(x) = ((a2(x4 + x) + a2(1 + a + a2)(x3 + x2))(x4 + a2x2 + 1)2
m−2 + x2

m−1
,

where Trq/2(1/a) = 1 and a /∈ GF(4) if m ≡ 2 mod 4.
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– The Adelaide oval polynomial

f (x) = T (βm)(x + 1)

T (β)
+ T ((βx + βq)m)

T (β)(x + T (β)x2m−1 + 1)m−1
+ x2

m−1
,

where m ≥ 4 is even, β ∈ GF(q2) \ {1} with βq+1 = 1, m ≡ ±(q − 1)/3 (mod q + 1),
and T (x) = x + xq .

The following lemma will be needed later [31].

Lemma 10 [31] A polynomial f overGF(q)with f (0) = 0 is an oval polynomial if and only
if fu := f (x) + ux is 2-to-1 for every u ∈ GF(q)∗, where 2-to-1 means that | f −1

u (b)| = 2
for any element b in the image of fu .

5.4.1 NMDS codes with parameters [q + 3, 3, q] from oval polynomials

Let f be a polynomial over GF(q) with f (0) = 0 and f (1) = 1. Let α be a generator of
GF(q)∗. Define

B̄ f =
⎡

⎣
f (0) f (α0) f (α1) . . . f (αq−2) 1 0 1
0 α0 α1 . . . αq−2 0 1 1
1 1 1 . . . 1 0 0 0

⎤

⎦ .

Let C̄ f denote the linear code over GF(q) with generator matrix B̄ f . The following theorem
was proved in [39].

Theorem 22 [39] Let m ≥ 3, and let f be an oval polynomial overGF(q). Then the code C̄ f

is an NMDS code over GF(q) with parameters [q + 3, 3, q] and weight enumerator

1 + (q − 1)(q + 2)

2
zq + (q − 1)q(q + 2)

2
zq+1 + (q − 1)q

2
zq+2 + (q − 2)(q − 1)q

2
zq+3.

Theorem 23 The dual code (C̄ f )
⊥ is a d-optimal and k-optimal (q+3, q, 3, q; q−1)-LLRC.

Proof Let c1, c2 and c3 denote the first, second and third rows of the generator matrix B̄ f ,
respectively. By the definition of the polynomial f , it is easily seen that c1 + c3 and c2 + c3
are two minimum weight codewords in C̄ f . In addition, the supports of these two codewords
are [q + 3] \ {q + 1} and [q + 3] \ {q}, respectively. Clearly,

([q + 3] \ {q + 1}) ∪ ([q + 3] \ {q}) = [q + 3].
By Corollary 1, (C̄ f )

⊥ has minimum locality d(C̄ f ) − 1 = q − 1. The desired conclusion
then follows from Theorem 15. �


The minimum locality of C̄ f is given below.

Theorem 24 The NMDS code C̄ f is a d-optimal and k-optimal (q + 3, 3, q, q; 2)-LLRC.
Proof Recall we use the elements in the set [q+3] = {0, 1, . . . , q+2} to index the coordinate
positions of the code C̄ f and its dual. Since all the codewords of weight 3 in (C̄ f )

⊥ were
characterised in [39], we outline a proof here only. Notice that the union of the supports of
all the codewords of weight 3 in (C̄ f )

⊥ specified in Case 1 of the proof of Theorem 8 in [39]
is {0, 1, . . . , q − 1, q + 2}, and the union of the supports of all the codewords of weight 3
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in (C̄ f )
⊥ specified in Case 4 of the proof of Theorem 8 in [39] is {q, q + 1, q + 2}. It then

follows that
⋃

S∈B3((C̄ f )
⊥)

S = [q + 3].

By Corollary 1, C̄ f has minimum locality d((C̄ f )
⊥) − 1 = 2. The desired conclusion then

follows from Theorem 15. �

We remark that the NMDS code C̄ f is an extended hyperoval code (see for example [13,

Section 12.2]). The reader is referred to [39] for detail.

5.4.2 NMDS codes with parameters [q + 1, 3, q − 2] from oval polynomials

Let f be a polynomial over GF(q) with f (0) = 0 and f (1) = 1. Let α be a generator of
GF(q)∗. Define

G f =
⎡

⎣
f (α0) f (α1) . . . f (αq−2) 0 1
α0 α1 . . . αq−2 1 0
1 1 . . . 1 1 1

⎤

⎦ . (21)

Let C f denote the linear code over GF(q) with generator matrix G f . The following result
was proved in [39].

Theorem 25 [39] Let m ≥ 3 be odd and let f (x) be an oval polynomial over GF(q) with
coefficients in GF(2). Then C f is a [q + 1, 3, q − 2] NMDS code over GF(q) with weight
enumerator

A(z) = 1 + (q − 1)(q − 2)zq−2 + (q − 1)(q2 − 5q + 12)

2
zq−1 +

(q − 1)(4q − 5)zq + (q − 1)(q2 − 3q + 4)

2
zq+1.

This class of NMDS codes are very important to us, as they demonstrate that some non-
trivial NMDS codes C indeed have minimum locality d(C⊥) rather than d(C⊥) − 1. We will
need the following lemma later.

Lemma 11 Letm ≥ 3 be odd and let f (x) be an oval polynomial overGF(q)with coefficients
in GF(2). Then f (x) + x + 1 = 0 does not have a solution x ∈ GF(q).

Proof By the definition of oval polynomials, 0 and 1 are not not solutions of the equation
f (x) + x + 1 = 0. Suppose that f (a) + a + 1 = 0 for some a ∈ GF(q) \ {0, 1}. Since
f (x) has coefficients in GF(2), we have f (a2) + a2 + 1 = 0 and f (a4) + a4 + 1 = 0. It
then follows from Lemma 10 that the set {a, a2, a4} has cardinality at most 2. If a = a2,
then a ∈ {0, 1}, which contradicts to the assumption that a ∈ GF(q) \ {0, 1}. If a = a4, then
a = 0 or a3 = 1. If a3 = 1, we have a = 1 as gcd(3, q − 1) = 1. Hence, a = a4 implies
that a ∈ {0, 1}, which contradicts to the assumption that a ∈ GF(q) \ {0, 1}. If a2 = a4, then
a ∈ {0, 1}, which contradicts to the assumption that a ∈ GF(q) \ {0, 1}. This completes the
proof. �

Theorem 26 Let m ≥ 3 be odd and let f (x) be an oval polynomial over GF(q) with coeffi-
cients inGF(2), and let C f be the code in Theorem 25. Then C⊥

f hasminimum locality d(C)−1
and is a d-optimal and k-optimal (q + 1, q − 2, 3, q; q − 3)-LLRC, and C f has minimum
locality d(C⊥

f ) and is an almost d-optimal and k-optimal (q + 1, 3, q − 2, q; 3)-LLRC.
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Proof Since all the minimum weight codewords in C f were not characterized in [39], we
have to do this job here. Let v1, v2 and v3 denote the first, second and third rows in the
generator matrix G f above.

We first consider all the codewords v3 +v2 +bv1, where b ∈ GF(q)∗ \ {1}. By definition,
v3 + v2 + bv1 = (b, 1 + α1 + b f (α1), . . . , 1 + αq−2 + b f (αq−2), 0, 1 + b).

Let g(x) = 1+x
f (x) . By Lemmas 11 and 10, g(x) is a 2-1 mapping from GF∗(q) \ {1} to itself.

Therefore, there are totally (q−2)/2 b’s such that g(x) = b has two solutions in GF∗(q)\{1},
and such b’s can be written as the form of 1+αi

f (αi )
, where 1 ≤ i ≤ q − 2. This means that there

are (q − 2)/2 b’s such that

wt(v3 + v2 + bv1) = q + 1 − 3 = q − 2.

In addition, the support of each codeword with minimum weight q − 2 can be written as

supp(v3 + v2 + bv1) = [q + 1] \ {i, j, q − 1},
where 1 ≤ i �= j ≤ q − 2 vary with b. Since v3 is the all-one codeword, we have already
characterized (q − 1)(q − 2)/2 minimum weight codewords of this form in C f .

We then consider all the codewords v3+av2+v1, where a ∈ GF(q)∗ \{1}. By definition,
v3 + av2 + v1 = (a, 1 + aα1 + f (α1), . . . , 1 + aαq−2 + f (αq−2), 1 + a, 0).

Let h(x) = 1+ f (x)
x . Again, by Lemmas 11 and 10, h(x) is also a 2-1 mapping from GF∗(q)\

{1} to itself. Therefore, there are totally (q − 2)/2 a’s such that h(x) = a has two solutions

in GF∗(q) \ {1}, and such a’s can be written as the form of 1+ f (αi )

αi , where 1 ≤ i ≤ q − 2.
This implies that there are (q − 2)/2 a’s such that

wt(v3 + av2 + v1) = q + 1 − 3 = q − 2,

and the support of each codeword with minimum weight q − 2 can be written as

supp(v3 + av2 + v1) = [q + 1] \ {i, j, q},
where 1 ≤ i �= j ≤ q − 2 vary with a. Since v3 is the all-one codeword, we have already
characterized (q − 1)(q − 2)/2 minimum weight codewords of this form in C f .

In the first case above, the coordinate in position q − 1 in the codewords v3 + v2 + bv1 is
zero and the coordinate in position q in these codewords is nonzero. In the second case above,
the coordinate in position q−1 in the codewords v3+av2+v1 is nonzero and the coordinate
in position q in these codewords is zero. Therefore, the minimum weight codewords in the
two forms do not overlap. By Theorem 25, we have characterized all the minimum weight
codewords in C f . From the discussions above, we have

⋃

S∈Bq−2(C f )

S = [q + 1].

It then follows from Corollary 1 that C⊥
f has minimum locality d(C f ) − 1.

The discussions above showed that the coordinate in position 0 in all the minimumweight
codewords in C f is nonzero. It then follows from Lemma 9 that the coordinate in position 0
in all the minimum weight codewords in C⊥

f is zero. This means that

0 /∈
⋃

S∈B3(C⊥
f )

S.
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Hence, C f does not have minimum locality d(C⊥
f ) − 1. It then follows from Theorem 14

that C f has minimum locality d(C⊥
f ). The remaining desired conclusions then follow from

Theorems 25 and 15. �

The proof of Theorem 26 shows that it could be hard to determine the minimum locality

of an NMDS code.

5.4.3 NMDS codes with parameters [q + 2, 3, q − 1] from oval polynomials

Let f be a polynomial over GF(q) with f (0) = 0 and f (1) = 1. Let α be a generator of
GF(q)∗. Define

Ḡ f =
⎡

⎣
f (0) f (α0) f (α1) . . . f (αq−2) 0 1
0 α0 α1 . . . αq−2 1 0
1 1 1 . . . 1 1 1

⎤

⎦ . (22)

By definition, Ḡ f is a 3 by q + 2 matrix over GF(q). Let C̄ f denote the linear code over
GF(q) with generator matrix Ḡ f .

The following theorem was presented in [39].

Theorem 27 [39] Let m ≥ 3 be odd and let f (x) be an oval polynomial over GF(q) with
coefficients in GF(2). Then C̄ f is a [q + 2, 3, q − 1] NMDS code over GF(q) with weight
enumerator

Ā(z) = 1 + (q − 1)(q − 2)zq−1 + (q − 1)(q2 − 3q + 14)

2
zq +

3(q − 1)(q − 2)zq+1 + (q − 1)(q2 − 3q + 4)

2
zq+2.

Theorem 28 Let m ≥ 3 be odd and let f (x) be an oval polynomial over GF(q) with coef-
ficients in GF(2), and let C̄ f be the code in Theorem 27. Then C̄⊥

f has minimum locality

d(C f ) − 1 and is a d-optimal and k-optimal (q + 2, q − 1, 3, q; q − 2)-LLRC, and C̄ f has
minimum locality d(C̄⊥

f ) and is an almost d-optimal and k-optimal (q + 2, 3, q − 1, q; 3)-
LLRC.

Proof The proof is similar to that of Theorem 26 and is omitted here. However, we inform
the reader that the coordinates in positions 0 and 1 in all the minimum weight codewords in
C̄ f are always nonzero. This means that

{0, 1}
⋂ ⋃

S∈B3(C̄⊥
f )

S = ∅.

To prove this theorem, one has to characterize all the minimum weight codewords in C̄ f . �

Notice that Theorem 26 documents the second class of nontrivial linear codes C with

minimum locality more than d(C⊥) − 1. Many other infinite families of NMDS codes have
been reported in the literature (see, for example, [1, 2, 10, 15–18, 25, 30, 37–39]). It is
valuable to check which of the NMDS codes C have minimum locality d(C⊥) − 1, as they
are d-optimal and k-optimal LLRCs. It has been observed that the analysis of the minimum
locality of a linear code is harder than the determination of the minimum distance of the dual
code.
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Table 1 Some k-optimal LLRCs from known codes

C n k d r dopt kopt

H(q,m) nh nh − m 3 qm−1 − 1 ?
√

S(q,m) nh m qm−1 2 ?
√

(H(q,m)){t1} nh − 1 nh − m − 1 3 qm−1 − 2 ?
√

((H(q,m)){t1})⊥ nh − 1 m qm−1 − 1 2 ?
√

(S(q,m)){t1} nh − 1 m − 1 qm−1 1 ?
√

((S(q,m)){t1})⊥ nh − 1 nh − m 2 qm−1 − 1 ?
√

Rq (1,m) qm m + 1 (q − 1)qm−1 2 ?
√

Rq (1,m)⊥ qm qm − m − 1 3 qm − qm−1 − 1 ?
√

C f (Thm. 26) 2m + 1 3 2m − 2 3 A
√

C̄ f (Thm. 28) 2m + 2 3 2m − 1 3 A
√

Co q2 + 1 4 q2 − q 3 ?
√

(Co){t1} q2 3 q2 − q 2 ?
√

(Co){t1} q2 4 q2 − q − 1 3 ?
√

C(A) (Thm. 13) na 3 na − 2i 2 ?
√

6 Summary and concluding remarks

The objectives of this paper are to develop some general theory for the minimum locality of
linear codes and search for d-optimal or k-optimal LLRCs in known families of linear codes.
Below is a summary of the major contributions of this paper.

1. We determined the minimum locality of C⊥
under the condition that d(C) = d(C)+ 1 for

each nontrivial linear code C (see Theorem 5), and settled the minimum locality of C⊥
for

each nontrivial binary linear code C (see Corollary 5).
2. We proved that the minimum locality of an NMDS code C is either d(C⊥) − 1 or d(C⊥)

(see Theorem 14), and further proved that C is either a d-optimal and k-optimal or an
almost d-optimal and k-optimal LLRC (see Theorem 15).

These general results have settled the minimum linear locality (also the minimum locality)
of many families of nontrivial linear codes. Hence, we have reached our first objective.

After studying a number of families of known linear codes with the general theory devel-
oped, we have identified many classes of optimal LLRCs. These optimal LLRCs were not
reported in the literature. Table 1 lists fourteen classes of k-optimal LLRCs. Table 2 lists nine-
teen classes of LLRCswhich are both d-optimal and k-optimal and have different parameters.
In both tables,

– nh = (qm − 1)/(q − 1), na = 2m+i + 2i − 2m , where 2 ≤ i ≤ m,
–

√
means that the code is optimal with the Singleton-like or CM bound,

– A means that the code is almost optimal with respect to the Singleton-like bound, and
– ? means that the optimality is open.

These classes of optimal LLRCs demonstrate that we have reached our second objective.
We remark that the locality of locally recoverable codes in the literature is actually the

linear locality, but may not be the minimum linear locality. This paper has treated the min-
imum linear locality (also the minimum locality) of nontrivial linear codes. Availability is
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Table 2 Both d-optimal and k-optimal LLRCs from known codes

C n k d r dopt kopt

H(q,3) q2 + q + 1 q2 + q − 2 3 q2 − 1
√ √

(H(q,3)){t1} q2 + q q2 + q − 3 3 q2 − 2
√ √

((S(q,3)){t1})⊥ q2 + q q2 + q − 2 2 q2 − 1
√ √

C⊥
o q2 + 1 q2 − 3 4 q2 − q − 1

√ √

(C⊥
o ){t1} q2 q2 − 4 4 q2 − q − 2

√ √

(C⊥
o ){t1} q2 q2 − 3 3 q2 − q − 1

√ √

C(A)⊥ (Thm. 13) n n − 3 3 n − h − 1
√ √

C(3s ,3s+1,3,1) 3s + 1 3s − 3 4 3s − 4
√ √

C⊥
(3s ,3s+1,3,1) 3s + 1 4 3s − 3 3

√ √

C(2s ,2s+1,3,1) 2s + 1 2s − 3 4 2s − 4
√ √

C⊥
(2s ,2s+1,3,1) 2s + 1 4 2s − 3 3

√ √

C(2s ,2s+1,4,1) 2s + 1 2s − 5 6 2s − 6
√ √

C⊥
(2s ,2s+1,4,1) 2s + 1 6 2s − 5 5

√ √

C⊥
f (Thm. 26) 2m + 1 2m − 2 3 2m − 3

√ √

C̄⊥
f (Thm. 28) 2m + 2 2m − 1 3 2m − 2

√ √

C̄⊥
f (Thm. 23) 2m + 3 2m 3 2m − 1

√ √

C̄ f (Thm. 24) 2m + 3 3 2m 2
√ √

(C(2s ,2s+1,3,1))
⊥ (Thm 20) 2s + 2 5 2s − 3 4

√ √

(C(3s ,3s+1,3,1))
⊥ (Thm 19) 3s + 2 5 3s − 3 4

√ √

another interesting parameter of LLRCs. All the LLRCs presented in this paper naturally
have availability 1, and some of them may have availability 2 or more. It is extremely hard
to develop general theory for LLRCs with availability more than 1, although such LLRCs
are available in the literature. To study the maximum availability of an LLRC code C with
respect to the minimum locality d(C⊥) − 1, one has to characterize the minimum weight
codewords in C⊥. This is a very hard problem in general. The reader is cordially invited
to investigate the maximum availability of these optimal LLRCs documented in this paper.
Finally, we point out that all the LLRCs presented in this paper are from known linear codes
in the literature and our objective is to study their minimum locality and optimality with
respect to the Singleton-like and CM bounds.

Acknowledgements The authors are very grateful to the reviewers and the Editor for their very detailed
comments and suggestions that much improved the presentation and quality of this paper. The research of C.
Fan andZ.Zhouwas as supported byTheNationalNatural Science Foundation ofChina (GrantNos. 11971395,
62071397, and No. 62131016), and also by the Central Government Funds for Guiding Local Scientific
and Technological Development under Grant 2021ZYD0001. The research of C. Ding was supported by the
Research Grants Council of HongKong, under Grant No. 16301020. The research of C. Tangwas supported by
The National Natural Science Foundation of China (Grant No. 11871058) and China West Normal University
(14E013, CXTD2014-4 and the Meritocracy Research Funds).

123



The minimum locality of linear codes 113

References

1. Abatangelo V., Larato B.: Near-MDS codes arising from algebraic curves. Discret. Math. 301, 5–19
(2005).

2. Abatangelo V., Larato B.: Elliptic near-MDS codes over F5. Des. Codes Cryptgr. 46, 167–174 (2008).
3. Assmus Jr., Mattson Jr.: New 5-designs. J. Comb. Theory, 6(2), 122–151 (1969)
4. Assmus E.F. Jr., Key J.D.: Polynomial codes and finite geometries. In: Pless V.S., Huffman W.C. (eds.)

Handbook of Coding Theory, pp. 1269–1343. Elsevier, Amsterdam (1998).
5. Cadambe, V.R., Mazumdar A.: An upper bound on the size of locally recoverable codes. International

Symposium on Network Coding, Calgary, AB, Canada, pp. 1–5 (2013)
6. Cadambe V.R., Mazumdar A.: Bounds on the size of locally recoverable codes. IEEE Trans. Inf. Theory

61(11), 5787–5794 (2015).
7. Cai, H., Fan, C., Miao, Y., Schwartz, M., Tang, X.: Optimal locally repairable codes: an improved bound

and constructions. arXiv:2011.04966v1 [cs.IT]
8. Cai H., ChengM., Fan C., Tang X.: Optimal locally repairable systematic codes based on packings. IEEE

Trans. Commun. 67(1), 39–49 (2019).
9. Chen B., Chen J.: A construction of optimal (r , δ)-locally recoverable codes. IEEE Access 7, 180349–

180353 (2019).
10. De Boer M.A.: Almost MDS codes. Des. Codes Cryptogr. 9, 143–155 (1996).
11. Ding C.: Codes from Difference Sets. World Scientific, Singapore (2015).
12. Ding C., Heng Z.: The subfield codes of ovoid codes. IEEE Trans. Inf. Theory 65(8), 4715–4729 (2019).
13. Ding C., Tang C.: Designs from Linear Codes, 2nd edn World Scientific, Singapore (2018).
14. Ding C., Tang C.: Infinite families of near MDS codes holding t-designs. IEEE Trans. Inf. Theory 66(9),

5419–5428 (2020).
15. Dodunekov S., Landgev I.: On near-MDS codes. J. Geom. 54(1–2), 30–43 (1995).
16. Dodunekov S.M., Landjev I.N.: Near-MDS codes over some small fields. Discret. Math. 213(1–3), 55–65

(2000).
17. Faldum A., Willems W.: Codes of small defect. Des. Codes Cryptogr. 10, 341–350 (1997).
18. Giulietti M.: On the extendibility of near-MDS elliptic codes. AAECC 15, 1–11 (2004).
19. Gopalan P., Huang C., Simitci H., Yekhanin S.: On the locality of codeword symbols. IEEE Trans. Inf.

Theory 58(11), 6925–6934 (2012).
20. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.

de, 2007. Accessed 07 Jan 2021
21. Grezet M., Hollanti C.: The complete hierarchical locality of the punctured Simplex code. Des. Codes

Cryptogr. 89, 1–21 (2021).
22. Guo, A., Kopparty, S., Sudan, M.M.: New affine-invariant codes from lifting. In: Proceedings of the 4th

Conference on Innovations in Theoretical Computer Science, pp. 529–540 (2013)
23. Huang P., Yaakobi E., Uchikawa H., Siegel P.H.: Binary linear locally repairable codes. IEEE Trans. Inf.

Theory 62(11), 6268–6283 (2016).
24. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cam-

bridge (2003).
25. Jin L., Kan H.: Self-dual nearMDS codes from elliptic curves. IEEE Trans. Inf. Theory 65(4), 2166–2170

(2019).
26. Jin L., Kan H., Zhang Y.: Constructions of locally repairable codes with multiple recovering sets via

rational function fields. IEEE Trans. Inf. Theory 66(1), 202–209 (2020).
27. Liu J.,Mesnager S., TangD.: Constructions of optimal locally recoverable codes viaDickson polynomials.

Des. Codes Cryptogr. 88(2), 1759–1780 (2020).
28. Liu Y., Ding C., Tang C.: Shortened linear codes over finite fields. IEEE Trans. Inf. Theory 67(8), 5119–

5132 (2021).
29. Luo Y., Xing C., Yuan C.: Optimal locally repairable codes of distance 3 and 4 via cyclic codes. IEEE

Trans. Inf. Theory 65(2), 1048–1053 (2019).
30. Marcugini S., Milani A., Pambianco F.: NMDS codes of maximum length over Fq , 8 ≤ q ≤ 11,. IEEE

Trans. Inf. Theory 48(4), 963–966 (2002).
31. Maschietti A.: Difference set and hyperovals. Des. Codes Cryptogr. 14, 89–98 (1998).
32. Micheli G.: Constructions of locally recoverable codes which are optimal. IEEE Trans. Inf. Theory 66(1),

167–175 (2020).
33. Tamo I., Barg A.: A family of optimal locally recoverable codes. IEEE Trans. Inf. Theory 60(8), 4661–

4676 (2014).
34. TanP., ZhouZ., SidorenkoV., ParampalliU.: Two classes of optimal LRCswith information (r , t)-locality.

Des. Codes Cryptogr. 88(2), 1741–1757 (2020).

123

http://arxiv.org/abs/2011.04966v1
http://www.codetables.de
http://www.codetables.de


114 P. Tan et al.

35. Tang C., Ding C.: An infinite family of linear codes supporting 4-designs. IEEE Trans. Inf. Theory 67(1),
244–254 (2021).

36. Tang C., Ding C., Xiong M.: Codes, differentially δ-uniform functions and t-designs. IEEE Trans. Inf.
Theory 66(6), 3691–3703 (2020).

37. Tong H., Ding Y.: Quasi-cyclic NMDS codes. Finite Fields Appl. 24, 45–54 (2013).
38. Tsfasmann M.A., Vladut S.G.: Algebraic-Geometry Codes. Kluwer, Dordrecht (1991).
39. Wang Q., Heng Z.: Near MDS codes from overall polynomials. Discret. Math. 344, 4 (2021).
40. Wang A., Zhang Z., LiuM.: Achieving arbitrary locality and availability in binary codes. Proc. ISIT 2016,

1866–1870 (2015).
41. Xing, C., Yuan, C.: Construction of optimal locally recoverable codes and connection with hypergraph.

Proceedings of the 46th International Colloquium on Automata, Languages, and Programming (ICALP
2019), pp. 1–98 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123


	The minimum locality of linear codes
	Abstract
	1 Introduction of motivations, objectives and methodology
	2 Preliminaries
	2.1 BCH and cyclic codes
	2.2 Several basic operations on linear codes
	2.3 Automorphism groups of linear codes
	2.4 The support designs of linear codes

	3 General theory on the minimum locality of linear codes
	3.1 Minimum locality and minimum linear locality of nontrivial linear codes are identical
	3.2 Some general theory of the minimum locality of nontrivial linear codes
	3.3 Linear codes mathcalC with minimum locality d(mathcalCperp)-1
	3.4 The minimum locality of extended cyclic code

	4 The minimum locality of some known families of linear codes
	4.1 The minimum locality of the q-ary Hamming codes and Simplex codes
	4.2 The minimum locality of the generalised Reed-Muller codes over GF(q)
	4.3 The minimum locality of ovoid codes
	4.4 The minimum locality of maximal arc codes

	5 The minimum locality of near MDS codes
	5.1 Some general theory on the minimum locality of near MDS codes
	5.2 The minimum locality of NMDS cyclic codes
	5.3 The minimum locality of the extended codes of some NMDS cyclic codes
	5.4 The linear locality of some NMDS codes from oval polynomials
	5.4.1 NMDS codes with parameters [q+3, 3, q] from oval polynomials
	5.4.2 NMDS codes with parameters [q+1, 3, q-2] from oval polynomials
	5.4.3 NMDS codes with parameters [q+2, 3, q-1] from oval polynomials


	6 Summary and concluding remarks
	Acknowledgements
	References




